Properties

Label 16.4.e.a
Level 16
Weight 4
Character orbit 16.e
Analytic conductor 0.944
Analytic rank 0
Dimension 10
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 16 = 2^{4} \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 16.e (of order \(4\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(0.944030560092\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{10} \)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{4} q^{2} -\beta_{5} q^{3} + ( 1 - \beta_{2} + \beta_{5} + \beta_{6} + \beta_{8} ) q^{4} + ( -1 + \beta_{4} - \beta_{6} - \beta_{7} - \beta_{8} + \beta_{9} ) q^{5} + ( -3 + \beta_{1} + \beta_{2} + \beta_{3} + \beta_{5} + \beta_{7} - \beta_{8} - \beta_{9} ) q^{6} + ( -1 - \beta_{1} + 3 \beta_{2} - \beta_{3} + 4 \beta_{4} - \beta_{5} - 2 \beta_{6} + 2 \beta_{7} - \beta_{9} ) q^{7} + ( -6 - 2 \beta_{1} + 2 \beta_{2} - 3 \beta_{3} + \beta_{4} + \beta_{5} - \beta_{6} - \beta_{7} + \beta_{8} ) q^{8} + ( 1 + \beta_{1} - 4 \beta_{2} + 2 \beta_{3} + 2 \beta_{5} + 6 \beta_{6} - 2 \beta_{7} - \beta_{9} ) q^{9} +O(q^{10})\) \( q -\beta_{4} q^{2} -\beta_{5} q^{3} + ( 1 - \beta_{2} + \beta_{5} + \beta_{6} + \beta_{8} ) q^{4} + ( -1 + \beta_{4} - \beta_{6} - \beta_{7} - \beta_{8} + \beta_{9} ) q^{5} + ( -3 + \beta_{1} + \beta_{2} + \beta_{3} + \beta_{5} + \beta_{7} - \beta_{8} - \beta_{9} ) q^{6} + ( -1 - \beta_{1} + 3 \beta_{2} - \beta_{3} + 4 \beta_{4} - \beta_{5} - 2 \beta_{6} + 2 \beta_{7} - \beta_{9} ) q^{7} + ( -6 - 2 \beta_{1} + 2 \beta_{2} - 3 \beta_{3} + \beta_{4} + \beta_{5} - \beta_{6} - \beta_{7} + \beta_{8} ) q^{8} + ( 1 + \beta_{1} - 4 \beta_{2} + 2 \beta_{3} + 2 \beta_{5} + 6 \beta_{6} - 2 \beta_{7} - \beta_{9} ) q^{9} + ( -6 - 8 \beta_{2} + 4 \beta_{3} - \beta_{4} - 2 \beta_{5} - \beta_{6} - 2 \beta_{8} + 2 \beta_{9} ) q^{10} + ( 2 + 2 \beta_{1} - \beta_{3} - 2 \beta_{4} - 6 \beta_{6} + 2 \beta_{7} + 2 \beta_{8} ) q^{11} + ( 10 + 2 \beta_{1} + 16 \beta_{2} - 3 \beta_{3} + 3 \beta_{4} - 3 \beta_{5} + \beta_{6} - \beta_{7} + \beta_{8} + 2 \beta_{9} ) q^{12} + ( 2 - \beta_{1} + \beta_{2} - 9 \beta_{4} + 4 \beta_{5} + 7 \beta_{6} - \beta_{7} + \beta_{8} + 4 \beta_{9} ) q^{13} + ( 20 + 2 \beta_{1} - 14 \beta_{2} - 2 \beta_{4} - 6 \beta_{5} - 2 \beta_{6} - 2 \beta_{8} - 4 \beta_{9} ) q^{14} + ( -9 - 5 \beta_{1} - 3 \beta_{2} + \beta_{3} - 14 \beta_{4} - \beta_{5} + 4 \beta_{6} + 2 \beta_{8} - 3 \beta_{9} ) q^{15} + ( 28 - 6 \beta_{1} - 12 \beta_{2} + 4 \beta_{3} + 4 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} + 2 \beta_{8} - 2 \beta_{9} ) q^{16} + ( -3 + 3 \beta_{1} - 5 \beta_{2} - 2 \beta_{3} - 6 \beta_{4} + 2 \beta_{5} - 16 \beta_{6} - 2 \beta_{8} - 5 \beta_{9} ) q^{17} + ( 14 - 2 \beta_{1} + 50 \beta_{2} - 6 \beta_{3} + 6 \beta_{4} + 2 \beta_{5} - \beta_{6} + 2 \beta_{7} - 2 \beta_{8} + 6 \beta_{9} ) q^{18} + ( 8 \beta_{1} + 10 \beta_{2} + 10 \beta_{4} + 3 \beta_{5} + 18 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} + 2 \beta_{9} ) q^{19} + ( -22 + 8 \beta_{1} - 48 \beta_{2} + \beta_{3} + 3 \beta_{4} + 3 \beta_{5} - 9 \beta_{6} - \beta_{7} - 5 \beta_{8} + 4 \beta_{9} ) q^{20} + ( 2 - 4 \beta_{1} + 10 \beta_{2} + 4 \beta_{3} + 20 \beta_{4} - 4 \beta_{6} + 4 \beta_{7} + 4 \beta_{8} + 4 \beta_{9} ) q^{21} + ( -59 - \beta_{1} + 11 \beta_{2} + \beta_{3} - 4 \beta_{4} + 3 \beta_{5} - 7 \beta_{7} + 5 \beta_{8} - 5 \beta_{9} ) q^{22} + ( -7 - 7 \beta_{1} - 27 \beta_{2} + 3 \beta_{3} + 12 \beta_{4} + 3 \beta_{5} - 6 \beta_{6} - 10 \beta_{7} + \beta_{9} ) q^{23} + ( -80 - 2 \beta_{1} + 28 \beta_{2} + 6 \beta_{3} - 6 \beta_{4} + 12 \beta_{6} + 6 \beta_{7} - 4 \beta_{8} - 6 \beta_{9} ) q^{24} + ( 5 \beta_{2} - 12 \beta_{3} + 16 \beta_{4} - 12 \beta_{5} + 8 \beta_{6} + 8 \beta_{7} - 8 \beta_{9} ) q^{25} + ( -28 - 6 \beta_{1} - 74 \beta_{2} - 10 \beta_{3} + 5 \beta_{4} + 8 \beta_{5} + 7 \beta_{6} + 2 \beta_{7} + 12 \beta_{8} + 4 \beta_{9} ) q^{26} + ( 14 + 6 \beta_{1} + 16 \beta_{2} + 4 \beta_{3} - 6 \beta_{4} - 18 \beta_{6} - 10 \beta_{7} - 10 \beta_{8} + 8 \beta_{9} ) q^{27} + ( 34 + 8 \beta_{1} + 94 \beta_{2} + 10 \beta_{3} - 22 \beta_{4} + 4 \beta_{5} - 8 \beta_{6} + 6 \beta_{7} - 4 \beta_{8} - 4 \beta_{9} ) q^{28} + ( -16 - 3 \beta_{1} + 13 \beta_{2} - 11 \beta_{4} - 24 \beta_{5} - 11 \beta_{6} + 5 \beta_{7} - 5 \beta_{8} ) q^{29} + ( 122 - 40 \beta_{2} - 6 \beta_{3} + 10 \beta_{4} + 20 \beta_{5} + 14 \beta_{6} + 2 \beta_{7} + 12 \beta_{8} - 2 \beta_{9} ) q^{30} + ( 34 + 2 \beta_{1} + 6 \beta_{2} - 4 \beta_{3} + 4 \beta_{4} + 4 \beta_{5} + 8 \beta_{6} - 12 \beta_{8} + 6 \beta_{9} ) q^{31} + ( 96 + 4 \beta_{1} - 64 \beta_{2} - 6 \beta_{3} - 30 \beta_{4} + 6 \beta_{5} - 14 \beta_{6} - 2 \beta_{7} - 10 \beta_{8} ) q^{32} + ( 7 - 3 \beta_{1} - 3 \beta_{2} + 14 \beta_{3} - 2 \beta_{4} - 14 \beta_{5} + 10 \beta_{8} - 3 \beta_{9} ) q^{33} + ( 50 - 2 \beta_{1} + 106 \beta_{2} + 18 \beta_{3} - 12 \beta_{4} - 2 \beta_{5} + 6 \beta_{6} - 14 \beta_{7} + 10 \beta_{8} + 2 \beta_{9} ) q^{34} + ( 48 - 8 \beta_{1} - 52 \beta_{2} - 12 \beta_{4} + 6 \beta_{5} + 4 \beta_{6} - 12 \beta_{7} + 12 \beta_{8} + 4 \beta_{9} ) q^{35} + ( -43 - 4 \beta_{1} - 131 \beta_{2} + 3 \beta_{3} - 19 \beta_{4} - 20 \beta_{5} + 36 \beta_{6} + 5 \beta_{7} + 4 \beta_{8} - 4 \beta_{9} ) q^{36} + ( -5 + 4 \beta_{1} - 10 \beta_{2} - 28 \beta_{3} - 9 \beta_{4} - 7 \beta_{6} + \beta_{7} + \beta_{8} - \beta_{9} ) q^{37} + ( -127 + \beta_{1} + 97 \beta_{2} - 23 \beta_{3} + 24 \beta_{4} - 19 \beta_{5} - 4 \beta_{6} + 17 \beta_{7} - 5 \beta_{8} + 3 \beta_{9} ) q^{38} + ( 11 + 11 \beta_{1} + 79 \beta_{2} + 7 \beta_{3} - 12 \beta_{4} + 7 \beta_{5} + 22 \beta_{6} + 10 \beta_{7} - 5 \beta_{9} ) q^{39} + ( -144 + 2 \beta_{1} + 52 \beta_{2} + 12 \beta_{3} + 16 \beta_{4} - 14 \beta_{5} - 54 \beta_{6} - 8 \beta_{7} - 2 \beta_{8} + 10 \beta_{9} ) q^{40} + ( 2 + 2 \beta_{1} + 6 \beta_{2} + 24 \beta_{3} - 16 \beta_{4} + 24 \beta_{5} - 12 \beta_{6} + 4 \beta_{7} + 6 \beta_{9} ) q^{41} + ( -76 + 4 \beta_{1} - 156 \beta_{2} - 12 \beta_{3} - 6 \beta_{4} - 12 \beta_{5} - 18 \beta_{6} - 12 \beta_{7} - 20 \beta_{8} - 4 \beta_{9} ) q^{42} + ( -72 - 8 \beta_{1} - 80 \beta_{2} + 3 \beta_{3} - 8 \beta_{4} + 40 \beta_{6} + 8 \beta_{7} + 8 \beta_{8} - 16 \beta_{9} ) q^{43} + ( 72 - 14 \beta_{1} + 134 \beta_{2} + 5 \beta_{3} + 63 \beta_{4} + 19 \beta_{5} + 27 \beta_{6} - 9 \beta_{7} - \beta_{8} + 6 \beta_{9} ) q^{44} + ( 2 + 5 \beta_{1} - 9 \beta_{2} + 37 \beta_{4} + 44 \beta_{5} - 11 \beta_{6} - 3 \beta_{7} + 3 \beta_{8} - 12 \beta_{9} ) q^{45} + ( 104 - 10 \beta_{1} - 34 \beta_{2} + 20 \beta_{3} - 6 \beta_{4} - 2 \beta_{5} - 30 \beta_{6} - 12 \beta_{7} - 22 \beta_{8} + 16 \beta_{9} ) q^{46} + ( -102 + 10 \beta_{1} - 2 \beta_{2} - 4 \beta_{3} + 36 \beta_{4} + 4 \beta_{5} - 24 \beta_{6} + 20 \beta_{8} - 2 \beta_{9} ) q^{47} + ( 168 + 16 \beta_{1} - 16 \beta_{2} - 26 \beta_{3} + 86 \beta_{4} - 2 \beta_{5} + 34 \beta_{6} + 10 \beta_{7} + 6 \beta_{8} + 4 \beta_{9} ) q^{48} + ( 1 - 10 \beta_{1} + 22 \beta_{2} - 36 \beta_{3} + 20 \beta_{4} + 36 \beta_{5} + 64 \beta_{6} - 4 \beta_{8} + 22 \beta_{9} ) q^{49} + ( 80 + 8 \beta_{1} + 120 \beta_{2} + 8 \beta_{4} - 24 \beta_{5} - 11 \beta_{6} + 32 \beta_{7} - 8 \beta_{8} - 32 \beta_{9} ) q^{50} + ( -160 - 16 \beta_{1} + 130 \beta_{2} - 22 \beta_{4} - 22 \beta_{5} - 78 \beta_{6} + 18 \beta_{7} - 18 \beta_{8} - 14 \beta_{9} ) q^{51} + ( -56 - 28 \beta_{1} - 122 \beta_{2} - 21 \beta_{3} + 41 \beta_{4} - \beta_{5} - 85 \beta_{6} - 3 \beta_{7} + 15 \beta_{8} - 16 \beta_{9} ) q^{52} + ( -5 + 12 \beta_{1} - 38 \beta_{2} + 68 \beta_{3} - 85 \beta_{4} + 37 \beta_{6} - 19 \beta_{7} - 19 \beta_{8} - 21 \beta_{9} ) q^{53} + ( -120 + 4 \beta_{1} + 12 \beta_{2} + 44 \beta_{3} - 36 \beta_{4} + 24 \beta_{6} - 12 \beta_{7} - 8 \beta_{8} + 24 \beta_{9} ) q^{54} + ( 15 + 15 \beta_{1} - 157 \beta_{2} - 25 \beta_{3} - 60 \beta_{4} - 25 \beta_{5} - 18 \beta_{6} + 18 \beta_{7} + 15 \beta_{9} ) q^{55} + ( -20 + 16 \beta_{1} + 60 \beta_{2} - 14 \beta_{3} - 38 \beta_{4} + 14 \beta_{5} + 114 \beta_{6} - 18 \beta_{7} + 22 \beta_{8} + 12 \beta_{9} ) q^{56} + ( -9 - 9 \beta_{1} - 21 \beta_{2} - 18 \beta_{3} - 64 \beta_{4} - 18 \beta_{5} - 54 \beta_{6} - 46 \beta_{7} + 41 \beta_{9} ) q^{57} + ( 16 + 34 \beta_{1} - 106 \beta_{2} + 30 \beta_{3} - 3 \beta_{4} + 20 \beta_{5} + 19 \beta_{6} + 18 \beta_{7} - 8 \beta_{8} - 24 \beta_{9} ) q^{58} + ( 164 - 36 \beta_{1} + 192 \beta_{2} - 29 \beta_{3} + 84 \beta_{4} + 60 \beta_{6} + 28 \beta_{7} + 28 \beta_{8} - 8 \beta_{9} ) q^{59} + ( -22 - 36 \beta_{1} + 58 \beta_{2} - 44 \beta_{3} - 96 \beta_{4} - 14 \beta_{5} - 50 \beta_{6} - 12 \beta_{7} + 18 \beta_{8} ) q^{60} + ( 94 + 19 \beta_{1} - 79 \beta_{2} + 67 \beta_{4} - 12 \beta_{5} + 51 \beta_{6} - 21 \beta_{7} + 21 \beta_{8} - 4 \beta_{9} ) q^{61} + ( 12 + 4 \beta_{1} - 68 \beta_{2} + 4 \beta_{3} - 36 \beta_{4} - 36 \beta_{5} - 4 \beta_{6} + 20 \beta_{7} + 4 \beta_{8} + 12 \beta_{9} ) q^{62} + ( 267 + 15 \beta_{1} - 7 \beta_{2} + 33 \beta_{3} + 26 \beta_{4} - 33 \beta_{5} - 44 \beta_{6} + 10 \beta_{8} - 7 \beta_{9} ) q^{63} + ( 80 - 4 \beta_{1} + 32 \beta_{2} + 28 \beta_{3} - 116 \beta_{4} - 32 \beta_{6} - 4 \beta_{7} + 40 \beta_{8} + 12 \beta_{9} ) q^{64} + ( -44 + 18 \beta_{1} + 26 \beta_{2} + 40 \beta_{3} + 36 \beta_{4} - 40 \beta_{5} + 16 \beta_{6} - 52 \beta_{8} + 26 \beta_{9} ) q^{65} + ( -58 + 18 \beta_{1} - 10 \beta_{2} - 10 \beta_{3} + 50 \beta_{5} + 2 \beta_{6} - 10 \beta_{7} - 26 \beta_{8} - 10 \beta_{9} ) q^{66} + ( 176 - 202 \beta_{2} + 30 \beta_{4} - 13 \beta_{5} - 74 \beta_{6} + 22 \beta_{7} - 22 \beta_{8} - 26 \beta_{9} ) q^{67} + ( -78 - 4 \beta_{1} + 38 \beta_{2} - 4 \beta_{3} - 36 \beta_{4} + 66 \beta_{5} + 130 \beta_{6} - 20 \beta_{7} - 22 \beta_{8} + 20 \beta_{9} ) q^{68} + ( 58 - 12 \beta_{1} + 54 \beta_{2} - 52 \beta_{3} + 48 \beta_{6} + 8 \beta_{7} + 8 \beta_{8} - 16 \beta_{9} ) q^{69} + ( 2 - 30 \beta_{1} - 62 \beta_{2} + 2 \beta_{3} - 40 \beta_{4} + 42 \beta_{5} - 32 \beta_{6} - 14 \beta_{7} + 6 \beta_{8} + 6 \beta_{9} ) q^{70} + ( 1 + \beta_{1} + 333 \beta_{2} - 21 \beta_{3} - 20 \beta_{4} - 21 \beta_{5} + 10 \beta_{6} - 26 \beta_{7} + 9 \beta_{9} ) q^{71} + ( 70 + 24 \beta_{1} - 14 \beta_{2} - 33 \beta_{3} + 79 \beta_{4} + 45 \beta_{5} - 113 \beta_{6} + 49 \beta_{7} + \beta_{8} - 26 \beta_{9} ) q^{72} + ( -29 - 29 \beta_{1} + 37 \beta_{2} + 14 \beta_{3} + 64 \beta_{4} + 14 \beta_{5} - 62 \beta_{6} + 10 \beta_{7} - 3 \beta_{9} ) q^{73} + ( -30 - 28 \beta_{1} + 140 \beta_{2} + 32 \beta_{3} + 3 \beta_{4} - 18 \beta_{5} - \beta_{6} + 20 \beta_{7} + 38 \beta_{8} - 30 \beta_{9} ) q^{74} + ( -312 - 288 \beta_{2} + 13 \beta_{3} + 16 \beta_{4} - 16 \beta_{6} - 32 \beta_{7} - 32 \beta_{8} + 24 \beta_{9} ) q^{75} + ( -110 + 18 \beta_{1} - 104 \beta_{2} + 17 \beta_{3} + 119 \beta_{4} - 55 \beta_{5} + 53 \beta_{6} + 43 \beta_{7} - 3 \beta_{8} - 54 \beta_{9} ) q^{76} + ( -42 - 8 \beta_{1} + 14 \beta_{2} - 8 \beta_{4} - 12 \beta_{5} - 88 \beta_{6} + 32 \beta_{7} - 32 \beta_{8} - 20 \beta_{9} ) q^{77} + ( -68 + 10 \beta_{1} + 138 \beta_{2} - 56 \beta_{3} + 22 \beta_{4} + 2 \beta_{5} + 86 \beta_{6} + 8 \beta_{7} + 22 \beta_{8} + 4 \beta_{9} ) q^{78} + ( -452 + 12 \beta_{1} + 36 \beta_{2} - 8 \beta_{3} + 40 \beta_{4} + 8 \beta_{5} + 48 \beta_{6} - 56 \beta_{8} + 36 \beta_{9} ) q^{79} + ( -280 + 20 \beta_{1} - 112 \beta_{2} + 74 \beta_{3} + 90 \beta_{4} + 14 \beta_{5} + 34 \beta_{6} - 50 \beta_{7} - 50 \beta_{8} + 8 \beta_{9} ) q^{80} + ( 50 - 15 \beta_{1} - 15 \beta_{2} - 18 \beta_{3} + 6 \beta_{4} + 18 \beta_{5} + 66 \beta_{8} - 15 \beta_{9} ) q^{81} + ( -84 + 4 \beta_{1} - 228 \beta_{2} - 44 \beta_{3} - 12 \beta_{4} + 12 \beta_{5} + 12 \beta_{6} - 60 \beta_{7} + 20 \beta_{8} + 44 \beta_{9} ) q^{82} + ( -240 - 24 \beta_{1} + 256 \beta_{2} - 56 \beta_{4} + 55 \beta_{5} + 104 \beta_{6} - 72 \beta_{7} + 72 \beta_{8} + 40 \beta_{9} ) q^{83} + ( 188 + 8 \beta_{1} + 232 \beta_{2} + 86 \beta_{3} + 42 \beta_{4} - 22 \beta_{5} - 134 \beta_{6} + 26 \beta_{7} - 6 \beta_{8} + 8 \beta_{9} ) q^{84} + ( -22 + 20 \beta_{1} - 18 \beta_{2} - 28 \beta_{3} + 32 \beta_{4} - 112 \beta_{6} + 24 \beta_{7} + 24 \beta_{8} + 24 \beta_{9} ) q^{85} + ( 333 + 3 \beta_{1} + 87 \beta_{2} - 67 \beta_{3} + 112 \beta_{4} + 19 \beta_{5} - 64 \beta_{6} + 29 \beta_{7} + 13 \beta_{8} - 13 \beta_{9} ) q^{86} + ( 17 + 17 \beta_{1} - 547 \beta_{2} + 83 \beta_{3} + 44 \beta_{4} + 83 \beta_{5} + 106 \beta_{6} + 6 \beta_{7} - 39 \beta_{9} ) q^{87} + ( 172 - 22 \beta_{1} - 176 \beta_{2} - 32 \beta_{3} - 60 \beta_{4} - 70 \beta_{5} + 74 \beta_{6} + 4 \beta_{7} - 58 \beta_{8} + 34 \beta_{9} ) q^{88} + ( 53 + 53 \beta_{1} + 35 \beta_{2} - 14 \beta_{3} - 14 \beta_{5} + 110 \beta_{6} + 102 \beta_{7} - 53 \beta_{9} ) q^{89} + ( 172 - 50 \beta_{1} + 290 \beta_{2} - 30 \beta_{3} - 5 \beta_{4} - 72 \beta_{5} - 31 \beta_{6} - 58 \beta_{7} + 4 \beta_{8} + 44 \beta_{9} ) q^{90} + ( 392 + 64 \beta_{1} + 288 \beta_{2} + 70 \beta_{3} - 240 \beta_{4} - 16 \beta_{6} - 32 \beta_{7} - 32 \beta_{8} - 40 \beta_{9} ) q^{91} + ( 98 + 32 \beta_{1} - 434 \beta_{2} + 58 \beta_{3} - 166 \beta_{4} - 4 \beta_{5} - 32 \beta_{6} - 26 \beta_{7} - 28 \beta_{8} + 52 \beta_{9} ) q^{92} + ( -212 - 36 \beta_{1} + 184 \beta_{2} - 100 \beta_{4} - 40 \beta_{5} - 68 \beta_{6} + 12 \beta_{7} - 12 \beta_{8} + 8 \beta_{9} ) q^{93} + ( -372 - 28 \beta_{1} + 252 \beta_{2} + 4 \beta_{3} + 108 \beta_{4} - 4 \beta_{5} - 36 \beta_{6} - 44 \beta_{7} - 28 \beta_{8} - 20 \beta_{9} ) q^{94} + ( 673 - 43 \beta_{1} - 21 \beta_{2} - 107 \beta_{3} - 74 \beta_{4} + 107 \beta_{5} + 44 \beta_{6} + 54 \beta_{8} - 21 \beta_{9} ) q^{95} + ( -432 - 20 \beta_{1} + 304 \beta_{2} - 32 \beta_{3} - 112 \beta_{4} - 108 \beta_{5} - 116 \beta_{6} + 56 \beta_{7} - 52 \beta_{8} - 44 \beta_{9} ) q^{96} + ( 25 - 49 \beta_{1} - 73 \beta_{2} - 10 \beta_{3} - 158 \beta_{4} + 10 \beta_{5} - 48 \beta_{6} + 86 \beta_{8} - 73 \beta_{9} ) q^{97} + ( 36 - 68 \beta_{1} - 364 \beta_{2} - 60 \beta_{3} + 49 \beta_{4} - 100 \beta_{5} - 20 \beta_{6} + 68 \beta_{7} + 52 \beta_{8} + 4 \beta_{9} ) q^{98} + ( 544 + 56 \beta_{1} - 436 \beta_{2} - 12 \beta_{4} + 23 \beta_{5} + 196 \beta_{6} + 20 \beta_{7} - 20 \beta_{8} + 52 \beta_{9} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q - 2q^{2} - 2q^{3} + 8q^{4} - 2q^{5} - 32q^{6} - 44q^{8} + O(q^{10}) \) \( 10q - 2q^{2} - 2q^{3} + 8q^{4} - 2q^{5} - 32q^{6} - 44q^{8} - 68q^{10} + 18q^{11} + 100q^{12} - 2q^{13} + 188q^{14} - 124q^{15} + 280q^{16} - 4q^{17} + 174q^{18} - 26q^{19} - 196q^{20} + 52q^{21} - 588q^{22} - 848q^{24} - 264q^{26} + 184q^{27} + 280q^{28} - 202q^{29} + 1236q^{30} + 368q^{31} + 968q^{32} - 4q^{33} + 436q^{34} + 476q^{35} - 596q^{36} - 10q^{37} - 1232q^{38} - 1336q^{40} - 680q^{42} - 838q^{43} + 868q^{44} + 194q^{45} + 1132q^{46} - 944q^{47} + 1768q^{48} + 94q^{49} + 726q^{50} - 1500q^{51} - 236q^{52} - 378q^{53} - 1376q^{54} - 488q^{56} + 8q^{58} + 1706q^{59} - 192q^{60} + 910q^{61} - 80q^{62} + 2628q^{63} + 512q^{64} - 492q^{65} - 428q^{66} + 1942q^{67} - 880q^{68} + 580q^{69} + 160q^{70} + 1092q^{72} - 452q^{74} - 2954q^{75} - 1228q^{76} - 268q^{77} - 772q^{78} - 4416q^{79} - 2648q^{80} + 482q^{81} - 704q^{82} - 2562q^{83} + 1960q^{84} - 12q^{85} + 3764q^{86} + 1528q^{88} + 1896q^{90} + 3332q^{91} + 632q^{92} - 2192q^{93} - 3248q^{94} + 6900q^{95} - 4432q^{96} - 4q^{97} + 314q^{98} + 4958q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{10} - 2 x^{9} - x^{8} + 6 x^{7} + 14 x^{6} - 80 x^{5} + 56 x^{4} + 96 x^{3} - 64 x^{2} - 512 x + 1024\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( 4 \nu - 1 \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{9} - 14 \nu^{8} + 7 \nu^{7} + 82 \nu^{6} - 170 \nu^{5} - 120 \nu^{4} + 536 \nu^{3} + 384 \nu^{2} - 2752 \nu + 3072 \)\()/1280\)
\(\beta_{3}\)\(=\)\((\)\( 3 \nu^{9} - 2 \nu^{8} + 101 \nu^{7} - 114 \nu^{6} + 210 \nu^{5} - 120 \nu^{4} + 8 \nu^{3} - 3008 \nu^{2} + 3264 \nu - 7424 \)\()/1280\)
\(\beta_{4}\)\(=\)\((\)\( 7 \nu^{9} - 18 \nu^{8} + 49 \nu^{7} + 14 \nu^{6} - 230 \nu^{5} + 120 \nu^{4} + 872 \nu^{3} - 1472 \nu^{2} - 1984 \nu + 7424 \)\()/1280\)
\(\beta_{5}\)\(=\)\((\)\( -17 \nu^{9} + 38 \nu^{8} - 39 \nu^{7} + 86 \nu^{6} + 90 \nu^{5} + 520 \nu^{4} - 792 \nu^{3} + 2752 \nu^{2} - 1856 \nu - 4864 \)\()/1280\)
\(\beta_{6}\)\(=\)\((\)\( 17 \nu^{9} - 38 \nu^{8} + 39 \nu^{7} + 74 \nu^{6} - 90 \nu^{5} - 680 \nu^{4} + 1432 \nu^{3} - 512 \nu^{2} - 2624 \nu + 2304 \)\()/1280\)
\(\beta_{7}\)\(=\)\((\)\( -5 \nu^{9} + 6 \nu^{8} + 29 \nu^{7} - 58 \nu^{6} + 18 \nu^{5} + 184 \nu^{4} + 136 \nu^{3} - 1216 \nu^{2} + 1088 \nu - 1280 \)\()/256\)
\(\beta_{8}\)\(=\)\((\)\( -37 \nu^{9} + 158 \nu^{8} - 179 \nu^{7} + 46 \nu^{6} - 350 \nu^{5} + 1800 \nu^{4} - 4472 \nu^{3} + 3712 \nu^{2} - 3776 \nu + 5376 \)\()/1280\)
\(\beta_{9}\)\(=\)\((\)\( -49 \nu^{9} + 46 \nu^{8} + 297 \nu^{7} - 818 \nu^{6} + 10 \nu^{5} + 2040 \nu^{4} + 616 \nu^{3} - 11136 \nu^{2} + 17088 \nu - 7168 \)\()/1280\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{1} + 1\)\()/4\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{9} - 2 \beta_{7} + 2 \beta_{6} + 2 \beta_{5} - \beta_{2} + 2\)\()/4\)
\(\nu^{3}\)\(=\)\((\)\(2 \beta_{7} + 6 \beta_{6} + 2 \beta_{5} - 4 \beta_{3} - 6 \beta_{2} + \beta_{1} - 1\)\()/4\)
\(\nu^{4}\)\(=\)\((\)\(-\beta_{9} - 2 \beta_{8} - 8 \beta_{6} + 4 \beta_{5} + 14 \beta_{4} - 2 \beta_{3} - 11 \beta_{2} - 34\)\()/4\)
\(\nu^{5}\)\(=\)\((\)\(-4 \beta_{9} - 4 \beta_{8} + 6 \beta_{7} - 6 \beta_{6} + 6 \beta_{5} + 4 \beta_{4} - 18 \beta_{2} - 5 \beta_{1} + 73\)\()/4\)
\(\nu^{6}\)\(=\)\((\)\(-15 \beta_{9} - 2 \beta_{8} + 20 \beta_{7} - 28 \beta_{6} + 14 \beta_{4} + 14 \beta_{3} + 27 \beta_{2} + 24 \beta_{1} + 34\)\()/4\)
\(\nu^{7}\)\(=\)\((\)\(20 \beta_{9} + 4 \beta_{8} - 46 \beta_{7} + 30 \beta_{6} + 50 \beta_{5} + 12 \beta_{4} + 64 \beta_{3} + 42 \beta_{2} + 5 \beta_{1} + 207\)\()/4\)
\(\nu^{8}\)\(=\)\((\)\(7 \beta_{9} + 58 \beta_{8} + 36 \beta_{7} + 292 \beta_{6} + 56 \beta_{5} - 54 \beta_{4} - 22 \beta_{3} - 179 \beta_{2} + 48 \beta_{1} + 326\)\()/4\)
\(\nu^{9}\)\(=\)\((\)\(4 \beta_{9} + 28 \beta_{8} - 98 \beta_{7} + 210 \beta_{6} + 94 \beta_{5} + 372 \beta_{4} - 674 \beta_{2} + 35 \beta_{1} - 1111\)\()/4\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/16\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(15\)
\(\chi(n)\) \(\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1
1.28199 1.53509i
1.97476 0.316760i
−1.62580 1.16481i
0.932438 + 1.76934i
−1.56339 + 1.24732i
1.28199 + 1.53509i
1.97476 + 0.316760i
−1.62580 + 1.16481i
0.932438 1.76934i
−1.56339 1.24732i
−2.81708 0.253099i 5.49618 5.49618i 7.87188 + 1.42600i −4.66372 4.66372i −16.8743 + 14.0921i 24.8965i −21.8148 6.00953i 33.4160i 11.9577 + 14.3185i
5.2 −2.29152 + 1.65800i −5.96513 + 5.96513i 2.50210 7.59865i 8.67959 + 8.67959i 3.77903 23.5594i 1.63924i 6.86495 + 21.5609i 44.1656i −34.2802 5.49869i
5.3 0.460984 2.79061i 0.756776 0.756776i −7.57499 2.57285i 8.22587 + 8.22587i −1.76300 2.46073i 2.67171i −10.6718 + 19.9528i 25.8546i 26.7472 19.1632i
5.4 0.836901 + 2.70178i 1.98356 1.98356i −6.59919 + 4.52224i −0.596848 0.596848i 7.01918 + 3.69910i 29.0828i −17.7410 14.0449i 19.1310i 1.11305 2.11205i
5.5 2.81071 0.316066i −3.27139 + 3.27139i 7.80020 1.77674i −12.6449 12.6449i −8.16095 + 10.2289i 13.8754i 21.3626 7.45928i 5.59607i −39.5378 31.5445i
13.1 −2.81708 + 0.253099i 5.49618 + 5.49618i 7.87188 1.42600i −4.66372 + 4.66372i −16.8743 14.0921i 24.8965i −21.8148 + 6.00953i 33.4160i 11.9577 14.3185i
13.2 −2.29152 1.65800i −5.96513 5.96513i 2.50210 + 7.59865i 8.67959 8.67959i 3.77903 + 23.5594i 1.63924i 6.86495 21.5609i 44.1656i −34.2802 + 5.49869i
13.3 0.460984 + 2.79061i 0.756776 + 0.756776i −7.57499 + 2.57285i 8.22587 8.22587i −1.76300 + 2.46073i 2.67171i −10.6718 19.9528i 25.8546i 26.7472 + 19.1632i
13.4 0.836901 2.70178i 1.98356 + 1.98356i −6.59919 4.52224i −0.596848 + 0.596848i 7.01918 3.69910i 29.0828i −17.7410 + 14.0449i 19.1310i 1.11305 + 2.11205i
13.5 2.81071 + 0.316066i −3.27139 3.27139i 7.80020 + 1.77674i −12.6449 + 12.6449i −8.16095 10.2289i 13.8754i 21.3626 + 7.45928i 5.59607i −39.5378 + 31.5445i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 13.5
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
16.e Even 1 yes

Hecke kernels

There are no other newforms in \(S_{4}^{\mathrm{new}}(16, [\chi])\).