Defining parameters
Level: | \( N \) | = | \( 16 = 2^{4} \) |
Weight: | \( k \) | = | \( 4 \) |
Character orbit: | \([\chi]\) | = | 16.e (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | = | \( 16 \) |
Character field: | \(\Q(i)\) | ||
Newforms: | \( 1 \) | ||
Sturm bound: | \(8\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(16, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14 | 14 | 0 |
Cusp forms | 10 | 10 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(16, [\chi])\) into irreducible Hecke orbits
Label | Dim. | \(A\) | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||
16.4.e.a | \(10\) | \(0.944\) | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-2\) | \(-2\) | \(-2\) | \(0\) | \(q-\beta _{4}q^{2}-\beta _{5}q^{3}+(1-\beta _{2}+\beta _{5}+\beta _{6}+\cdots)q^{4}+\cdots\) |