Properties

Label 16.4.e
Level 16
Weight 4
Character orbit e
Rep. character \(\chi_{16}(5,\cdot)\)
Character field \(\Q(\zeta_{4})\)
Dimension 10
Newforms 1
Sturm bound 8
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 16 = 2^{4} \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 16.e (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 16 \)
Character field: \(\Q(i)\)
Newforms: \( 1 \)
Sturm bound: \(8\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(16, [\chi])\).

Total New Old
Modular forms 14 14 0
Cusp forms 10 10 0
Eisenstein series 4 4 0

Trace form

\( 10q - 2q^{2} - 2q^{3} + 8q^{4} - 2q^{5} - 32q^{6} - 44q^{8} + O(q^{10}) \) \( 10q - 2q^{2} - 2q^{3} + 8q^{4} - 2q^{5} - 32q^{6} - 44q^{8} - 68q^{10} + 18q^{11} + 100q^{12} - 2q^{13} + 188q^{14} - 124q^{15} + 280q^{16} - 4q^{17} + 174q^{18} - 26q^{19} - 196q^{20} + 52q^{21} - 588q^{22} - 848q^{24} - 264q^{26} + 184q^{27} + 280q^{28} - 202q^{29} + 1236q^{30} + 368q^{31} + 968q^{32} - 4q^{33} + 436q^{34} + 476q^{35} - 596q^{36} - 10q^{37} - 1232q^{38} - 1336q^{40} - 680q^{42} - 838q^{43} + 868q^{44} + 194q^{45} + 1132q^{46} - 944q^{47} + 1768q^{48} + 94q^{49} + 726q^{50} - 1500q^{51} - 236q^{52} - 378q^{53} - 1376q^{54} - 488q^{56} + 8q^{58} + 1706q^{59} - 192q^{60} + 910q^{61} - 80q^{62} + 2628q^{63} + 512q^{64} - 492q^{65} - 428q^{66} + 1942q^{67} - 880q^{68} + 580q^{69} + 160q^{70} + 1092q^{72} - 452q^{74} - 2954q^{75} - 1228q^{76} - 268q^{77} - 772q^{78} - 4416q^{79} - 2648q^{80} + 482q^{81} - 704q^{82} - 2562q^{83} + 1960q^{84} - 12q^{85} + 3764q^{86} + 1528q^{88} + 1896q^{90} + 3332q^{91} + 632q^{92} - 2192q^{93} - 3248q^{94} + 6900q^{95} - 4432q^{96} - 4q^{97} + 314q^{98} + 4958q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(16, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
16.4.e.a \(10\) \(0.944\) \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(-2\) \(-2\) \(-2\) \(0\) \(q-\beta _{4}q^{2}-\beta _{5}q^{3}+(1-\beta _{2}+\beta _{5}+\beta _{6}+\cdots)q^{4}+\cdots\)