Properties

Label 16.4.e.a.5.4
Level 16
Weight 4
Character 16.5
Analytic conductor 0.944
Analytic rank 0
Dimension 10
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 16 = 2^{4} \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 16.e (of order \(4\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(0.944030560092\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{10} \)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 5.4
Root \(0.932438 + 1.76934i\)
Character \(\chi\) = 16.5
Dual form 16.4.e.a.13.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.836901 + 2.70178i) q^{2} +(1.98356 - 1.98356i) q^{3} +(-6.59919 + 4.52224i) q^{4} +(-0.596848 - 0.596848i) q^{5} +(7.01918 + 3.69910i) q^{6} -29.0828i q^{7} +(-17.7410 - 14.0449i) q^{8} +19.1310i q^{9} +O(q^{10})\) \(q+(0.836901 + 2.70178i) q^{2} +(1.98356 - 1.98356i) q^{3} +(-6.59919 + 4.52224i) q^{4} +(-0.596848 - 0.596848i) q^{5} +(7.01918 + 3.69910i) q^{6} -29.0828i q^{7} +(-17.7410 - 14.0449i) q^{8} +19.1310i q^{9} +(1.11305 - 2.11205i) q^{10} +(12.1291 + 12.1291i) q^{11} +(-4.11977 + 22.0600i) q^{12} +(-48.5658 + 48.5658i) q^{13} +(78.5754 - 24.3395i) q^{14} -2.36777 q^{15} +(23.0987 - 59.6863i) q^{16} +86.7193 q^{17} +(-51.6876 + 16.0107i) q^{18} +(-54.8442 + 54.8442i) q^{19} +(6.63780 + 1.23963i) q^{20} +(-57.6876 - 57.6876i) q^{21} +(-22.6193 + 42.9211i) q^{22} -70.2145i q^{23} +(-63.0492 + 7.33139i) q^{24} -124.288i q^{25} +(-171.859 - 90.5692i) q^{26} +(91.5036 + 91.5036i) q^{27} +(131.520 + 191.923i) q^{28} +(63.4021 - 63.4021i) q^{29} +(-1.98159 - 6.39718i) q^{30} -8.86868 q^{31} +(180.590 + 12.4560i) q^{32} +48.1178 q^{33} +(72.5755 + 234.296i) q^{34} +(-17.3580 + 17.3580i) q^{35} +(-86.5148 - 126.249i) q^{36} +(-21.7145 - 21.7145i) q^{37} +(-194.076 - 102.278i) q^{38} +192.667i q^{39} +(2.20599 + 18.9713i) q^{40} +153.274i q^{41} +(107.580 - 204.138i) q^{42} +(-120.951 - 120.951i) q^{43} +(-134.893 - 25.1917i) q^{44} +(11.4183 - 11.4183i) q^{45} +(189.704 - 58.7626i) q^{46} -99.9792 q^{47} +(-72.5737 - 164.209i) q^{48} -502.812 q^{49} +(335.797 - 104.016i) q^{50} +(172.013 - 172.013i) q^{51} +(100.869 - 540.122i) q^{52} +(389.132 + 389.132i) q^{53} +(-170.643 + 323.802i) q^{54} -14.4785i q^{55} +(-408.465 + 515.957i) q^{56} +217.574i q^{57} +(224.359 + 118.237i) q^{58} +(-324.819 - 324.819i) q^{59} +(15.6254 - 10.7076i) q^{60} +(-0.339194 + 0.339194i) q^{61} +(-7.42220 - 23.9612i) q^{62} +556.383 q^{63} +(117.483 + 498.339i) q^{64} +57.9728 q^{65} +(40.2698 + 130.004i) q^{66} +(565.288 - 565.288i) q^{67} +(-572.278 + 392.166i) q^{68} +(-139.275 - 139.275i) q^{69} +(-61.4245 - 32.3706i) q^{70} +419.500i q^{71} +(268.692 - 339.402i) q^{72} -374.833i q^{73} +(40.4947 - 76.8404i) q^{74} +(-246.532 - 246.532i) q^{75} +(113.909 - 609.946i) q^{76} +(352.750 - 352.750i) q^{77} +(-520.542 + 161.243i) q^{78} -705.750 q^{79} +(-49.4100 + 21.8372i) q^{80} -153.530 q^{81} +(-414.113 + 128.275i) q^{82} +(-947.092 + 947.092i) q^{83} +(641.569 + 119.815i) q^{84} +(-51.7582 - 51.7582i) q^{85} +(225.558 - 428.005i) q^{86} -251.524i q^{87} +(-44.8302 - 385.535i) q^{88} +4.72918i q^{89} +(40.4056 + 21.2937i) q^{90} +(1412.43 + 1412.43i) q^{91} +(317.527 + 463.359i) q^{92} +(-17.5916 + 17.5916i) q^{93} +(-83.6727 - 270.121i) q^{94} +65.4673 q^{95} +(382.919 - 333.505i) q^{96} +379.542 q^{97} +(-420.804 - 1358.49i) q^{98} +(-232.042 + 232.042i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q - 2q^{2} - 2q^{3} + 8q^{4} - 2q^{5} - 32q^{6} - 44q^{8} + O(q^{10}) \) \( 10q - 2q^{2} - 2q^{3} + 8q^{4} - 2q^{5} - 32q^{6} - 44q^{8} - 68q^{10} + 18q^{11} + 100q^{12} - 2q^{13} + 188q^{14} - 124q^{15} + 280q^{16} - 4q^{17} + 174q^{18} - 26q^{19} - 196q^{20} + 52q^{21} - 588q^{22} - 848q^{24} - 264q^{26} + 184q^{27} + 280q^{28} - 202q^{29} + 1236q^{30} + 368q^{31} + 968q^{32} - 4q^{33} + 436q^{34} + 476q^{35} - 596q^{36} - 10q^{37} - 1232q^{38} - 1336q^{40} - 680q^{42} - 838q^{43} + 868q^{44} + 194q^{45} + 1132q^{46} - 944q^{47} + 1768q^{48} + 94q^{49} + 726q^{50} - 1500q^{51} - 236q^{52} - 378q^{53} - 1376q^{54} - 488q^{56} + 8q^{58} + 1706q^{59} - 192q^{60} + 910q^{61} - 80q^{62} + 2628q^{63} + 512q^{64} - 492q^{65} - 428q^{66} + 1942q^{67} - 880q^{68} + 580q^{69} + 160q^{70} + 1092q^{72} - 452q^{74} - 2954q^{75} - 1228q^{76} - 268q^{77} - 772q^{78} - 4416q^{79} - 2648q^{80} + 482q^{81} - 704q^{82} - 2562q^{83} + 1960q^{84} - 12q^{85} + 3764q^{86} + 1528q^{88} + 1896q^{90} + 3332q^{91} + 632q^{92} - 2192q^{93} - 3248q^{94} + 6900q^{95} - 4432q^{96} - 4q^{97} + 314q^{98} + 4958q^{99} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/16\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(15\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.836901 + 2.70178i 0.295889 + 0.955222i
\(3\) 1.98356 1.98356i 0.381737 0.381737i −0.489991 0.871728i \(-0.663000\pi\)
0.871728 + 0.489991i \(0.163000\pi\)
\(4\) −6.59919 + 4.52224i −0.824899 + 0.565280i
\(5\) −0.596848 0.596848i −0.0533837 0.0533837i 0.679911 0.733295i \(-0.262018\pi\)
−0.733295 + 0.679911i \(0.762018\pi\)
\(6\) 7.01918 + 3.69910i 0.477595 + 0.251692i
\(7\) 29.0828i 1.57033i −0.619289 0.785163i \(-0.712579\pi\)
0.619289 0.785163i \(-0.287421\pi\)
\(8\) −17.7410 14.0449i −0.784047 0.620702i
\(9\) 19.1310i 0.708554i
\(10\) 1.11305 2.11205i 0.0351976 0.0667890i
\(11\) 12.1291 + 12.1291i 0.332461 + 0.332461i 0.853520 0.521059i \(-0.174463\pi\)
−0.521059 + 0.853520i \(0.674463\pi\)
\(12\) −4.11977 + 22.0600i −0.0991062 + 0.530682i
\(13\) −48.5658 + 48.5658i −1.03613 + 1.03613i −0.0368113 + 0.999322i \(0.511720\pi\)
−0.999322 + 0.0368113i \(0.988280\pi\)
\(14\) 78.5754 24.3395i 1.50001 0.464643i
\(15\) −2.36777 −0.0407570
\(16\) 23.0987 59.6863i 0.360917 0.932598i
\(17\) 86.7193 1.23721 0.618604 0.785703i \(-0.287699\pi\)
0.618604 + 0.785703i \(0.287699\pi\)
\(18\) −51.6876 + 16.0107i −0.676827 + 0.209654i
\(19\) −54.8442 + 54.8442i −0.662217 + 0.662217i −0.955902 0.293685i \(-0.905118\pi\)
0.293685 + 0.955902i \(0.405118\pi\)
\(20\) 6.63780 + 1.23963i 0.0742129 + 0.0138594i
\(21\) −57.6876 57.6876i −0.599451 0.599451i
\(22\) −22.6193 + 42.9211i −0.219203 + 0.415946i
\(23\) 70.2145i 0.636554i −0.947998 0.318277i \(-0.896896\pi\)
0.947998 0.318277i \(-0.103104\pi\)
\(24\) −63.0492 + 7.33139i −0.536244 + 0.0623547i
\(25\) 124.288i 0.994300i
\(26\) −171.859 90.5692i −1.29632 0.683157i
\(27\) 91.5036 + 91.5036i 0.652218 + 0.652218i
\(28\) 131.520 + 191.923i 0.887674 + 1.29536i
\(29\) 63.4021 63.4021i 0.405982 0.405982i −0.474353 0.880335i \(-0.657318\pi\)
0.880335 + 0.474353i \(0.157318\pi\)
\(30\) −1.98159 6.39718i −0.0120596 0.0389320i
\(31\) −8.86868 −0.0513826 −0.0256913 0.999670i \(-0.508179\pi\)
−0.0256913 + 0.999670i \(0.508179\pi\)
\(32\) 180.590 + 12.4560i 0.997630 + 0.0688106i
\(33\) 48.1178 0.253825
\(34\) 72.5755 + 234.296i 0.366076 + 1.18181i
\(35\) −17.3580 + 17.3580i −0.0838298 + 0.0838298i
\(36\) −86.5148 126.249i −0.400532 0.584486i
\(37\) −21.7145 21.7145i −0.0964820 0.0964820i 0.657218 0.753700i \(-0.271733\pi\)
−0.753700 + 0.657218i \(0.771733\pi\)
\(38\) −194.076 102.278i −0.828508 0.436622i
\(39\) 192.667i 0.791060i
\(40\) 2.20599 + 18.9713i 0.00871995 + 0.0749907i
\(41\) 153.274i 0.583840i 0.956443 + 0.291920i \(0.0942941\pi\)
−0.956443 + 0.291920i \(0.905706\pi\)
\(42\) 107.580 204.138i 0.395238 0.749980i
\(43\) −120.951 120.951i −0.428949 0.428949i 0.459322 0.888270i \(-0.348093\pi\)
−0.888270 + 0.459322i \(0.848093\pi\)
\(44\) −134.893 25.1917i −0.462181 0.0863133i
\(45\) 11.4183 11.4183i 0.0378253 0.0378253i
\(46\) 189.704 58.7626i 0.608051 0.188349i
\(47\) −99.9792 −0.310286 −0.155143 0.987892i \(-0.549584\pi\)
−0.155143 + 0.987892i \(0.549584\pi\)
\(48\) −72.5737 164.209i −0.218231 0.493782i
\(49\) −502.812 −1.46592
\(50\) 335.797 104.016i 0.949778 0.294203i
\(51\) 172.013 172.013i 0.472287 0.472287i
\(52\) 100.869 540.122i 0.269000 1.44041i
\(53\) 389.132 + 389.132i 1.00852 + 1.00852i 0.999963 + 0.00855213i \(0.00272226\pi\)
0.00855213 + 0.999963i \(0.497278\pi\)
\(54\) −170.643 + 323.802i −0.430029 + 0.815997i
\(55\) 14.4785i 0.0354960i
\(56\) −408.465 + 515.957i −0.974704 + 1.23121i
\(57\) 217.574i 0.505585i
\(58\) 224.359 + 118.237i 0.507928 + 0.267677i
\(59\) −324.819 324.819i −0.716744 0.716744i 0.251193 0.967937i \(-0.419177\pi\)
−0.967937 + 0.251193i \(0.919177\pi\)
\(60\) 15.6254 10.7076i 0.0336204 0.0230391i
\(61\) −0.339194 + 0.339194i −0.000711957 + 0.000711957i −0.707463 0.706751i \(-0.750160\pi\)
0.706751 + 0.707463i \(0.250160\pi\)
\(62\) −7.42220 23.9612i −0.0152036 0.0490818i
\(63\) 556.383 1.11266
\(64\) 117.483 + 498.339i 0.229458 + 0.973318i
\(65\) 57.9728 0.110625
\(66\) 40.2698 + 130.004i 0.0751041 + 0.242459i
\(67\) 565.288 565.288i 1.03076 1.03076i 0.0312478 0.999512i \(-0.490052\pi\)
0.999512 0.0312478i \(-0.00994810\pi\)
\(68\) −572.278 + 392.166i −1.02057 + 0.699368i
\(69\) −139.275 139.275i −0.242996 0.242996i
\(70\) −61.4245 32.3706i −0.104880 0.0552718i
\(71\) 419.500i 0.701205i 0.936524 + 0.350602i \(0.114023\pi\)
−0.936524 + 0.350602i \(0.885977\pi\)
\(72\) 268.692 339.402i 0.439801 0.555540i
\(73\) 374.833i 0.600971i −0.953786 0.300485i \(-0.902851\pi\)
0.953786 0.300485i \(-0.0971487\pi\)
\(74\) 40.4947 76.8404i 0.0636138 0.120710i
\(75\) −246.532 246.532i −0.379561 0.379561i
\(76\) 113.909 609.946i 0.171924 0.920600i
\(77\) 352.750 352.750i 0.522072 0.522072i
\(78\) −520.542 + 161.243i −0.755638 + 0.234066i
\(79\) −705.750 −1.00510 −0.502551 0.864547i \(-0.667605\pi\)
−0.502551 + 0.864547i \(0.667605\pi\)
\(80\) −49.4100 + 21.8372i −0.0690526 + 0.0305184i
\(81\) −153.530 −0.210604
\(82\) −414.113 + 128.275i −0.557697 + 0.172752i
\(83\) −947.092 + 947.092i −1.25249 + 1.25249i −0.297893 + 0.954599i \(0.596284\pi\)
−0.954599 + 0.297893i \(0.903716\pi\)
\(84\) 641.569 + 119.815i 0.833344 + 0.155629i
\(85\) −51.7582 51.7582i −0.0660467 0.0660467i
\(86\) 225.558 428.005i 0.282820 0.536662i
\(87\) 251.524i 0.309956i
\(88\) −44.8302 385.535i −0.0543058 0.467024i
\(89\) 4.72918i 0.00563249i 0.999996 + 0.00281625i \(0.000896440\pi\)
−0.999996 + 0.00281625i \(0.999104\pi\)
\(90\) 40.4056 + 21.2937i 0.0473236 + 0.0249394i
\(91\) 1412.43 + 1412.43i 1.62707 + 1.62707i
\(92\) 317.527 + 463.359i 0.359831 + 0.525093i
\(93\) −17.5916 + 17.5916i −0.0196146 + 0.0196146i
\(94\) −83.6727 270.121i −0.0918104 0.296392i
\(95\) 65.4673 0.0707032
\(96\) 382.919 333.505i 0.407099 0.354564i
\(97\) 379.542 0.397285 0.198643 0.980072i \(-0.436347\pi\)
0.198643 + 0.980072i \(0.436347\pi\)
\(98\) −420.804 1358.49i −0.433751 1.40028i
\(99\) −232.042 + 232.042i −0.235567 + 0.235567i
\(100\) 562.058 + 820.198i 0.562058 + 0.820198i
\(101\) −391.005 391.005i −0.385212 0.385212i 0.487764 0.872976i \(-0.337813\pi\)
−0.872976 + 0.487764i \(0.837813\pi\)
\(102\) 608.699 + 320.783i 0.590884 + 0.311395i
\(103\) 307.935i 0.294580i 0.989093 + 0.147290i \(0.0470551\pi\)
−0.989093 + 0.147290i \(0.952945\pi\)
\(104\) 1543.71 179.503i 1.45551 0.169247i
\(105\) 68.8615i 0.0640018i
\(106\) −725.682 + 1377.01i −0.664948 + 1.26177i
\(107\) −601.607 601.607i −0.543548 0.543548i 0.381019 0.924567i \(-0.375573\pi\)
−0.924567 + 0.381019i \(0.875573\pi\)
\(108\) −1017.65 190.049i −0.906699 0.169328i
\(109\) −948.890 + 948.890i −0.833827 + 0.833827i −0.988038 0.154211i \(-0.950717\pi\)
0.154211 + 0.988038i \(0.450717\pi\)
\(110\) 39.1177 12.1171i 0.0339066 0.0105029i
\(111\) −86.1439 −0.0736614
\(112\) −1735.85 671.776i −1.46448 0.566758i
\(113\) 1824.02 1.51849 0.759244 0.650807i \(-0.225569\pi\)
0.759244 + 0.650807i \(0.225569\pi\)
\(114\) −587.836 + 182.088i −0.482946 + 0.149597i
\(115\) −41.9074 + 41.9074i −0.0339816 + 0.0339816i
\(116\) −131.683 + 705.122i −0.105401 + 0.564387i
\(117\) −929.111 929.111i −0.734157 0.734157i
\(118\) 605.748 1149.43i 0.472573 0.896727i
\(119\) 2522.04i 1.94282i
\(120\) 42.0065 + 33.2550i 0.0319554 + 0.0252980i
\(121\) 1036.77i 0.778939i
\(122\) −1.20030 0.632555i −0.000890738 0.000469417i
\(123\) 304.029 + 304.029i 0.222873 + 0.222873i
\(124\) 58.5261 40.1063i 0.0423855 0.0290456i
\(125\) −148.787 + 148.787i −0.106463 + 0.106463i
\(126\) 465.638 + 1503.22i 0.329224 + 1.06284i
\(127\) 988.748 0.690844 0.345422 0.938447i \(-0.387736\pi\)
0.345422 + 0.938447i \(0.387736\pi\)
\(128\) −1248.08 + 734.473i −0.861841 + 0.507178i
\(129\) −479.826 −0.327491
\(130\) 48.5175 + 156.630i 0.0327328 + 0.105672i
\(131\) 793.572 793.572i 0.529273 0.529273i −0.391083 0.920356i \(-0.627899\pi\)
0.920356 + 0.391083i \(0.127899\pi\)
\(132\) −317.539 + 217.600i −0.209380 + 0.143482i
\(133\) 1595.03 + 1595.03i 1.03990 + 1.03990i
\(134\) 2000.37 + 1054.19i 1.28959 + 0.679614i
\(135\) 109.227i 0.0696356i
\(136\) −1538.48 1217.96i −0.970028 0.767937i
\(137\) 1595.30i 0.994856i 0.867505 + 0.497428i \(0.165722\pi\)
−0.867505 + 0.497428i \(0.834278\pi\)
\(138\) 259.730 492.849i 0.160215 0.304015i
\(139\) −277.696 277.696i −0.169452 0.169452i 0.617286 0.786738i \(-0.288232\pi\)
−0.786738 + 0.617286i \(0.788232\pi\)
\(140\) 36.0518 193.046i 0.0217638 0.116538i
\(141\) −198.315 + 198.315i −0.118448 + 0.118448i
\(142\) −1133.40 + 351.080i −0.669806 + 0.207479i
\(143\) −1178.12 −0.688948
\(144\) 1141.86 + 441.901i 0.660796 + 0.255729i
\(145\) −75.6828 −0.0433456
\(146\) 1012.71 313.698i 0.574061 0.177821i
\(147\) −997.359 + 997.359i −0.559597 + 0.559597i
\(148\) 241.496 + 45.0999i 0.134127 + 0.0250486i
\(149\) −593.272 593.272i −0.326193 0.326193i 0.524944 0.851137i \(-0.324086\pi\)
−0.851137 + 0.524944i \(0.824086\pi\)
\(150\) 459.751 872.397i 0.250257 0.474873i
\(151\) 160.655i 0.0865821i 0.999063 + 0.0432911i \(0.0137843\pi\)
−0.999063 + 0.0432911i \(0.986216\pi\)
\(152\) 1743.27 202.708i 0.930249 0.108170i
\(153\) 1659.02i 0.876629i
\(154\) 1248.27 + 657.835i 0.653171 + 0.344220i
\(155\) 5.29325 + 5.29325i 0.00274299 + 0.00274299i
\(156\) −871.284 1271.44i −0.447170 0.652545i
\(157\) −705.762 + 705.762i −0.358764 + 0.358764i −0.863357 0.504593i \(-0.831642\pi\)
0.504593 + 0.863357i \(0.331642\pi\)
\(158\) −590.643 1906.78i −0.297399 0.960096i
\(159\) 1543.73 0.769975
\(160\) −100.351 115.219i −0.0495838 0.0569305i
\(161\) −2042.04 −0.999598
\(162\) −128.489 414.804i −0.0623153 0.201173i
\(163\) 1872.64 1872.64i 0.899855 0.899855i −0.0955676 0.995423i \(-0.530467\pi\)
0.995423 + 0.0955676i \(0.0304666\pi\)
\(164\) −693.143 1011.49i −0.330033 0.481609i
\(165\) −28.7190 28.7190i −0.0135501 0.0135501i
\(166\) −3351.45 1766.21i −1.56701 0.825810i
\(167\) 3852.19i 1.78498i 0.451066 + 0.892490i \(0.351044\pi\)
−0.451066 + 0.892490i \(0.648956\pi\)
\(168\) 213.218 + 1833.65i 0.0979172 + 0.842078i
\(169\) 2520.28i 1.14715i
\(170\) 96.5227 183.156i 0.0435468 0.0826318i
\(171\) −1049.22 1049.22i −0.469217 0.469217i
\(172\) 1345.14 + 251.209i 0.596315 + 0.111363i
\(173\) 2625.61 2625.61i 1.15388 1.15388i 0.168112 0.985768i \(-0.446233\pi\)
0.985768 0.168112i \(-0.0537671\pi\)
\(174\) 679.561 210.501i 0.296077 0.0917127i
\(175\) −3614.64 −1.56138
\(176\) 1004.11 443.776i 0.430044 0.190062i
\(177\) −1288.60 −0.547215
\(178\) −12.7772 + 3.95785i −0.00538028 + 0.00166659i
\(179\) −1236.73 + 1236.73i −0.516413 + 0.516413i −0.916484 0.400071i \(-0.868985\pi\)
0.400071 + 0.916484i \(0.368985\pi\)
\(180\) −23.7152 + 126.988i −0.00982016 + 0.0525839i
\(181\) 1574.90 + 1574.90i 0.646748 + 0.646748i 0.952206 0.305458i \(-0.0988094\pi\)
−0.305458 + 0.952206i \(0.598809\pi\)
\(182\) −2634.01 + 4998.14i −1.07278 + 2.03564i
\(183\) 1.34563i 0.000543560i
\(184\) −986.155 + 1245.67i −0.395110 + 0.499088i
\(185\) 25.9204i 0.0103011i
\(186\) −62.2509 32.8061i −0.0245401 0.0129326i
\(187\) 1051.83 + 1051.83i 0.411323 + 0.411323i
\(188\) 659.782 452.130i 0.255955 0.175399i
\(189\) 2661.19 2661.19i 1.02419 1.02419i
\(190\) 54.7897 + 176.878i 0.0209203 + 0.0675373i
\(191\) 3585.92 1.35847 0.679236 0.733920i \(-0.262311\pi\)
0.679236 + 0.733920i \(0.262311\pi\)
\(192\) 1221.52 + 755.452i 0.459144 + 0.283959i
\(193\) 523.601 0.195283 0.0976415 0.995222i \(-0.468870\pi\)
0.0976415 + 0.995222i \(0.468870\pi\)
\(194\) 317.639 + 1025.44i 0.117552 + 0.379496i
\(195\) 114.993 114.993i 0.0422297 0.0422297i
\(196\) 3318.15 2273.84i 1.20924 0.828658i
\(197\) −1125.64 1125.64i −0.407098 0.407098i 0.473627 0.880725i \(-0.342944\pi\)
−0.880725 + 0.473627i \(0.842944\pi\)
\(198\) −821.122 432.730i −0.294720 0.155317i
\(199\) 2312.48i 0.823757i 0.911239 + 0.411878i \(0.135127\pi\)
−0.911239 + 0.411878i \(0.864873\pi\)
\(200\) −1745.60 + 2204.98i −0.617164 + 0.779578i
\(201\) 2242.57i 0.786957i
\(202\) 729.175 1383.64i 0.253983 0.481943i
\(203\) −1843.91 1843.91i −0.637524 0.637524i
\(204\) −357.263 + 1913.03i −0.122615 + 0.656564i
\(205\) 91.4815 91.4815i 0.0311675 0.0311675i
\(206\) −831.973 + 257.711i −0.281390 + 0.0871631i
\(207\) 1343.27 0.451033
\(208\) 1776.90 + 4020.52i 0.592337 + 1.34025i
\(209\) −1330.43 −0.440323
\(210\) −186.048 + 57.6302i −0.0611360 + 0.0189374i
\(211\) 1418.59 1418.59i 0.462842 0.462842i −0.436744 0.899586i \(-0.643868\pi\)
0.899586 + 0.436744i \(0.143868\pi\)
\(212\) −4327.70 808.208i −1.40202 0.261830i
\(213\) 832.105 + 832.105i 0.267675 + 0.267675i
\(214\) 1121.92 2128.89i 0.358379 0.680039i
\(215\) 144.378i 0.0457977i
\(216\) −338.204 2908.52i −0.106536 0.916202i
\(217\) 257.926i 0.0806875i
\(218\) −3357.82 1769.56i −1.04321 0.549770i
\(219\) −743.504 743.504i −0.229413 0.229413i
\(220\) 65.4752 + 95.5464i 0.0200652 + 0.0292806i
\(221\) −4211.60 + 4211.60i −1.28191 + 1.28191i
\(222\) −72.0939 232.742i −0.0217956 0.0703630i
\(223\) −4315.08 −1.29578 −0.647890 0.761734i \(-0.724349\pi\)
−0.647890 + 0.761734i \(0.724349\pi\)
\(224\) 362.257 5252.08i 0.108055 1.56660i
\(225\) 2377.74 0.704516
\(226\) 1526.52 + 4928.09i 0.449304 + 1.45049i
\(227\) 701.203 701.203i 0.205024 0.205024i −0.597124 0.802149i \(-0.703690\pi\)
0.802149 + 0.597124i \(0.203690\pi\)
\(228\) −983.921 1435.81i −0.285797 0.417057i
\(229\) −663.351 663.351i −0.191421 0.191421i 0.604889 0.796310i \(-0.293218\pi\)
−0.796310 + 0.604889i \(0.793218\pi\)
\(230\) −148.297 78.1521i −0.0425148 0.0224052i
\(231\) 1399.40i 0.398588i
\(232\) −2015.29 + 234.339i −0.570302 + 0.0663150i
\(233\) 3490.15i 0.981318i 0.871352 + 0.490659i \(0.163244\pi\)
−0.871352 + 0.490659i \(0.836756\pi\)
\(234\) 1732.68 3287.82i 0.484054 0.918512i
\(235\) 59.6724 + 59.6724i 0.0165642 + 0.0165642i
\(236\) 3612.46 + 674.635i 0.996402 + 0.186081i
\(237\) −1399.90 + 1399.90i −0.383684 + 0.383684i
\(238\) 6814.00 2110.70i 1.85582 0.574859i
\(239\) 2950.43 0.798525 0.399263 0.916837i \(-0.369266\pi\)
0.399263 + 0.916837i \(0.369266\pi\)
\(240\) −54.6924 + 141.323i −0.0147099 + 0.0380099i
\(241\) −1128.96 −0.301755 −0.150877 0.988552i \(-0.548210\pi\)
−0.150877 + 0.988552i \(0.548210\pi\)
\(242\) 2801.12 867.672i 0.744060 0.230480i
\(243\) −2775.13 + 2775.13i −0.732613 + 0.732613i
\(244\) 0.704491 3.77233i 0.000184838 0.000989748i
\(245\) 300.102 + 300.102i 0.0782565 + 0.0782565i
\(246\) −566.977 + 1075.86i −0.146948 + 0.278839i
\(247\) 5327.11i 1.37229i
\(248\) 157.339 + 124.559i 0.0402864 + 0.0318933i
\(249\) 3757.23i 0.956244i
\(250\) −526.508 277.469i −0.133197 0.0701947i
\(251\) 4621.86 + 4621.86i 1.16227 + 1.16227i 0.983978 + 0.178291i \(0.0570569\pi\)
0.178291 + 0.983978i \(0.442943\pi\)
\(252\) −3671.68 + 2516.10i −0.917833 + 0.628965i
\(253\) 851.642 851.642i 0.211630 0.211630i
\(254\) 827.485 + 2671.38i 0.204413 + 0.659910i
\(255\) −205.331 −0.0504249
\(256\) −3028.90 2757.35i −0.739477 0.673181i
\(257\) 610.977 0.148295 0.0741473 0.997247i \(-0.476377\pi\)
0.0741473 + 0.997247i \(0.476377\pi\)
\(258\) −401.567 1296.38i −0.0969010 0.312826i
\(259\) −631.518 + 631.518i −0.151508 + 0.151508i
\(260\) −382.574 + 262.167i −0.0912547 + 0.0625342i
\(261\) 1212.94 + 1212.94i 0.287660 + 0.287660i
\(262\) 2808.20 + 1479.91i 0.662179 + 0.348967i
\(263\) 4973.57i 1.16610i −0.812438 0.583048i \(-0.801860\pi\)
0.812438 0.583048i \(-0.198140\pi\)
\(264\) −853.655 675.809i −0.199011 0.157550i
\(265\) 464.505i 0.107677i
\(266\) −2974.53 + 5644.28i −0.685638 + 1.30103i
\(267\) 9.38061 + 9.38061i 0.00215013 + 0.00215013i
\(268\) −1174.08 + 6286.81i −0.267605 + 1.43294i
\(269\) −938.415 + 938.415i −0.212700 + 0.212700i −0.805413 0.592714i \(-0.798057\pi\)
0.592714 + 0.805413i \(0.298057\pi\)
\(270\) 295.108 91.4126i 0.0665175 0.0206044i
\(271\) −4010.64 −0.898999 −0.449500 0.893280i \(-0.648398\pi\)
−0.449500 + 0.893280i \(0.648398\pi\)
\(272\) 2003.10 5175.95i 0.446530 1.15382i
\(273\) 5603.29 1.24222
\(274\) −4310.13 + 1335.10i −0.950309 + 0.294367i
\(275\) 1507.50 1507.50i 0.330566 0.330566i
\(276\) 1548.94 + 289.268i 0.337808 + 0.0630864i
\(277\) −3534.99 3534.99i −0.766776 0.766776i 0.210762 0.977538i \(-0.432406\pi\)
−0.977538 + 0.210762i \(0.932406\pi\)
\(278\) 517.868 982.675i 0.111725 0.212003i
\(279\) 169.666i 0.0364074i
\(280\) 551.740 64.1566i 0.117760 0.0136932i
\(281\) 7468.35i 1.58550i −0.609550 0.792748i \(-0.708650\pi\)
0.609550 0.792748i \(-0.291350\pi\)
\(282\) −701.772 369.833i −0.148191 0.0780965i
\(283\) −2249.22 2249.22i −0.472447 0.472447i 0.430259 0.902705i \(-0.358422\pi\)
−0.902705 + 0.430259i \(0.858422\pi\)
\(284\) −1897.08 2768.36i −0.396377 0.578423i
\(285\) 129.858 129.858i 0.0269900 0.0269900i
\(286\) −985.973 3183.03i −0.203852 0.658099i
\(287\) 4457.66 0.916819
\(288\) −238.296 + 3454.87i −0.0487560 + 0.706875i
\(289\) 2607.24 0.530682
\(290\) −63.3390 204.478i −0.0128255 0.0414047i
\(291\) 752.845 752.845i 0.151658 0.151658i
\(292\) 1695.08 + 2473.60i 0.339717 + 0.495740i
\(293\) −3952.79 3952.79i −0.788139 0.788139i 0.193050 0.981189i \(-0.438162\pi\)
−0.981189 + 0.193050i \(0.938162\pi\)
\(294\) −3529.33 1859.95i −0.700118 0.368961i
\(295\) 387.736i 0.0765249i
\(296\) 80.2582 + 690.212i 0.0157598 + 0.135533i
\(297\) 2219.72i 0.433674i
\(298\) 1106.38 2099.40i 0.215070 0.408104i
\(299\) 3410.03 + 3410.03i 0.659555 + 0.659555i
\(300\) 2741.79 + 512.036i 0.527658 + 0.0985413i
\(301\) −3517.59 + 3517.59i −0.673589 + 0.673589i
\(302\) −434.053 + 134.452i −0.0827052 + 0.0256187i
\(303\) −1551.16 −0.294099
\(304\) 2006.62 + 4540.28i 0.378577 + 0.856588i
\(305\) 0.404895 7.60138e−5
\(306\) −4482.31 + 1388.44i −0.837375 + 0.259385i
\(307\) −3855.24 + 3855.24i −0.716711 + 0.716711i −0.967930 0.251219i \(-0.919168\pi\)
0.251219 + 0.967930i \(0.419168\pi\)
\(308\) −732.645 + 3923.08i −0.135540 + 0.725774i
\(309\) 610.809 + 610.809i 0.112452 + 0.112452i
\(310\) −9.87125 + 18.7311i −0.00180855 + 0.00343179i
\(311\) 5194.39i 0.947096i 0.880768 + 0.473548i \(0.157027\pi\)
−0.880768 + 0.473548i \(0.842973\pi\)
\(312\) 2705.98 3418.09i 0.491013 0.620228i
\(313\) 4710.01i 0.850561i −0.905062 0.425281i \(-0.860175\pi\)
0.905062 0.425281i \(-0.139825\pi\)
\(314\) −2497.46 1316.16i −0.448854 0.236545i
\(315\) −332.076 332.076i −0.0593980 0.0593980i
\(316\) 4657.38 3191.57i 0.829108 0.568164i
\(317\) 5680.21 5680.21i 1.00641 1.00641i 0.00643263 0.999979i \(-0.497952\pi\)
0.999979 0.00643263i \(-0.00204758\pi\)
\(318\) 1291.95 + 4170.82i 0.227827 + 0.735497i
\(319\) 1538.03 0.269946
\(320\) 227.313 367.552i 0.0397100 0.0642087i
\(321\) −2386.65 −0.414984
\(322\) −1708.98 5517.13i −0.295770 0.954838i
\(323\) −4756.05 + 4756.05i −0.819300 + 0.819300i
\(324\) 1013.17 694.299i 0.173727 0.119050i
\(325\) 6036.13 + 6036.13i 1.03023 + 1.03023i
\(326\) 6626.67 + 3492.24i 1.12582 + 0.593304i
\(327\) 3764.36i 0.636605i
\(328\) 2152.72 2719.23i 0.362390 0.457758i
\(329\) 2907.68i 0.487251i
\(330\) 53.5574 101.627i 0.00893405 0.0169527i
\(331\) 1815.80 + 1815.80i 0.301526 + 0.301526i 0.841611 0.540084i \(-0.181608\pi\)
−0.540084 + 0.841611i \(0.681608\pi\)
\(332\) 1967.07 10533.0i 0.325171 1.74119i
\(333\) 415.418 415.418i 0.0683627 0.0683627i
\(334\) −10407.8 + 3223.91i −1.70505 + 0.528157i
\(335\) −674.782 −0.110052
\(336\) −4775.67 + 2110.65i −0.775399 + 0.342694i
\(337\) −2683.29 −0.433733 −0.216867 0.976201i \(-0.569584\pi\)
−0.216867 + 0.976201i \(0.569584\pi\)
\(338\) 6809.23 2109.22i 1.09578 0.339428i
\(339\) 3618.05 3618.05i 0.579662 0.579662i
\(340\) 575.626 + 107.500i 0.0918167 + 0.0171470i
\(341\) −107.569 107.569i −0.0170827 0.0170827i
\(342\) 1956.67 3712.86i 0.309370 0.587043i
\(343\) 4647.79i 0.731653i
\(344\) 447.042 + 3844.51i 0.0700665 + 0.602565i
\(345\) 166.252i 0.0259440i
\(346\) 9291.18 + 4896.43i 1.44363 + 0.760791i
\(347\) −5291.81 5291.81i −0.818671 0.818671i 0.167244 0.985916i \(-0.446513\pi\)
−0.985916 + 0.167244i \(0.946513\pi\)
\(348\) 1137.45 + 1659.85i 0.175212 + 0.255683i
\(349\) 73.7084 73.7084i 0.0113052 0.0113052i −0.701432 0.712737i \(-0.747455\pi\)
0.712737 + 0.701432i \(0.247455\pi\)
\(350\) −3025.09 9765.94i −0.461994 1.49146i
\(351\) −8887.90 −1.35157
\(352\) 2039.32 + 2341.49i 0.308796 + 0.354550i
\(353\) −5067.25 −0.764030 −0.382015 0.924156i \(-0.624770\pi\)
−0.382015 + 0.924156i \(0.624770\pi\)
\(354\) −1078.43 3481.51i −0.161915 0.522712i
\(355\) 250.378 250.378i 0.0374329 0.0374329i
\(356\) −21.3865 31.2088i −0.00318393 0.00464624i
\(357\) −5002.63 5002.63i −0.741645 0.741645i
\(358\) −4376.41 2306.36i −0.646090 0.340488i
\(359\) 970.230i 0.142637i −0.997454 0.0713186i \(-0.977279\pi\)
0.997454 0.0713186i \(-0.0227207\pi\)
\(360\) −362.939 + 42.2028i −0.0531350 + 0.00617856i
\(361\) 843.224i 0.122937i
\(362\) −2936.99 + 5573.06i −0.426422 + 0.809154i
\(363\) −2056.49 2056.49i −0.297350 0.297350i
\(364\) −15708.3 2933.56i −2.26192 0.422418i
\(365\) −223.718 + 223.718i −0.0320821 + 0.0320821i
\(366\) −3.63558 + 1.12616i −0.000519221 + 0.000160834i
\(367\) 13451.4 1.91323 0.956617 0.291347i \(-0.0941035\pi\)
0.956617 + 0.291347i \(0.0941035\pi\)
\(368\) −4190.84 1621.86i −0.593649 0.229743i
\(369\) −2932.29 −0.413682
\(370\) −70.0313 + 21.6928i −0.00983987 + 0.00304799i
\(371\) 11317.1 11317.1i 1.58370 1.58370i
\(372\) 36.5369 195.643i 0.00509234 0.0272678i
\(373\) 5898.22 + 5898.22i 0.818762 + 0.818762i 0.985929 0.167167i \(-0.0534619\pi\)
−0.167167 + 0.985929i \(0.553462\pi\)
\(374\) −1961.53 + 3722.09i −0.271199 + 0.514611i
\(375\) 590.255i 0.0812817i
\(376\) 1773.73 + 1404.20i 0.243279 + 0.192595i
\(377\) 6158.35i 0.841302i
\(378\) 9417.08 + 4962.78i 1.28138 + 0.675285i
\(379\) −4446.72 4446.72i −0.602673 0.602673i 0.338348 0.941021i \(-0.390132\pi\)
−0.941021 + 0.338348i \(0.890132\pi\)
\(380\) −432.031 + 296.059i −0.0583230 + 0.0399671i
\(381\) 1961.24 1961.24i 0.263721 0.263721i
\(382\) 3001.06 + 9688.35i 0.401957 + 1.29764i
\(383\) −6417.68 −0.856209 −0.428105 0.903729i \(-0.640819\pi\)
−0.428105 + 0.903729i \(0.640819\pi\)
\(384\) −1018.77 + 3932.51i −0.135388 + 0.522605i
\(385\) −421.076 −0.0557403
\(386\) 438.202 + 1414.65i 0.0577821 + 0.186539i
\(387\) 2313.90 2313.90i 0.303933 0.303933i
\(388\) −2504.67 + 1716.38i −0.327720 + 0.224577i
\(389\) 6555.61 + 6555.61i 0.854455 + 0.854455i 0.990678 0.136223i \(-0.0434965\pi\)
−0.136223 + 0.990678i \(0.543497\pi\)
\(390\) 406.922 + 214.447i 0.0528341 + 0.0278434i
\(391\) 6088.96i 0.787549i
\(392\) 8920.36 + 7061.93i 1.14935 + 0.909902i
\(393\) 3148.20i 0.404086i
\(394\) 2099.17 3983.27i 0.268413 0.509325i
\(395\) 421.226 + 421.226i 0.0536561 + 0.0536561i
\(396\) 481.941 2580.64i 0.0611577 0.327480i
\(397\) 8902.51 8902.51i 1.12545 1.12545i 0.134543 0.990908i \(-0.457043\pi\)
0.990908 0.134543i \(-0.0429566\pi\)
\(398\) −6247.81 + 1935.32i −0.786871 + 0.243741i
\(399\) 6327.66 0.793933
\(400\) −7418.26 2870.88i −0.927282 0.358860i
\(401\) −6425.77 −0.800218 −0.400109 0.916468i \(-0.631028\pi\)
−0.400109 + 0.916468i \(0.631028\pi\)
\(402\) 6058.91 1876.81i 0.751719 0.232852i
\(403\) 430.715 430.715i 0.0532393 0.0532393i
\(404\) 4348.53 + 812.098i 0.535514 + 0.100008i
\(405\) 91.6341 + 91.6341i 0.0112428 + 0.0112428i
\(406\) 3438.67 6525.01i 0.420340 0.797613i
\(407\) 526.755i 0.0641530i
\(408\) −5467.58 + 635.773i −0.663445 + 0.0771457i
\(409\) 12796.0i 1.54699i 0.633801 + 0.773496i \(0.281494\pi\)
−0.633801 + 0.773496i \(0.718506\pi\)
\(410\) 323.723 + 170.602i 0.0389941 + 0.0205498i
\(411\) 3164.37 + 3164.37i 0.379773 + 0.379773i
\(412\) −1392.56 2032.13i −0.166520 0.242999i
\(413\) −9446.67 + 9446.67i −1.12552 + 1.12552i
\(414\) 1124.19 + 3629.22i 0.133456 + 0.430837i
\(415\) 1130.54 0.133725
\(416\) −9375.45 + 8165.58i −1.10497 + 0.962381i
\(417\) −1101.65 −0.129372
\(418\) −1113.44 3594.51i −0.130287 0.420606i
\(419\) −6545.21 + 6545.21i −0.763137 + 0.763137i −0.976888 0.213751i \(-0.931432\pi\)
0.213751 + 0.976888i \(0.431432\pi\)
\(420\) −311.408 454.430i −0.0361789 0.0527950i
\(421\) −6390.00 6390.00i −0.739738 0.739738i 0.232789 0.972527i \(-0.425215\pi\)
−0.972527 + 0.232789i \(0.925215\pi\)
\(422\) 5019.93 + 2645.49i 0.579067 + 0.305167i
\(423\) 1912.70i 0.219855i
\(424\) −1438.26 12368.9i −0.164736 1.41671i
\(425\) 10778.1i 1.23016i
\(426\) −1551.77 + 2944.55i −0.176487 + 0.334892i
\(427\) 9.86474 + 9.86474i 0.00111801 + 0.00111801i
\(428\) 6690.74 + 1249.51i 0.755628 + 0.141115i
\(429\) −2336.88 + 2336.88i −0.262997 + 0.262997i
\(430\) −390.078 + 120.830i −0.0437470 + 0.0135510i
\(431\) −10639.3 −1.18904 −0.594519 0.804081i \(-0.702658\pi\)
−0.594519 + 0.804081i \(0.702658\pi\)
\(432\) 7575.12 3347.89i 0.843653 0.372860i
\(433\) 3806.14 0.422428 0.211214 0.977440i \(-0.432258\pi\)
0.211214 + 0.977440i \(0.432258\pi\)
\(434\) −696.859 + 215.859i −0.0770745 + 0.0238746i
\(435\) −150.121 + 150.121i −0.0165466 + 0.0165466i
\(436\) 1970.80 10553.0i 0.216478 1.15917i
\(437\) 3850.86 + 3850.86i 0.421537 + 0.421537i
\(438\) 1386.54 2631.02i 0.151259 0.287021i
\(439\) 14102.8i 1.53323i 0.642106 + 0.766616i \(0.278061\pi\)
−0.642106 + 0.766616i \(0.721939\pi\)
\(440\) −203.349 + 256.862i −0.0220324 + 0.0278305i
\(441\) 9619.28i 1.03869i
\(442\) −14903.5 7854.10i −1.60381 0.845207i
\(443\) −7662.45 7662.45i −0.821792 0.821792i 0.164573 0.986365i \(-0.447375\pi\)
−0.986365 + 0.164573i \(0.947375\pi\)
\(444\) 568.480 389.563i 0.0607632 0.0416393i
\(445\) 2.82260 2.82260i 0.000300683 0.000300683i
\(446\) −3611.29 11658.4i −0.383408 1.23776i
\(447\) −2353.58 −0.249040
\(448\) 14493.1 3416.73i 1.52843 0.360325i
\(449\) 13679.4 1.43779 0.718897 0.695117i \(-0.244647\pi\)
0.718897 + 0.695117i \(0.244647\pi\)
\(450\) 1989.93 + 6424.12i 0.208459 + 0.672969i
\(451\) −1859.09 + 1859.09i −0.194104 + 0.194104i
\(452\) −12037.0 + 8248.64i −1.25260 + 0.858370i
\(453\) 318.669 + 318.669i 0.0330516 + 0.0330516i
\(454\) 2481.33 + 1307.66i 0.256508 + 0.135179i
\(455\) 1686.01i 0.173718i
\(456\) 3055.80 3859.97i 0.313818 0.396402i
\(457\) 7913.48i 0.810016i 0.914313 + 0.405008i \(0.132731\pi\)
−0.914313 + 0.405008i \(0.867269\pi\)
\(458\) 1237.07 2347.39i 0.126210 0.239489i
\(459\) 7935.13 + 7935.13i 0.806929 + 0.806929i
\(460\) 87.0397 466.070i 0.00882228 0.0472405i
\(461\) −580.215 + 580.215i −0.0586189 + 0.0586189i −0.735809 0.677190i \(-0.763198\pi\)
0.677190 + 0.735809i \(0.263198\pi\)
\(462\) 3780.87 1171.16i 0.380740 0.117938i
\(463\) 14236.5 1.42899 0.714497 0.699638i \(-0.246656\pi\)
0.714497 + 0.699638i \(0.246656\pi\)
\(464\) −2319.73 5248.74i −0.232092 0.525143i
\(465\) 20.9990 0.00209420
\(466\) −9429.60 + 2920.91i −0.937377 + 0.290361i
\(467\) −8344.57 + 8344.57i −0.826853 + 0.826853i −0.987080 0.160227i \(-0.948777\pi\)
0.160227 + 0.987080i \(0.448777\pi\)
\(468\) 10333.0 + 1929.72i 1.02061 + 0.190601i
\(469\) −16440.2 16440.2i −1.61863 1.61863i
\(470\) −111.282 + 211.161i −0.0109213 + 0.0207237i
\(471\) 2799.85i 0.273907i
\(472\) 1200.56 + 10324.7i 0.117076 + 1.00684i
\(473\) 2934.05i 0.285217i
\(474\) −4953.79 2610.64i −0.480032 0.252976i
\(475\) 6816.45 + 6816.45i 0.658443 + 0.658443i
\(476\) 11405.3 + 16643.5i 1.09824 + 1.60263i
\(477\) −7444.46 + 7444.46i −0.714588 + 0.714588i
\(478\) 2469.22 + 7971.41i 0.236275 + 0.762769i
\(479\) −5563.77 −0.530720 −0.265360 0.964149i \(-0.585491\pi\)
−0.265360 + 0.964149i \(0.585491\pi\)
\(480\) −427.596 29.4930i −0.0406604 0.00280452i
\(481\) 2109.16 0.199936
\(482\) −944.830 3050.20i −0.0892859 0.288243i
\(483\) −4050.51 + 4050.51i −0.381583 + 0.381583i
\(484\) 4688.51 + 6841.83i 0.440319 + 0.642546i
\(485\) −226.529 226.529i −0.0212085 0.0212085i
\(486\) −9820.30 5175.28i −0.916580 0.483036i
\(487\) 18150.5i 1.68886i −0.535662 0.844432i \(-0.679938\pi\)
0.535662 0.844432i \(-0.320062\pi\)
\(488\) 10.7816 1.25369i 0.00100012 0.000116295i
\(489\) 7428.99i 0.687015i
\(490\) −559.653 + 1061.97i −0.0515971 + 0.0979076i
\(491\) 11593.0 + 11593.0i 1.06555 + 1.06555i 0.997695 + 0.0678570i \(0.0216162\pi\)
0.0678570 + 0.997695i \(0.478384\pi\)
\(492\) −3381.24 631.455i −0.309833 0.0578621i
\(493\) 5498.18 5498.18i 0.502284 0.502284i
\(494\) 14392.7 4458.26i 1.31084 0.406046i
\(495\) 276.988 0.0251509
\(496\) −204.855 + 529.338i −0.0185449 + 0.0479193i
\(497\) 12200.3 1.10112
\(498\) −10151.2 + 3144.43i −0.913426 + 0.282942i
\(499\) 3109.58 3109.58i 0.278966 0.278966i −0.553730 0.832696i \(-0.686796\pi\)
0.832696 + 0.553730i \(0.186796\pi\)
\(500\) 309.023 1654.72i 0.0276399 0.148003i
\(501\) 7641.07 + 7641.07i 0.681393 + 0.681393i
\(502\) −8619.20 + 16355.3i −0.766322 + 1.45413i
\(503\) 6221.21i 0.551471i −0.961233 0.275736i \(-0.911079\pi\)
0.961233 0.275736i \(-0.0889215\pi\)
\(504\) −9870.76 7814.33i −0.872379 0.690631i
\(505\) 466.740i 0.0411281i
\(506\) 3013.69 + 1588.21i 0.264772 + 0.139534i
\(507\) −4999.13 4999.13i −0.437907 0.437907i
\(508\) −6524.94 + 4471.36i −0.569877 + 0.390520i
\(509\) 13800.4 13800.4i 1.20176 1.20176i 0.228124 0.973632i \(-0.426741\pi\)
0.973632 0.228124i \(-0.0732591\pi\)
\(510\) −171.842 554.759i −0.0149202 0.0481670i
\(511\) −10901.2 −0.943720
\(512\) 4914.86 10491.0i 0.424234 0.905552i
\(513\) −10036.9 −0.863820
\(514\) 511.327 + 1650.72i 0.0438787 + 0.141654i
\(515\) 183.791 183.791i 0.0157258 0.0157258i
\(516\) 3166.46 2169.89i 0.270147 0.185124i
\(517\) −1212.66 1212.66i −0.103158 0.103158i
\(518\) −2234.74 1177.70i −0.189554 0.0998944i
\(519\) 10416.1i 0.880957i
\(520\) −1028.49 814.221i −0.0867354 0.0686653i
\(521\) 6874.63i 0.578086i −0.957316 0.289043i \(-0.906663\pi\)
0.957316 0.289043i \(-0.0933371\pi\)
\(522\) −2261.99 + 4292.21i −0.189664 + 0.359895i
\(523\) 2306.52 + 2306.52i 0.192843 + 0.192843i 0.796924 0.604080i \(-0.206459\pi\)
−0.604080 + 0.796924i \(0.706459\pi\)
\(524\) −1648.21 + 8825.66i −0.137409 + 0.735784i
\(525\) −7169.85 + 7169.85i −0.596034 + 0.596034i
\(526\) 13437.5 4162.38i 1.11388 0.345035i
\(527\) −769.086 −0.0635710
\(528\) 1111.46 2871.97i 0.0916099 0.236717i
\(529\) 7236.92 0.594799
\(530\) 1254.99 388.744i 0.102855 0.0318603i
\(531\) 6214.11 6214.11i 0.507852 0.507852i
\(532\) −17739.0 3312.80i −1.44564 0.269977i
\(533\) −7443.90 7443.90i −0.604936 0.604936i
\(534\) −17.4937 + 33.1950i −0.00141765 + 0.00269005i
\(535\) 718.136i 0.0580332i
\(536\) −17968.1 + 2089.34i −1.44796 + 0.168369i
\(537\) 4906.28i 0.394267i
\(538\) −3320.75 1750.03i −0.266111 0.140240i
\(539\) −6098.68 6098.68i −0.487363 0.487363i
\(540\) 493.953 + 720.813i 0.0393636 + 0.0574423i
\(541\) −13240.0 + 13240.0i −1.05218 + 1.05218i −0.0536210 + 0.998561i \(0.517076\pi\)
−0.998561 + 0.0536210i \(0.982924\pi\)
\(542\) −3356.51 10835.8i −0.266004 0.858744i
\(543\) 6247.82 0.493775
\(544\) 15660.7 + 1080.18i 1.23427 + 0.0851330i
\(545\) 1132.69 0.0890256
\(546\) 4689.40 + 15138.8i 0.367560 + 1.18660i
\(547\) −13271.3 + 13271.3i −1.03737 + 1.03737i −0.0380940 + 0.999274i \(0.512129\pi\)
−0.999274 + 0.0380940i \(0.987871\pi\)
\(548\) −7214.31 10527.7i −0.562372 0.820656i
\(549\) −6.48912 6.48912i −0.000504460 0.000504460i
\(550\) 5334.56 + 2811.30i 0.413575 + 0.217953i
\(551\) 6954.47i 0.537696i
\(552\) 514.770 + 4426.97i 0.0396921 + 0.341348i
\(553\) 20525.2i 1.57834i
\(554\) 6592.32 12509.2i 0.505561 0.959322i
\(555\) 51.4148 + 51.4148i 0.00393232 + 0.00393232i
\(556\) 3088.37 + 576.761i 0.235569 + 0.0439930i
\(557\) −8500.61 + 8500.61i −0.646647 + 0.646647i −0.952181 0.305534i \(-0.901165\pi\)
0.305534 + 0.952181i \(0.401165\pi\)
\(558\) 458.401 141.994i 0.0347771 0.0107725i
\(559\) 11748.1 0.888896
\(560\) 635.088 + 1436.98i 0.0479239 + 0.108435i
\(561\) 4172.74 0.314034
\(562\) 20177.8 6250.27i 1.51450 0.469131i
\(563\) 17327.2 17327.2i 1.29708 1.29708i 0.366763 0.930314i \(-0.380466\pi\)
0.930314 0.366763i \(-0.119534\pi\)
\(564\) 411.891 2205.55i 0.0307513 0.164663i
\(565\) −1088.66 1088.66i −0.0810625 0.0810625i
\(566\) 4194.52 7959.27i 0.311500 0.591083i
\(567\) 4465.09i 0.330716i
\(568\) 5891.83 7442.33i 0.435239 0.549777i
\(569\) 8998.54i 0.662985i 0.943458 + 0.331492i \(0.107552\pi\)
−0.943458 + 0.331492i \(0.892448\pi\)
\(570\) 459.527 + 242.170i 0.0337675 + 0.0177954i
\(571\) −9849.25 9849.25i −0.721853 0.721853i 0.247129 0.968983i \(-0.420513\pi\)
−0.968983 + 0.247129i \(0.920513\pi\)
\(572\) 7774.66 5327.75i 0.568313 0.389449i
\(573\) 7112.89 7112.89i 0.518578 0.518578i
\(574\) 3730.62 + 12043.6i 0.271277 + 0.875766i
\(575\) −8726.79 −0.632926
\(576\) −9533.71 + 2247.56i −0.689649 + 0.162584i
\(577\) −20584.4 −1.48516 −0.742580 0.669757i \(-0.766398\pi\)
−0.742580 + 0.669757i \(0.766398\pi\)
\(578\) 2182.00 + 7044.18i 0.157023 + 0.506919i
\(579\) 1038.59 1038.59i 0.0745467 0.0745467i
\(580\) 499.445 342.256i 0.0357558 0.0245024i
\(581\) 27544.1 + 27544.1i 1.96682 + 1.96682i
\(582\) 2664.08 + 1403.96i 0.189741 + 0.0999933i
\(583\) 9439.66i 0.670585i
\(584\) −5264.48 + 6649.89i −0.373024 + 0.471189i
\(585\) 1109.08i 0.0783840i
\(586\) 7371.47 13987.7i 0.519646 0.986049i
\(587\) −2586.77 2586.77i −0.181887 0.181887i 0.610291 0.792177i \(-0.291053\pi\)
−0.792177 + 0.610291i \(0.791053\pi\)
\(588\) 2071.47 11092.1i 0.145282 0.777940i
\(589\) 486.396 486.396i 0.0340265 0.0340265i
\(590\) −1047.57 + 324.496i −0.0730983 + 0.0226429i
\(591\) −4465.54 −0.310809
\(592\) −1797.63 + 794.479i −0.124801 + 0.0551569i
\(593\) −6035.89 −0.417984 −0.208992 0.977917i \(-0.567018\pi\)
−0.208992 + 0.977917i \(0.567018\pi\)
\(594\) −5997.19 + 1857.69i −0.414255 + 0.128319i
\(595\) −1505.28 + 1505.28i −0.103715 + 0.103715i
\(596\) 6598.04 + 1232.20i 0.453467 + 0.0846860i
\(597\) 4586.95 + 4586.95i 0.314458 + 0.314458i
\(598\) −6359.28 + 12067.0i −0.434866 + 0.825177i
\(599\) 5427.20i 0.370199i −0.982720 0.185100i \(-0.940739\pi\)
0.982720 0.185100i \(-0.0592608\pi\)
\(600\) 911.200 + 7836.22i 0.0619993 + 0.533188i
\(601\) 17725.7i 1.20307i −0.798847 0.601535i \(-0.794556\pi\)
0.798847 0.601535i \(-0.205444\pi\)
\(602\) −12447.6 6559.86i −0.842735 0.444120i
\(603\) 10814.5 + 10814.5i 0.730349 + 0.730349i
\(604\) −726.520 1060.19i −0.0489431 0.0714215i
\(605\) −618.793 + 618.793i −0.0415827 + 0.0415827i
\(606\) −1298.17 4190.90i −0.0870207 0.280930i
\(607\) 13487.6 0.901884 0.450942 0.892553i \(-0.351088\pi\)
0.450942 + 0.892553i \(0.351088\pi\)
\(608\) −10587.5 + 9221.19i −0.706215 + 0.615080i
\(609\) −7315.03 −0.486732
\(610\) 0.338857 + 1.09394i 2.24917e−5 + 7.26101e-5i
\(611\) 4855.57 4855.57i 0.321498 0.321498i
\(612\) −7502.51 10948.2i −0.495541 0.723130i
\(613\) −16850.4 16850.4i −1.11025 1.11025i −0.993117 0.117129i \(-0.962631\pi\)
−0.117129 0.993117i \(-0.537369\pi\)
\(614\) −13642.5 7189.54i −0.896685 0.472551i
\(615\) 362.918i 0.0237956i
\(616\) −11212.4 + 1303.79i −0.733381 + 0.0852779i
\(617\) 535.243i 0.0349239i 0.999848 + 0.0174620i \(0.00555860\pi\)
−0.999848 + 0.0174620i \(0.994441\pi\)
\(618\) −1139.08 + 2161.46i −0.0741434 + 0.140690i
\(619\) −19691.0 19691.0i −1.27859 1.27859i −0.941458 0.337130i \(-0.890544\pi\)
−0.337130 0.941458i \(-0.609456\pi\)
\(620\) −58.8685 10.9938i −0.00381325 0.000712134i
\(621\) 6424.88 6424.88i 0.415172 0.415172i
\(622\) −14034.1 + 4347.19i −0.904688 + 0.280236i
\(623\) 137.538 0.00884485
\(624\) 11499.5 + 4450.35i 0.737741 + 0.285507i
\(625\) −15358.3 −0.982934
\(626\) 12725.4 3941.81i 0.812475 0.251672i
\(627\) −2638.98 + 2638.98i −0.168087 + 0.168087i
\(628\) 1465.84 7849.09i 0.0931420 0.498746i
\(629\) −1883.06 1883.06i −0.119368 0.119368i
\(630\) 619.280 1175.11i 0.0391631 0.0743135i
\(631\) 11880.2i 0.749511i 0.927124 + 0.374755i \(0.122273\pi\)
−0.927124 + 0.374755i \(0.877727\pi\)
\(632\) 12520.7 + 9912.18i 0.788047 + 0.623869i
\(633\) 5627.72i 0.353368i
\(634\) 20100.4 + 10592.9i 1.25913 + 0.663561i
\(635\) −590.132 590.132i −0.0368798 0.0368798i
\(636\) −10187.4 + 6981.13i −0.635151 + 0.435251i
\(637\) 24419.5 24419.5i 1.51889 1.51889i
\(638\) 1287.17 + 4155.40i 0.0798742 + 0.257859i
\(639\) −8025.45 −0.496842
\(640\) 1183.28 + 306.545i 0.0730833 + 0.0189332i
\(641\) 18341.0 1.13015 0.565074 0.825040i \(-0.308848\pi\)
0.565074 + 0.825040i \(0.308848\pi\)
\(642\) −1997.39 6448.20i −0.122789 0.396402i
\(643\) 7026.21 7026.21i 0.430928 0.430928i −0.458016 0.888944i \(-0.651440\pi\)
0.888944 + 0.458016i \(0.151440\pi\)
\(644\) 13475.8 9234.59i 0.824567 0.565052i
\(645\) 286.383 + 286.383i 0.0174827 + 0.0174827i
\(646\) −16830.1 8869.45i −1.02504 0.540192i
\(647\) 21429.7i 1.30215i 0.759015 + 0.651073i \(0.225681\pi\)
−0.759015 + 0.651073i \(0.774319\pi\)
\(648\) 2723.77 + 2156.31i 0.165123 + 0.130722i
\(649\) 7879.56i 0.476579i
\(650\) −11256.6 + 21359.9i −0.679263 + 1.28893i
\(651\) 511.613 + 511.613i 0.0308014 + 0.0308014i
\(652\) −3889.39 + 20826.4i −0.233620 + 1.25096i
\(653\) 8681.22 8681.22i 0.520248 0.520248i −0.397398 0.917646i \(-0.630087\pi\)
0.917646 + 0.397398i \(0.130087\pi\)
\(654\) −10170.5 + 3150.40i −0.608099 + 0.188364i
\(655\) −947.284 −0.0565091
\(656\) 9148.37 + 3540.44i 0.544488 + 0.210718i
\(657\) 7170.92 0.425821
\(658\) −7855.90 + 2433.44i −0.465433 + 0.144172i
\(659\) −4151.60 + 4151.60i −0.245407 + 0.245407i −0.819083 0.573675i \(-0.805517\pi\)
0.573675 + 0.819083i \(0.305517\pi\)
\(660\) 319.396 + 59.6480i 0.0188371 + 0.00351787i
\(661\) 12239.0 + 12239.0i 0.720182 + 0.720182i 0.968642 0.248460i \(-0.0799244\pi\)
−0.248460 + 0.968642i \(0.579924\pi\)
\(662\) −3386.23 + 6425.52i −0.198806 + 0.377243i
\(663\) 16707.9i 0.978706i
\(664\) 30104.1 3500.52i 1.75944 0.204588i
\(665\) 1903.98i 0.111027i
\(666\) 1470.03 + 774.704i 0.0855294 + 0.0450738i
\(667\) −4451.75 4451.75i −0.258429 0.258429i
\(668\) −17420.5 25421.4i −1.00901 1.47243i
\(669\) −8559.23 + 8559.23i −0.494647 + 0.494647i
\(670\) −564.725 1823.11i −0.0325631 0.105124i
\(671\) −8.22827 −0.000473396
\(672\) −9699.26 11136.4i −0.556782 0.639279i
\(673\) 6528.62 0.373937 0.186969 0.982366i \(-0.440134\pi\)
0.186969 + 0.982366i \(0.440134\pi\)
\(674\) −2245.65 7249.65i −0.128337 0.414312i
\(675\) 11372.8 11372.8i 0.648500 0.648500i
\(676\) 11397.3 + 16631.8i 0.648458 + 0.946279i
\(677\) −14220.6 14220.6i −0.807299 0.807299i 0.176925 0.984224i \(-0.443385\pi\)
−0.984224 + 0.176925i \(0.943385\pi\)
\(678\) 12803.1 + 6747.21i 0.725222 + 0.382190i
\(679\) 11038.2i 0.623867i
\(680\) 191.302 + 1645.18i 0.0107884 + 0.0927790i
\(681\) 2781.76i 0.156530i
\(682\) 200.604 380.653i 0.0112632 0.0213724i
\(683\) 21419.5 + 21419.5i 1.19999 + 1.19999i 0.974167 + 0.225827i \(0.0725084\pi\)
0.225827 + 0.974167i \(0.427492\pi\)
\(684\) 11668.9 + 2179.19i 0.652295 + 0.121818i
\(685\) 952.149 952.149i 0.0531091 0.0531091i
\(686\) −12557.3 + 3889.74i −0.698891 + 0.216488i
\(687\) −2631.60 −0.146145
\(688\) −10012.9 + 4425.28i −0.554851 + 0.245222i
\(689\) −37797.0 −2.08991
\(690\) −449.175 + 139.136i −0.0247823 + 0.00767656i
\(691\) −16537.1 + 16537.1i −0.910423 + 0.910423i −0.996305 0.0858818i \(-0.972629\pi\)
0.0858818 + 0.996305i \(0.472629\pi\)
\(692\) −5453.27 + 29200.5i −0.299570 + 1.60410i
\(693\) 6748.45 + 6748.45i 0.369917 + 0.369917i
\(694\) 9868.56 18726.0i 0.539777 1.02425i
\(695\) 331.484i 0.0180920i
\(696\) −3532.62 + 4462.27i −0.192390 + 0.243020i
\(697\) 13291.8i 0.722331i
\(698\) 260.830 + 137.457i 0.0141441 + 0.00745390i
\(699\) 6922.92 + 6922.92i 0.374605 + 0.374605i
\(700\) 23853.7 16346.2i 1.28798 0.882614i
\(701\) −3026.52 + 3026.52i −0.163067 + 0.163067i −0.783924 0.620857i \(-0.786785\pi\)
0.620857 + 0.783924i \(0.286785\pi\)
\(702\) −7438.29 24013.1i −0.399915 1.29105i
\(703\) 2381.82 0.127784
\(704\) −4619.46 + 7469.39i −0.247305 + 0.399877i
\(705\) 236.728 0.0126464
\(706\) −4240.79 13690.6i −0.226068 0.729819i
\(707\) −11371.5 + 11371.5i −0.604908 + 0.604908i
\(708\) 8503.71 5827.35i 0.451397 0.309330i
\(709\) 3981.14 + 3981.14i 0.210881 + 0.210881i 0.804642 0.593761i \(-0.202357\pi\)
−0.593761 + 0.804642i \(0.702357\pi\)
\(710\) 886.007 + 466.924i 0.0468327 + 0.0246807i
\(711\) 13501.7i 0.712170i
\(712\) 66.4207 83.9001i 0.00349610 0.00441614i
\(713\) 622.710i 0.0327078i
\(714\) 9329.29 17702.7i 0.488991 0.927881i
\(715\) 703.160 + 703.160i 0.0367786 + 0.0367786i
\(716\) 2568.64 13754.3i 0.134071 0.717906i
\(717\) 5852.36 5852.36i 0.304826 0.304826i
\(718\) 2621.34 811.986i 0.136250 0.0422048i
\(719\) −5682.25 −0.294732 −0.147366 0.989082i \(-0.547079\pi\)
−0.147366 + 0.989082i \(0.547079\pi\)
\(720\) −417.767 945.262i −0.0216240 0.0489275i
\(721\) 8955.64 0.462587
\(722\) −2278.20 + 705.695i −0.117432 + 0.0363757i
\(723\) −2239.37 + 2239.37i −0.115191 + 0.115191i
\(724\) −17515.1 3271.00i −0.899096 0.167908i
\(725\) −7880.09 7880.09i −0.403668 0.403668i
\(726\) 3835.10 7277.27i 0.196052 0.372017i
\(727\) 18883.0i 0.963317i −0.876359 0.481658i \(-0.840035\pi\)
0.876359 0.481658i \(-0.159965\pi\)
\(728\) −5220.45 44895.3i −0.265773 2.28562i
\(729\) 6863.99i 0.348727i
\(730\) −791.667 417.207i −0.0401382 0.0211528i
\(731\) −10488.8 10488.8i −0.530698 0.530698i
\(732\) −6.08524 8.88005i −0.000307264 0.000448382i
\(733\) −24962.5 + 24962.5i −1.25786 + 1.25786i −0.305748 + 0.952113i \(0.598906\pi\)
−0.952113 + 0.305748i \(0.901094\pi\)
\(734\) 11257.5 + 36342.7i 0.566105 + 1.82756i
\(735\) 1190.54 0.0597467
\(736\) 874.596 12680.1i 0.0438017 0.635045i
\(737\) 13712.9 0.685375
\(738\) −2454.03 7922.38i −0.122404 0.395159i
\(739\) 6202.38 6202.38i 0.308739 0.308739i −0.535681 0.844420i \(-0.679945\pi\)
0.844420 + 0.535681i \(0.179945\pi\)
\(740\) −117.218 171.054i −0.00582302 0.00849739i
\(741\) −10566.6 10566.6i −0.523854 0.523854i
\(742\) 40047.4 + 21104.9i 1.98138 + 1.04418i
\(743\) 30.9140i 0.00152641i 1.00000 0.000763205i \(0.000242936\pi\)
−1.00000 0.000763205i \(0.999757\pi\)
\(744\) 559.163 65.0197i 0.0275536 0.00320395i
\(745\) 708.187i 0.0348268i
\(746\) −10999.4 + 20871.9i −0.539837 + 1.02436i
\(747\) −18118.8 18118.8i −0.887459 0.887459i
\(748\) −11697.9 2184.60i −0.571813 0.106787i
\(749\) −17496.5 + 17496.5i −0.853547 + 0.853547i
\(750\) −1594.74 + 493.985i −0.0776421 + 0.0240504i
\(751\) −16318.5 −0.792905 −0.396453 0.918055i \(-0.629759\pi\)
−0.396453 + 0.918055i \(0.629759\pi\)
\(752\) −2309.39 + 5967.38i −0.111988 + 0.289372i
\(753\) 18335.5 0.887361
\(754\) −16638.5 + 5153.93i −0.803631 + 0.248932i
\(755\) 95.8865 95.8865i 0.00462208 0.00462208i
\(756\) −5527.16 + 29596.2i −0.265901 + 1.42381i
\(757\) 9854.59 + 9854.59i 0.473146 + 0.473146i 0.902931 0.429786i \(-0.141411\pi\)
−0.429786 + 0.902931i \(0.641411\pi\)
\(758\) 8292.59 15735.5i 0.397362 0.754011i
\(759\) 3378.57i 0.161573i
\(760\) −1161.45 919.480i −0.0554346 0.0438856i
\(761\) 3823.42i 0.182127i −0.995845 0.0910637i \(-0.970973\pi\)
0.995845 0.0910637i \(-0.0290267\pi\)
\(762\) 6940.21 + 3657.47i 0.329944 + 0.173880i
\(763\) 27596.4 + 27596.4i 1.30938 + 1.30938i
\(764\) −23664.2 + 16216.4i −1.12060 + 0.767917i
\(765\) 990.185 990.185i 0.0467977 0.0467977i
\(766\) −5370.96 17339.1i −0.253343 0.817870i
\(767\) 31550.2 1.48528
\(768\) −11477.4 + 538.634i −0.539264 + 0.0253076i
\(769\) 31689.1 1.48601 0.743003 0.669288i \(-0.233401\pi\)
0.743003 + 0.669288i \(0.233401\pi\)
\(770\) −352.399 1137.65i −0.0164930 0.0532444i
\(771\) 1211.91 1211.91i 0.0566094 0.0566094i
\(772\) −3455.34 + 2367.85i −0.161089 + 0.110390i
\(773\) −1305.84 1305.84i −0.0607604 0.0607604i 0.676074