Properties

Label 1587.2.a.u.1.6
Level $1587$
Weight $2$
Character 1587.1
Self dual yes
Analytic conductor $12.672$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1587,2,Mod(1,1587)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1587.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1587, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1587 = 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1587.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-2,10,8,8,-2,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.6722588008\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.10.5791333887977.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 12x^{8} + 22x^{7} + 49x^{6} - 84x^{5} - 73x^{4} + 132x^{3} + 17x^{2} - 74x + 23 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.568983\) of defining polynomial
Character \(\chi\) \(=\) 1587.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.568983 q^{2} +1.00000 q^{3} -1.67626 q^{4} +2.70241 q^{5} -0.568983 q^{6} +3.38601 q^{7} +2.09173 q^{8} +1.00000 q^{9} -1.53762 q^{10} -4.48823 q^{11} -1.67626 q^{12} +6.26113 q^{13} -1.92658 q^{14} +2.70241 q^{15} +2.16236 q^{16} +3.06906 q^{17} -0.568983 q^{18} +1.04840 q^{19} -4.52993 q^{20} +3.38601 q^{21} +2.55372 q^{22} +2.09173 q^{24} +2.30301 q^{25} -3.56248 q^{26} +1.00000 q^{27} -5.67582 q^{28} -2.21800 q^{29} -1.53762 q^{30} -6.48711 q^{31} -5.41380 q^{32} -4.48823 q^{33} -1.74624 q^{34} +9.15037 q^{35} -1.67626 q^{36} +0.279560 q^{37} -0.596524 q^{38} +6.26113 q^{39} +5.65270 q^{40} +1.41972 q^{41} -1.92658 q^{42} +1.83959 q^{43} +7.52343 q^{44} +2.70241 q^{45} +4.74565 q^{47} +2.16236 q^{48} +4.46503 q^{49} -1.31037 q^{50} +3.06906 q^{51} -10.4953 q^{52} +5.39864 q^{53} -0.568983 q^{54} -12.1290 q^{55} +7.08260 q^{56} +1.04840 q^{57} +1.26200 q^{58} -10.8910 q^{59} -4.52993 q^{60} +4.68450 q^{61} +3.69105 q^{62} +3.38601 q^{63} -1.24436 q^{64} +16.9201 q^{65} +2.55372 q^{66} -0.201133 q^{67} -5.14454 q^{68} -5.20640 q^{70} -3.01784 q^{71} +2.09173 q^{72} -12.0906 q^{73} -0.159065 q^{74} +2.30301 q^{75} -1.75740 q^{76} -15.1972 q^{77} -3.56248 q^{78} +7.76749 q^{79} +5.84358 q^{80} +1.00000 q^{81} -0.807796 q^{82} -14.7611 q^{83} -5.67582 q^{84} +8.29386 q^{85} -1.04669 q^{86} -2.21800 q^{87} -9.38814 q^{88} -0.873672 q^{89} -1.53762 q^{90} +21.2002 q^{91} -6.48711 q^{93} -2.70019 q^{94} +2.83322 q^{95} -5.41380 q^{96} +11.5724 q^{97} -2.54053 q^{98} -4.48823 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{2} + 10 q^{3} + 8 q^{4} + 8 q^{5} - 2 q^{6} + 19 q^{7} - 6 q^{8} + 10 q^{9} + 13 q^{10} + 3 q^{11} + 8 q^{12} - 4 q^{13} + 8 q^{15} - 4 q^{16} + 11 q^{17} - 2 q^{18} + 22 q^{19} + q^{20} + 19 q^{21}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.568983 −0.402331 −0.201166 0.979557i \(-0.564473\pi\)
−0.201166 + 0.979557i \(0.564473\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.67626 −0.838129
\(5\) 2.70241 1.20855 0.604277 0.796775i \(-0.293462\pi\)
0.604277 + 0.796775i \(0.293462\pi\)
\(6\) −0.568983 −0.232286
\(7\) 3.38601 1.27979 0.639895 0.768462i \(-0.278978\pi\)
0.639895 + 0.768462i \(0.278978\pi\)
\(8\) 2.09173 0.739537
\(9\) 1.00000 0.333333
\(10\) −1.53762 −0.486239
\(11\) −4.48823 −1.35325 −0.676625 0.736327i \(-0.736558\pi\)
−0.676625 + 0.736327i \(0.736558\pi\)
\(12\) −1.67626 −0.483894
\(13\) 6.26113 1.73653 0.868263 0.496104i \(-0.165237\pi\)
0.868263 + 0.496104i \(0.165237\pi\)
\(14\) −1.92658 −0.514900
\(15\) 2.70241 0.697759
\(16\) 2.16236 0.540590
\(17\) 3.06906 0.744357 0.372179 0.928161i \(-0.378611\pi\)
0.372179 + 0.928161i \(0.378611\pi\)
\(18\) −0.568983 −0.134110
\(19\) 1.04840 0.240521 0.120260 0.992742i \(-0.461627\pi\)
0.120260 + 0.992742i \(0.461627\pi\)
\(20\) −4.52993 −1.01292
\(21\) 3.38601 0.738887
\(22\) 2.55372 0.544455
\(23\) 0 0
\(24\) 2.09173 0.426972
\(25\) 2.30301 0.460601
\(26\) −3.56248 −0.698659
\(27\) 1.00000 0.192450
\(28\) −5.67582 −1.07263
\(29\) −2.21800 −0.411872 −0.205936 0.978565i \(-0.566024\pi\)
−0.205936 + 0.978565i \(0.566024\pi\)
\(30\) −1.53762 −0.280730
\(31\) −6.48711 −1.16512 −0.582559 0.812788i \(-0.697949\pi\)
−0.582559 + 0.812788i \(0.697949\pi\)
\(32\) −5.41380 −0.957034
\(33\) −4.48823 −0.781300
\(34\) −1.74624 −0.299478
\(35\) 9.15037 1.54669
\(36\) −1.67626 −0.279376
\(37\) 0.279560 0.0459594 0.0229797 0.999736i \(-0.492685\pi\)
0.0229797 + 0.999736i \(0.492685\pi\)
\(38\) −0.596524 −0.0967690
\(39\) 6.26113 1.00258
\(40\) 5.65270 0.893770
\(41\) 1.41972 0.221723 0.110861 0.993836i \(-0.464639\pi\)
0.110861 + 0.993836i \(0.464639\pi\)
\(42\) −1.92658 −0.297277
\(43\) 1.83959 0.280534 0.140267 0.990114i \(-0.455204\pi\)
0.140267 + 0.990114i \(0.455204\pi\)
\(44\) 7.52343 1.13420
\(45\) 2.70241 0.402851
\(46\) 0 0
\(47\) 4.74565 0.692225 0.346112 0.938193i \(-0.387502\pi\)
0.346112 + 0.938193i \(0.387502\pi\)
\(48\) 2.16236 0.312110
\(49\) 4.46503 0.637862
\(50\) −1.31037 −0.185314
\(51\) 3.06906 0.429755
\(52\) −10.4953 −1.45543
\(53\) 5.39864 0.741560 0.370780 0.928721i \(-0.379090\pi\)
0.370780 + 0.928721i \(0.379090\pi\)
\(54\) −0.568983 −0.0774287
\(55\) −12.1290 −1.63548
\(56\) 7.08260 0.946452
\(57\) 1.04840 0.138865
\(58\) 1.26200 0.165709
\(59\) −10.8910 −1.41789 −0.708944 0.705265i \(-0.750828\pi\)
−0.708944 + 0.705265i \(0.750828\pi\)
\(60\) −4.52993 −0.584812
\(61\) 4.68450 0.599789 0.299894 0.953972i \(-0.403049\pi\)
0.299894 + 0.953972i \(0.403049\pi\)
\(62\) 3.69105 0.468764
\(63\) 3.38601 0.426597
\(64\) −1.24436 −0.155546
\(65\) 16.9201 2.09868
\(66\) 2.55372 0.314341
\(67\) −0.201133 −0.0245724 −0.0122862 0.999925i \(-0.503911\pi\)
−0.0122862 + 0.999925i \(0.503911\pi\)
\(68\) −5.14454 −0.623868
\(69\) 0 0
\(70\) −5.20640 −0.622284
\(71\) −3.01784 −0.358151 −0.179076 0.983835i \(-0.557311\pi\)
−0.179076 + 0.983835i \(0.557311\pi\)
\(72\) 2.09173 0.246512
\(73\) −12.0906 −1.41510 −0.707548 0.706666i \(-0.750198\pi\)
−0.707548 + 0.706666i \(0.750198\pi\)
\(74\) −0.159065 −0.0184909
\(75\) 2.30301 0.265928
\(76\) −1.75740 −0.201587
\(77\) −15.1972 −1.73188
\(78\) −3.56248 −0.403371
\(79\) 7.76749 0.873911 0.436956 0.899483i \(-0.356057\pi\)
0.436956 + 0.899483i \(0.356057\pi\)
\(80\) 5.84358 0.653332
\(81\) 1.00000 0.111111
\(82\) −0.807796 −0.0892061
\(83\) −14.7611 −1.62024 −0.810122 0.586261i \(-0.800599\pi\)
−0.810122 + 0.586261i \(0.800599\pi\)
\(84\) −5.67582 −0.619283
\(85\) 8.29386 0.899595
\(86\) −1.04669 −0.112868
\(87\) −2.21800 −0.237794
\(88\) −9.38814 −1.00078
\(89\) −0.873672 −0.0926090 −0.0463045 0.998927i \(-0.514744\pi\)
−0.0463045 + 0.998927i \(0.514744\pi\)
\(90\) −1.53762 −0.162080
\(91\) 21.2002 2.22239
\(92\) 0 0
\(93\) −6.48711 −0.672682
\(94\) −2.70019 −0.278504
\(95\) 2.83322 0.290682
\(96\) −5.41380 −0.552544
\(97\) 11.5724 1.17500 0.587502 0.809223i \(-0.300112\pi\)
0.587502 + 0.809223i \(0.300112\pi\)
\(98\) −2.54053 −0.256632
\(99\) −4.48823 −0.451084
\(100\) −3.86044 −0.386044
\(101\) 9.43695 0.939011 0.469506 0.882929i \(-0.344432\pi\)
0.469506 + 0.882929i \(0.344432\pi\)
\(102\) −1.74624 −0.172904
\(103\) 4.01274 0.395387 0.197693 0.980264i \(-0.436655\pi\)
0.197693 + 0.980264i \(0.436655\pi\)
\(104\) 13.0966 1.28423
\(105\) 9.15037 0.892984
\(106\) −3.07173 −0.298353
\(107\) 3.67412 0.355190 0.177595 0.984104i \(-0.443168\pi\)
0.177595 + 0.984104i \(0.443168\pi\)
\(108\) −1.67626 −0.161298
\(109\) 13.4116 1.28460 0.642299 0.766454i \(-0.277981\pi\)
0.642299 + 0.766454i \(0.277981\pi\)
\(110\) 6.90120 0.658003
\(111\) 0.279560 0.0265347
\(112\) 7.32177 0.691842
\(113\) 0.694886 0.0653694 0.0326847 0.999466i \(-0.489594\pi\)
0.0326847 + 0.999466i \(0.489594\pi\)
\(114\) −0.596524 −0.0558696
\(115\) 0 0
\(116\) 3.71794 0.345202
\(117\) 6.26113 0.578842
\(118\) 6.19679 0.570461
\(119\) 10.3919 0.952621
\(120\) 5.65270 0.516019
\(121\) 9.14417 0.831288
\(122\) −2.66540 −0.241314
\(123\) 1.41972 0.128012
\(124\) 10.8741 0.976520
\(125\) −7.28837 −0.651892
\(126\) −1.92658 −0.171633
\(127\) −10.9440 −0.971127 −0.485563 0.874202i \(-0.661385\pi\)
−0.485563 + 0.874202i \(0.661385\pi\)
\(128\) 11.5356 1.01961
\(129\) 1.83959 0.161967
\(130\) −9.62726 −0.844367
\(131\) −3.53749 −0.309072 −0.154536 0.987987i \(-0.549388\pi\)
−0.154536 + 0.987987i \(0.549388\pi\)
\(132\) 7.52343 0.654830
\(133\) 3.54990 0.307816
\(134\) 0.114441 0.00988623
\(135\) 2.70241 0.232586
\(136\) 6.41964 0.550480
\(137\) 12.7925 1.09294 0.546469 0.837479i \(-0.315972\pi\)
0.546469 + 0.837479i \(0.315972\pi\)
\(138\) 0 0
\(139\) 8.21741 0.696992 0.348496 0.937310i \(-0.386693\pi\)
0.348496 + 0.937310i \(0.386693\pi\)
\(140\) −15.3384 −1.29633
\(141\) 4.74565 0.399656
\(142\) 1.71710 0.144095
\(143\) −28.1014 −2.34996
\(144\) 2.16236 0.180197
\(145\) −5.99393 −0.497769
\(146\) 6.87933 0.569337
\(147\) 4.46503 0.368270
\(148\) −0.468615 −0.0385199
\(149\) −18.6176 −1.52521 −0.762607 0.646862i \(-0.776081\pi\)
−0.762607 + 0.646862i \(0.776081\pi\)
\(150\) −1.31037 −0.106991
\(151\) −5.46938 −0.445092 −0.222546 0.974922i \(-0.571437\pi\)
−0.222546 + 0.974922i \(0.571437\pi\)
\(152\) 2.19298 0.177874
\(153\) 3.06906 0.248119
\(154\) 8.64692 0.696788
\(155\) −17.5308 −1.40811
\(156\) −10.4953 −0.840295
\(157\) 16.4366 1.31178 0.655890 0.754856i \(-0.272294\pi\)
0.655890 + 0.754856i \(0.272294\pi\)
\(158\) −4.41957 −0.351602
\(159\) 5.39864 0.428140
\(160\) −14.6303 −1.15663
\(161\) 0 0
\(162\) −0.568983 −0.0447035
\(163\) 10.0160 0.784511 0.392256 0.919856i \(-0.371695\pi\)
0.392256 + 0.919856i \(0.371695\pi\)
\(164\) −2.37982 −0.185833
\(165\) −12.1290 −0.944243
\(166\) 8.39883 0.651875
\(167\) −7.39906 −0.572557 −0.286278 0.958147i \(-0.592418\pi\)
−0.286278 + 0.958147i \(0.592418\pi\)
\(168\) 7.08260 0.546434
\(169\) 26.2018 2.01552
\(170\) −4.71906 −0.361936
\(171\) 1.04840 0.0801735
\(172\) −3.08362 −0.235124
\(173\) 5.61509 0.426908 0.213454 0.976953i \(-0.431529\pi\)
0.213454 + 0.976953i \(0.431529\pi\)
\(174\) 1.26200 0.0956721
\(175\) 7.79799 0.589473
\(176\) −9.70517 −0.731554
\(177\) −10.8910 −0.818618
\(178\) 0.497104 0.0372595
\(179\) 21.5449 1.61034 0.805169 0.593046i \(-0.202075\pi\)
0.805169 + 0.593046i \(0.202075\pi\)
\(180\) −4.52993 −0.337641
\(181\) 10.2613 0.762719 0.381360 0.924427i \(-0.375456\pi\)
0.381360 + 0.924427i \(0.375456\pi\)
\(182\) −12.0626 −0.894137
\(183\) 4.68450 0.346288
\(184\) 0 0
\(185\) 0.755486 0.0555444
\(186\) 3.69105 0.270641
\(187\) −13.7746 −1.00730
\(188\) −7.95494 −0.580174
\(189\) 3.38601 0.246296
\(190\) −1.61205 −0.116950
\(191\) 8.45001 0.611421 0.305710 0.952125i \(-0.401106\pi\)
0.305710 + 0.952125i \(0.401106\pi\)
\(192\) −1.24436 −0.0898043
\(193\) 0.392108 0.0282246 0.0141123 0.999900i \(-0.495508\pi\)
0.0141123 + 0.999900i \(0.495508\pi\)
\(194\) −6.58452 −0.472741
\(195\) 16.9201 1.21168
\(196\) −7.48455 −0.534611
\(197\) −22.5670 −1.60783 −0.803915 0.594744i \(-0.797253\pi\)
−0.803915 + 0.594744i \(0.797253\pi\)
\(198\) 2.55372 0.181485
\(199\) 13.3644 0.947375 0.473687 0.880693i \(-0.342923\pi\)
0.473687 + 0.880693i \(0.342923\pi\)
\(200\) 4.81726 0.340632
\(201\) −0.201133 −0.0141869
\(202\) −5.36946 −0.377794
\(203\) −7.51015 −0.527109
\(204\) −5.14454 −0.360190
\(205\) 3.83666 0.267964
\(206\) −2.28318 −0.159076
\(207\) 0 0
\(208\) 13.5388 0.938749
\(209\) −4.70548 −0.325485
\(210\) −5.20640 −0.359276
\(211\) −0.559001 −0.0384832 −0.0192416 0.999815i \(-0.506125\pi\)
−0.0192416 + 0.999815i \(0.506125\pi\)
\(212\) −9.04951 −0.621523
\(213\) −3.01784 −0.206779
\(214\) −2.09051 −0.142904
\(215\) 4.97131 0.339041
\(216\) 2.09173 0.142324
\(217\) −21.9654 −1.49111
\(218\) −7.63097 −0.516834
\(219\) −12.0906 −0.817006
\(220\) 20.3314 1.37074
\(221\) 19.2158 1.29260
\(222\) −0.159065 −0.0106757
\(223\) −29.6961 −1.98860 −0.994299 0.106631i \(-0.965994\pi\)
−0.994299 + 0.106631i \(0.965994\pi\)
\(224\) −18.3312 −1.22480
\(225\) 2.30301 0.153534
\(226\) −0.395378 −0.0263002
\(227\) −24.6703 −1.63743 −0.818713 0.574203i \(-0.805312\pi\)
−0.818713 + 0.574203i \(0.805312\pi\)
\(228\) −1.75740 −0.116387
\(229\) −28.4810 −1.88207 −0.941037 0.338302i \(-0.890147\pi\)
−0.941037 + 0.338302i \(0.890147\pi\)
\(230\) 0 0
\(231\) −15.1972 −0.999899
\(232\) −4.63945 −0.304595
\(233\) −15.0630 −0.986812 −0.493406 0.869799i \(-0.664248\pi\)
−0.493406 + 0.869799i \(0.664248\pi\)
\(234\) −3.56248 −0.232886
\(235\) 12.8247 0.836591
\(236\) 18.2561 1.18837
\(237\) 7.76749 0.504553
\(238\) −5.91279 −0.383269
\(239\) −26.9624 −1.74405 −0.872027 0.489457i \(-0.837195\pi\)
−0.872027 + 0.489457i \(0.837195\pi\)
\(240\) 5.84358 0.377202
\(241\) 21.1091 1.35976 0.679879 0.733324i \(-0.262032\pi\)
0.679879 + 0.733324i \(0.262032\pi\)
\(242\) −5.20287 −0.334453
\(243\) 1.00000 0.0641500
\(244\) −7.85243 −0.502701
\(245\) 12.0663 0.770890
\(246\) −0.807796 −0.0515032
\(247\) 6.56420 0.417670
\(248\) −13.5693 −0.861649
\(249\) −14.7611 −0.935449
\(250\) 4.14696 0.262277
\(251\) −2.32705 −0.146882 −0.0734411 0.997300i \(-0.523398\pi\)
−0.0734411 + 0.997300i \(0.523398\pi\)
\(252\) −5.67582 −0.357543
\(253\) 0 0
\(254\) 6.22697 0.390715
\(255\) 8.29386 0.519382
\(256\) −4.07484 −0.254677
\(257\) 26.6953 1.66520 0.832602 0.553871i \(-0.186850\pi\)
0.832602 + 0.553871i \(0.186850\pi\)
\(258\) −1.04669 −0.0651642
\(259\) 0.946593 0.0588184
\(260\) −28.3625 −1.75897
\(261\) −2.21800 −0.137291
\(262\) 2.01277 0.124349
\(263\) 10.0028 0.616801 0.308401 0.951257i \(-0.400206\pi\)
0.308401 + 0.951257i \(0.400206\pi\)
\(264\) −9.38814 −0.577800
\(265\) 14.5893 0.896215
\(266\) −2.01983 −0.123844
\(267\) −0.873672 −0.0534678
\(268\) 0.337152 0.0205948
\(269\) −17.5445 −1.06971 −0.534853 0.844945i \(-0.679633\pi\)
−0.534853 + 0.844945i \(0.679633\pi\)
\(270\) −1.53762 −0.0935767
\(271\) 1.13946 0.0692174 0.0346087 0.999401i \(-0.488982\pi\)
0.0346087 + 0.999401i \(0.488982\pi\)
\(272\) 6.63642 0.402392
\(273\) 21.2002 1.28310
\(274\) −7.27872 −0.439724
\(275\) −10.3364 −0.623309
\(276\) 0 0
\(277\) −21.3674 −1.28384 −0.641920 0.766772i \(-0.721862\pi\)
−0.641920 + 0.766772i \(0.721862\pi\)
\(278\) −4.67556 −0.280422
\(279\) −6.48711 −0.388373
\(280\) 19.1401 1.14384
\(281\) −12.3835 −0.738737 −0.369369 0.929283i \(-0.620426\pi\)
−0.369369 + 0.929283i \(0.620426\pi\)
\(282\) −2.70019 −0.160794
\(283\) −7.11666 −0.423041 −0.211521 0.977374i \(-0.567842\pi\)
−0.211521 + 0.977374i \(0.567842\pi\)
\(284\) 5.05867 0.300177
\(285\) 2.83322 0.167825
\(286\) 15.9892 0.945461
\(287\) 4.80718 0.283759
\(288\) −5.41380 −0.319011
\(289\) −7.58085 −0.445932
\(290\) 3.41044 0.200268
\(291\) 11.5724 0.678389
\(292\) 20.2669 1.18603
\(293\) −17.9845 −1.05066 −0.525332 0.850898i \(-0.676059\pi\)
−0.525332 + 0.850898i \(0.676059\pi\)
\(294\) −2.54053 −0.148166
\(295\) −29.4319 −1.71359
\(296\) 0.584764 0.0339887
\(297\) −4.48823 −0.260433
\(298\) 10.5931 0.613641
\(299\) 0 0
\(300\) −3.86044 −0.222882
\(301\) 6.22885 0.359025
\(302\) 3.11198 0.179074
\(303\) 9.43695 0.542138
\(304\) 2.26703 0.130023
\(305\) 12.6594 0.724877
\(306\) −1.74624 −0.0998261
\(307\) 1.83085 0.104492 0.0522460 0.998634i \(-0.483362\pi\)
0.0522460 + 0.998634i \(0.483362\pi\)
\(308\) 25.4744 1.45154
\(309\) 4.01274 0.228277
\(310\) 9.97472 0.566526
\(311\) −9.26634 −0.525446 −0.262723 0.964871i \(-0.584621\pi\)
−0.262723 + 0.964871i \(0.584621\pi\)
\(312\) 13.0966 0.741448
\(313\) 13.9170 0.786634 0.393317 0.919403i \(-0.371327\pi\)
0.393317 + 0.919403i \(0.371327\pi\)
\(314\) −9.35211 −0.527770
\(315\) 9.15037 0.515565
\(316\) −13.0203 −0.732451
\(317\) −27.0529 −1.51944 −0.759722 0.650248i \(-0.774665\pi\)
−0.759722 + 0.650248i \(0.774665\pi\)
\(318\) −3.07173 −0.172254
\(319\) 9.95488 0.557366
\(320\) −3.36278 −0.187985
\(321\) 3.67412 0.205069
\(322\) 0 0
\(323\) 3.21762 0.179033
\(324\) −1.67626 −0.0931255
\(325\) 14.4194 0.799846
\(326\) −5.69891 −0.315633
\(327\) 13.4116 0.741663
\(328\) 2.96967 0.163972
\(329\) 16.0688 0.885902
\(330\) 6.90120 0.379898
\(331\) 16.4225 0.902661 0.451331 0.892357i \(-0.350949\pi\)
0.451331 + 0.892357i \(0.350949\pi\)
\(332\) 24.7435 1.35797
\(333\) 0.279560 0.0153198
\(334\) 4.20994 0.230358
\(335\) −0.543544 −0.0296970
\(336\) 7.32177 0.399435
\(337\) −16.5746 −0.902878 −0.451439 0.892302i \(-0.649089\pi\)
−0.451439 + 0.892302i \(0.649089\pi\)
\(338\) −14.9084 −0.810908
\(339\) 0.694886 0.0377411
\(340\) −13.9027 −0.753977
\(341\) 29.1156 1.57670
\(342\) −0.596524 −0.0322563
\(343\) −8.58341 −0.463461
\(344\) 3.84791 0.207466
\(345\) 0 0
\(346\) −3.19489 −0.171758
\(347\) −0.186730 −0.0100242 −0.00501208 0.999987i \(-0.501595\pi\)
−0.00501208 + 0.999987i \(0.501595\pi\)
\(348\) 3.71794 0.199302
\(349\) 10.5157 0.562892 0.281446 0.959577i \(-0.409186\pi\)
0.281446 + 0.959577i \(0.409186\pi\)
\(350\) −4.43692 −0.237163
\(351\) 6.26113 0.334195
\(352\) 24.2984 1.29511
\(353\) −20.6655 −1.09991 −0.549956 0.835194i \(-0.685355\pi\)
−0.549956 + 0.835194i \(0.685355\pi\)
\(354\) 6.19679 0.329356
\(355\) −8.15542 −0.432845
\(356\) 1.46450 0.0776183
\(357\) 10.3919 0.549996
\(358\) −12.2586 −0.647889
\(359\) 15.6775 0.827425 0.413712 0.910408i \(-0.364232\pi\)
0.413712 + 0.910408i \(0.364232\pi\)
\(360\) 5.65270 0.297923
\(361\) −17.9008 −0.942150
\(362\) −5.83852 −0.306866
\(363\) 9.14417 0.479944
\(364\) −35.5371 −1.86265
\(365\) −32.6737 −1.71022
\(366\) −2.66540 −0.139323
\(367\) 5.44563 0.284259 0.142130 0.989848i \(-0.454605\pi\)
0.142130 + 0.989848i \(0.454605\pi\)
\(368\) 0 0
\(369\) 1.41972 0.0739076
\(370\) −0.429858 −0.0223473
\(371\) 18.2798 0.949041
\(372\) 10.8741 0.563794
\(373\) −4.02738 −0.208530 −0.104265 0.994550i \(-0.533249\pi\)
−0.104265 + 0.994550i \(0.533249\pi\)
\(374\) 7.83753 0.405269
\(375\) −7.28837 −0.376370
\(376\) 9.92661 0.511926
\(377\) −13.8872 −0.715226
\(378\) −1.92658 −0.0990925
\(379\) −11.1490 −0.572684 −0.286342 0.958127i \(-0.592439\pi\)
−0.286342 + 0.958127i \(0.592439\pi\)
\(380\) −4.74921 −0.243629
\(381\) −10.9440 −0.560680
\(382\) −4.80791 −0.245994
\(383\) −15.0122 −0.767090 −0.383545 0.923522i \(-0.625297\pi\)
−0.383545 + 0.923522i \(0.625297\pi\)
\(384\) 11.5356 0.588675
\(385\) −41.0689 −2.09307
\(386\) −0.223103 −0.0113556
\(387\) 1.83959 0.0935114
\(388\) −19.3984 −0.984805
\(389\) −33.1611 −1.68134 −0.840668 0.541551i \(-0.817837\pi\)
−0.840668 + 0.541551i \(0.817837\pi\)
\(390\) −9.62726 −0.487495
\(391\) 0 0
\(392\) 9.33963 0.471723
\(393\) −3.53749 −0.178443
\(394\) 12.8402 0.646881
\(395\) 20.9909 1.05617
\(396\) 7.52343 0.378066
\(397\) −6.67063 −0.334789 −0.167395 0.985890i \(-0.553535\pi\)
−0.167395 + 0.985890i \(0.553535\pi\)
\(398\) −7.60409 −0.381159
\(399\) 3.54990 0.177718
\(400\) 4.97993 0.248997
\(401\) −6.22639 −0.310931 −0.155466 0.987841i \(-0.549688\pi\)
−0.155466 + 0.987841i \(0.549688\pi\)
\(402\) 0.114441 0.00570782
\(403\) −40.6166 −2.02326
\(404\) −15.8188 −0.787013
\(405\) 2.70241 0.134284
\(406\) 4.27315 0.212073
\(407\) −1.25473 −0.0621946
\(408\) 6.41964 0.317820
\(409\) −1.95994 −0.0969128 −0.0484564 0.998825i \(-0.515430\pi\)
−0.0484564 + 0.998825i \(0.515430\pi\)
\(410\) −2.18299 −0.107810
\(411\) 12.7925 0.631008
\(412\) −6.72638 −0.331385
\(413\) −36.8770 −1.81460
\(414\) 0 0
\(415\) −39.8906 −1.95815
\(416\) −33.8965 −1.66191
\(417\) 8.21741 0.402408
\(418\) 2.67733 0.130953
\(419\) 8.26445 0.403745 0.201872 0.979412i \(-0.435297\pi\)
0.201872 + 0.979412i \(0.435297\pi\)
\(420\) −15.3384 −0.748436
\(421\) −1.77108 −0.0863170 −0.0431585 0.999068i \(-0.513742\pi\)
−0.0431585 + 0.999068i \(0.513742\pi\)
\(422\) 0.318062 0.0154830
\(423\) 4.74565 0.230742
\(424\) 11.2925 0.548411
\(425\) 7.06807 0.342852
\(426\) 1.71710 0.0831936
\(427\) 15.8617 0.767604
\(428\) −6.15877 −0.297695
\(429\) −28.1014 −1.35675
\(430\) −2.82859 −0.136407
\(431\) 26.7569 1.28884 0.644418 0.764674i \(-0.277100\pi\)
0.644418 + 0.764674i \(0.277100\pi\)
\(432\) 2.16236 0.104037
\(433\) 24.5762 1.18106 0.590529 0.807017i \(-0.298919\pi\)
0.590529 + 0.807017i \(0.298919\pi\)
\(434\) 12.4979 0.599919
\(435\) −5.99393 −0.287387
\(436\) −22.4813 −1.07666
\(437\) 0 0
\(438\) 6.87933 0.328707
\(439\) 5.59553 0.267060 0.133530 0.991045i \(-0.457369\pi\)
0.133530 + 0.991045i \(0.457369\pi\)
\(440\) −25.3706 −1.20950
\(441\) 4.46503 0.212621
\(442\) −10.9335 −0.520052
\(443\) 12.5170 0.594701 0.297351 0.954768i \(-0.403897\pi\)
0.297351 + 0.954768i \(0.403897\pi\)
\(444\) −0.468615 −0.0222395
\(445\) −2.36102 −0.111923
\(446\) 16.8966 0.800075
\(447\) −18.6176 −0.880583
\(448\) −4.21343 −0.199066
\(449\) −8.14963 −0.384605 −0.192302 0.981336i \(-0.561595\pi\)
−0.192302 + 0.981336i \(0.561595\pi\)
\(450\) −1.31037 −0.0617715
\(451\) −6.37202 −0.300047
\(452\) −1.16481 −0.0547880
\(453\) −5.46938 −0.256974
\(454\) 14.0370 0.658788
\(455\) 57.2917 2.68587
\(456\) 2.19298 0.102696
\(457\) −18.1009 −0.846723 −0.423361 0.905961i \(-0.639150\pi\)
−0.423361 + 0.905961i \(0.639150\pi\)
\(458\) 16.2052 0.757218
\(459\) 3.06906 0.143252
\(460\) 0 0
\(461\) 13.1011 0.610180 0.305090 0.952324i \(-0.401313\pi\)
0.305090 + 0.952324i \(0.401313\pi\)
\(462\) 8.64692 0.402291
\(463\) −19.4661 −0.904668 −0.452334 0.891849i \(-0.649409\pi\)
−0.452334 + 0.891849i \(0.649409\pi\)
\(464\) −4.79611 −0.222654
\(465\) −17.5308 −0.812972
\(466\) 8.57060 0.397025
\(467\) −1.19583 −0.0553365 −0.0276682 0.999617i \(-0.508808\pi\)
−0.0276682 + 0.999617i \(0.508808\pi\)
\(468\) −10.4953 −0.485144
\(469\) −0.681039 −0.0314474
\(470\) −7.29702 −0.336587
\(471\) 16.4366 0.757357
\(472\) −22.7810 −1.04858
\(473\) −8.25648 −0.379633
\(474\) −4.41957 −0.202998
\(475\) 2.41448 0.110784
\(476\) −17.4195 −0.798419
\(477\) 5.39864 0.247187
\(478\) 15.3412 0.701688
\(479\) −17.4856 −0.798937 −0.399468 0.916747i \(-0.630805\pi\)
−0.399468 + 0.916747i \(0.630805\pi\)
\(480\) −14.6303 −0.667779
\(481\) 1.75036 0.0798097
\(482\) −12.0107 −0.547073
\(483\) 0 0
\(484\) −15.3280 −0.696727
\(485\) 31.2735 1.42005
\(486\) −0.568983 −0.0258096
\(487\) −22.5133 −1.02018 −0.510088 0.860122i \(-0.670387\pi\)
−0.510088 + 0.860122i \(0.670387\pi\)
\(488\) 9.79870 0.443566
\(489\) 10.0160 0.452938
\(490\) −6.86554 −0.310153
\(491\) 29.4342 1.32835 0.664174 0.747578i \(-0.268783\pi\)
0.664174 + 0.747578i \(0.268783\pi\)
\(492\) −2.37982 −0.107290
\(493\) −6.80718 −0.306580
\(494\) −3.73492 −0.168042
\(495\) −12.1290 −0.545159
\(496\) −14.0275 −0.629852
\(497\) −10.2184 −0.458358
\(498\) 8.39883 0.376360
\(499\) −12.9838 −0.581233 −0.290616 0.956840i \(-0.593860\pi\)
−0.290616 + 0.956840i \(0.593860\pi\)
\(500\) 12.2172 0.546370
\(501\) −7.39906 −0.330566
\(502\) 1.32405 0.0590953
\(503\) −0.735172 −0.0327797 −0.0163898 0.999866i \(-0.505217\pi\)
−0.0163898 + 0.999866i \(0.505217\pi\)
\(504\) 7.08260 0.315484
\(505\) 25.5025 1.13485
\(506\) 0 0
\(507\) 26.2018 1.16366
\(508\) 18.3450 0.813930
\(509\) 2.76431 0.122526 0.0612629 0.998122i \(-0.480487\pi\)
0.0612629 + 0.998122i \(0.480487\pi\)
\(510\) −4.71906 −0.208964
\(511\) −40.9388 −1.81102
\(512\) −20.7527 −0.917150
\(513\) 1.04840 0.0462882
\(514\) −15.1891 −0.669964
\(515\) 10.8440 0.477846
\(516\) −3.08362 −0.135749
\(517\) −21.2996 −0.936754
\(518\) −0.538595 −0.0236645
\(519\) 5.61509 0.246475
\(520\) 35.3923 1.55206
\(521\) −16.3874 −0.717944 −0.358972 0.933348i \(-0.616873\pi\)
−0.358972 + 0.933348i \(0.616873\pi\)
\(522\) 1.26200 0.0552363
\(523\) 24.8590 1.08701 0.543504 0.839406i \(-0.317097\pi\)
0.543504 + 0.839406i \(0.317097\pi\)
\(524\) 5.92975 0.259042
\(525\) 7.79799 0.340332
\(526\) −5.69144 −0.248159
\(527\) −19.9093 −0.867265
\(528\) −9.70517 −0.422363
\(529\) 0 0
\(530\) −8.30107 −0.360575
\(531\) −10.8910 −0.472629
\(532\) −5.95056 −0.257989
\(533\) 8.88905 0.385028
\(534\) 0.497104 0.0215118
\(535\) 9.92896 0.429267
\(536\) −0.420716 −0.0181722
\(537\) 21.5449 0.929729
\(538\) 9.98250 0.430376
\(539\) −20.0401 −0.863187
\(540\) −4.52993 −0.194937
\(541\) 38.3120 1.64716 0.823581 0.567199i \(-0.191973\pi\)
0.823581 + 0.567199i \(0.191973\pi\)
\(542\) −0.648334 −0.0278483
\(543\) 10.2613 0.440356
\(544\) −16.6153 −0.712375
\(545\) 36.2436 1.55251
\(546\) −12.0626 −0.516230
\(547\) −18.8583 −0.806324 −0.403162 0.915129i \(-0.632089\pi\)
−0.403162 + 0.915129i \(0.632089\pi\)
\(548\) −21.4436 −0.916024
\(549\) 4.68450 0.199930
\(550\) 5.88124 0.250777
\(551\) −2.32536 −0.0990637
\(552\) 0 0
\(553\) 26.3008 1.11842
\(554\) 12.1577 0.516529
\(555\) 0.755486 0.0320686
\(556\) −13.7745 −0.584169
\(557\) 22.7686 0.964736 0.482368 0.875969i \(-0.339777\pi\)
0.482368 + 0.875969i \(0.339777\pi\)
\(558\) 3.69105 0.156255
\(559\) 11.5179 0.487155
\(560\) 19.7864 0.836128
\(561\) −13.7746 −0.581566
\(562\) 7.04599 0.297217
\(563\) −18.2054 −0.767264 −0.383632 0.923486i \(-0.625327\pi\)
−0.383632 + 0.923486i \(0.625327\pi\)
\(564\) −7.95494 −0.334964
\(565\) 1.87787 0.0790024
\(566\) 4.04925 0.170203
\(567\) 3.38601 0.142199
\(568\) −6.31249 −0.264866
\(569\) −31.5087 −1.32091 −0.660456 0.750865i \(-0.729637\pi\)
−0.660456 + 0.750865i \(0.729637\pi\)
\(570\) −1.61205 −0.0675214
\(571\) 4.84071 0.202577 0.101289 0.994857i \(-0.467703\pi\)
0.101289 + 0.994857i \(0.467703\pi\)
\(572\) 47.1052 1.96957
\(573\) 8.45001 0.353004
\(574\) −2.73520 −0.114165
\(575\) 0 0
\(576\) −1.24436 −0.0518485
\(577\) 25.1384 1.04653 0.523263 0.852171i \(-0.324715\pi\)
0.523263 + 0.852171i \(0.324715\pi\)
\(578\) 4.31337 0.179413
\(579\) 0.392108 0.0162955
\(580\) 10.0474 0.417195
\(581\) −49.9813 −2.07357
\(582\) −6.58452 −0.272937
\(583\) −24.2303 −1.00352
\(584\) −25.2902 −1.04652
\(585\) 16.9201 0.699561
\(586\) 10.2328 0.422715
\(587\) 31.1328 1.28499 0.642495 0.766290i \(-0.277899\pi\)
0.642495 + 0.766290i \(0.277899\pi\)
\(588\) −7.48455 −0.308658
\(589\) −6.80111 −0.280235
\(590\) 16.7462 0.689432
\(591\) −22.5670 −0.928281
\(592\) 0.604510 0.0248452
\(593\) −25.8767 −1.06263 −0.531315 0.847174i \(-0.678302\pi\)
−0.531315 + 0.847174i \(0.678302\pi\)
\(594\) 2.55372 0.104780
\(595\) 28.0831 1.15129
\(596\) 31.2079 1.27833
\(597\) 13.3644 0.546967
\(598\) 0 0
\(599\) −43.7707 −1.78842 −0.894210 0.447647i \(-0.852262\pi\)
−0.894210 + 0.447647i \(0.852262\pi\)
\(600\) 4.81726 0.196664
\(601\) 13.0905 0.533972 0.266986 0.963700i \(-0.413972\pi\)
0.266986 + 0.963700i \(0.413972\pi\)
\(602\) −3.54411 −0.144447
\(603\) −0.201133 −0.00819079
\(604\) 9.16810 0.373045
\(605\) 24.7113 1.00466
\(606\) −5.36946 −0.218119
\(607\) 12.1643 0.493732 0.246866 0.969050i \(-0.420599\pi\)
0.246866 + 0.969050i \(0.420599\pi\)
\(608\) −5.67585 −0.230186
\(609\) −7.51015 −0.304327
\(610\) −7.20299 −0.291641
\(611\) 29.7132 1.20207
\(612\) −5.14454 −0.207956
\(613\) 42.6873 1.72412 0.862062 0.506802i \(-0.169173\pi\)
0.862062 + 0.506802i \(0.169173\pi\)
\(614\) −1.04172 −0.0420404
\(615\) 3.83666 0.154709
\(616\) −31.7883 −1.28079
\(617\) 0.397854 0.0160170 0.00800849 0.999968i \(-0.497451\pi\)
0.00800849 + 0.999968i \(0.497451\pi\)
\(618\) −2.28318 −0.0918428
\(619\) −30.0498 −1.20780 −0.603902 0.797058i \(-0.706388\pi\)
−0.603902 + 0.797058i \(0.706388\pi\)
\(620\) 29.3862 1.18018
\(621\) 0 0
\(622\) 5.27239 0.211403
\(623\) −2.95826 −0.118520
\(624\) 13.5388 0.541987
\(625\) −31.2112 −1.24845
\(626\) −7.91852 −0.316488
\(627\) −4.70548 −0.187919
\(628\) −27.5519 −1.09944
\(629\) 0.857988 0.0342102
\(630\) −5.20640 −0.207428
\(631\) −24.1375 −0.960900 −0.480450 0.877022i \(-0.659527\pi\)
−0.480450 + 0.877022i \(0.659527\pi\)
\(632\) 16.2475 0.646290
\(633\) −0.559001 −0.0222183
\(634\) 15.3926 0.611320
\(635\) −29.5753 −1.17366
\(636\) −9.04951 −0.358836
\(637\) 27.9562 1.10766
\(638\) −5.66415 −0.224246
\(639\) −3.01784 −0.119384
\(640\) 31.1740 1.23226
\(641\) 32.9635 1.30198 0.650990 0.759086i \(-0.274354\pi\)
0.650990 + 0.759086i \(0.274354\pi\)
\(642\) −2.09051 −0.0825058
\(643\) 7.50786 0.296081 0.148040 0.988981i \(-0.452703\pi\)
0.148040 + 0.988981i \(0.452703\pi\)
\(644\) 0 0
\(645\) 4.97131 0.195745
\(646\) −1.83077 −0.0720307
\(647\) 13.8074 0.542824 0.271412 0.962463i \(-0.412509\pi\)
0.271412 + 0.962463i \(0.412509\pi\)
\(648\) 2.09173 0.0821708
\(649\) 48.8813 1.91876
\(650\) −8.20441 −0.321803
\(651\) −21.9654 −0.860891
\(652\) −16.7894 −0.657522
\(653\) 23.8790 0.934458 0.467229 0.884136i \(-0.345252\pi\)
0.467229 + 0.884136i \(0.345252\pi\)
\(654\) −7.63097 −0.298394
\(655\) −9.55974 −0.373530
\(656\) 3.06995 0.119861
\(657\) −12.0906 −0.471698
\(658\) −9.14287 −0.356426
\(659\) 20.6448 0.804207 0.402104 0.915594i \(-0.368279\pi\)
0.402104 + 0.915594i \(0.368279\pi\)
\(660\) 20.3314 0.791397
\(661\) −45.8471 −1.78325 −0.891624 0.452777i \(-0.850433\pi\)
−0.891624 + 0.452777i \(0.850433\pi\)
\(662\) −9.34411 −0.363169
\(663\) 19.2158 0.746280
\(664\) −30.8763 −1.19823
\(665\) 9.59329 0.372012
\(666\) −0.159065 −0.00616364
\(667\) 0 0
\(668\) 12.4027 0.479877
\(669\) −29.6961 −1.14812
\(670\) 0.309267 0.0119480
\(671\) −21.0251 −0.811665
\(672\) −18.3312 −0.707140
\(673\) 34.7483 1.33945 0.669725 0.742609i \(-0.266412\pi\)
0.669725 + 0.742609i \(0.266412\pi\)
\(674\) 9.43068 0.363256
\(675\) 2.30301 0.0886428
\(676\) −43.9210 −1.68927
\(677\) 31.2288 1.20022 0.600109 0.799918i \(-0.295124\pi\)
0.600109 + 0.799918i \(0.295124\pi\)
\(678\) −0.395378 −0.0151844
\(679\) 39.1844 1.50376
\(680\) 17.3485 0.665284
\(681\) −24.6703 −0.945368
\(682\) −16.5663 −0.634355
\(683\) 25.0559 0.958738 0.479369 0.877613i \(-0.340866\pi\)
0.479369 + 0.877613i \(0.340866\pi\)
\(684\) −1.75740 −0.0671958
\(685\) 34.5706 1.32087
\(686\) 4.88381 0.186465
\(687\) −28.4810 −1.08662
\(688\) 3.97785 0.151654
\(689\) 33.8016 1.28774
\(690\) 0 0
\(691\) 47.0943 1.79155 0.895775 0.444507i \(-0.146621\pi\)
0.895775 + 0.444507i \(0.146621\pi\)
\(692\) −9.41235 −0.357804
\(693\) −15.1972 −0.577292
\(694\) 0.106246 0.00403304
\(695\) 22.2068 0.842351
\(696\) −4.63945 −0.175858
\(697\) 4.35721 0.165041
\(698\) −5.98325 −0.226469
\(699\) −15.0630 −0.569736
\(700\) −13.0715 −0.494055
\(701\) 25.5709 0.965799 0.482900 0.875676i \(-0.339584\pi\)
0.482900 + 0.875676i \(0.339584\pi\)
\(702\) −3.56248 −0.134457
\(703\) 0.293092 0.0110542
\(704\) 5.58499 0.210492
\(705\) 12.8247 0.483006
\(706\) 11.7583 0.442529
\(707\) 31.9536 1.20174
\(708\) 18.2561 0.686108
\(709\) −21.3040 −0.800089 −0.400045 0.916496i \(-0.631005\pi\)
−0.400045 + 0.916496i \(0.631005\pi\)
\(710\) 4.64029 0.174147
\(711\) 7.76749 0.291304
\(712\) −1.82748 −0.0684878
\(713\) 0 0
\(714\) −5.91279 −0.221281
\(715\) −75.9414 −2.84005
\(716\) −36.1147 −1.34967
\(717\) −26.9624 −1.00693
\(718\) −8.92020 −0.332899
\(719\) −16.8868 −0.629771 −0.314885 0.949130i \(-0.601966\pi\)
−0.314885 + 0.949130i \(0.601966\pi\)
\(720\) 5.84358 0.217777
\(721\) 13.5871 0.506012
\(722\) 10.1853 0.379057
\(723\) 21.1091 0.785056
\(724\) −17.2007 −0.639257
\(725\) −5.10807 −0.189709
\(726\) −5.20287 −0.193097
\(727\) −46.8022 −1.73580 −0.867898 0.496742i \(-0.834529\pi\)
−0.867898 + 0.496742i \(0.834529\pi\)
\(728\) 44.3451 1.64354
\(729\) 1.00000 0.0370370
\(730\) 18.5907 0.688074
\(731\) 5.64581 0.208818
\(732\) −7.85243 −0.290234
\(733\) −1.21960 −0.0450470 −0.0225235 0.999746i \(-0.507170\pi\)
−0.0225235 + 0.999746i \(0.507170\pi\)
\(734\) −3.09847 −0.114367
\(735\) 12.0663 0.445074
\(736\) 0 0
\(737\) 0.902732 0.0332526
\(738\) −0.807796 −0.0297354
\(739\) −29.0460 −1.06848 −0.534238 0.845334i \(-0.679401\pi\)
−0.534238 + 0.845334i \(0.679401\pi\)
\(740\) −1.26639 −0.0465534
\(741\) 6.56420 0.241142
\(742\) −10.4009 −0.381829
\(743\) −26.6891 −0.979128 −0.489564 0.871967i \(-0.662844\pi\)
−0.489564 + 0.871967i \(0.662844\pi\)
\(744\) −13.5693 −0.497473
\(745\) −50.3124 −1.84330
\(746\) 2.29151 0.0838982
\(747\) −14.7611 −0.540082
\(748\) 23.0899 0.844249
\(749\) 12.4406 0.454569
\(750\) 4.14696 0.151425
\(751\) 1.36537 0.0498232 0.0249116 0.999690i \(-0.492070\pi\)
0.0249116 + 0.999690i \(0.492070\pi\)
\(752\) 10.2618 0.374210
\(753\) −2.32705 −0.0848024
\(754\) 7.90156 0.287758
\(755\) −14.7805 −0.537917
\(756\) −5.67582 −0.206428
\(757\) 52.1755 1.89635 0.948176 0.317746i \(-0.102926\pi\)
0.948176 + 0.317746i \(0.102926\pi\)
\(758\) 6.34357 0.230409
\(759\) 0 0
\(760\) 5.92632 0.214970
\(761\) 21.7889 0.789847 0.394923 0.918714i \(-0.370771\pi\)
0.394923 + 0.918714i \(0.370771\pi\)
\(762\) 6.22697 0.225579
\(763\) 45.4118 1.64402
\(764\) −14.1644 −0.512450
\(765\) 8.29386 0.299865
\(766\) 8.54170 0.308624
\(767\) −68.1900 −2.46220
\(768\) −4.07484 −0.147038
\(769\) 37.6505 1.35771 0.678856 0.734271i \(-0.262476\pi\)
0.678856 + 0.734271i \(0.262476\pi\)
\(770\) 23.3675 0.842106
\(771\) 26.6953 0.961407
\(772\) −0.657275 −0.0236559
\(773\) 1.82449 0.0656225 0.0328112 0.999462i \(-0.489554\pi\)
0.0328112 + 0.999462i \(0.489554\pi\)
\(774\) −1.04669 −0.0376226
\(775\) −14.9399 −0.536655
\(776\) 24.2064 0.868959
\(777\) 0.946593 0.0339588
\(778\) 18.8681 0.676454
\(779\) 1.48844 0.0533289
\(780\) −28.3625 −1.01554
\(781\) 13.5447 0.484668
\(782\) 0 0
\(783\) −2.21800 −0.0792648
\(784\) 9.65501 0.344822
\(785\) 44.4183 1.58536
\(786\) 2.01277 0.0717931
\(787\) −28.8204 −1.02734 −0.513668 0.857989i \(-0.671714\pi\)
−0.513668 + 0.857989i \(0.671714\pi\)
\(788\) 37.8281 1.34757
\(789\) 10.0028 0.356110
\(790\) −11.9435 −0.424930
\(791\) 2.35289 0.0836591
\(792\) −9.38814 −0.333593
\(793\) 29.3303 1.04155
\(794\) 3.79547 0.134696
\(795\) 14.5893 0.517430
\(796\) −22.4021 −0.794023
\(797\) −0.897615 −0.0317952 −0.0158976 0.999874i \(-0.505061\pi\)
−0.0158976 + 0.999874i \(0.505061\pi\)
\(798\) −2.01983 −0.0715013
\(799\) 14.5647 0.515262
\(800\) −12.4680 −0.440811
\(801\) −0.873672 −0.0308697
\(802\) 3.54271 0.125097
\(803\) 54.2652 1.91498
\(804\) 0.337152 0.0118904
\(805\) 0 0
\(806\) 23.1102 0.814021
\(807\) −17.5445 −0.617595
\(808\) 19.7395 0.694434
\(809\) −37.6547 −1.32387 −0.661934 0.749562i \(-0.730264\pi\)
−0.661934 + 0.749562i \(0.730264\pi\)
\(810\) −1.53762 −0.0540266
\(811\) −20.4727 −0.718893 −0.359446 0.933166i \(-0.617034\pi\)
−0.359446 + 0.933166i \(0.617034\pi\)
\(812\) 12.5890 0.441786
\(813\) 1.13946 0.0399627
\(814\) 0.713919 0.0250229
\(815\) 27.0672 0.948124
\(816\) 6.63642 0.232321
\(817\) 1.92863 0.0674743
\(818\) 1.11517 0.0389911
\(819\) 21.2002 0.740796
\(820\) −6.43124 −0.224589
\(821\) −16.1822 −0.564761 −0.282381 0.959302i \(-0.591124\pi\)
−0.282381 + 0.959302i \(0.591124\pi\)
\(822\) −7.27872 −0.253875
\(823\) −17.8806 −0.623279 −0.311640 0.950200i \(-0.600878\pi\)
−0.311640 + 0.950200i \(0.600878\pi\)
\(824\) 8.39355 0.292403
\(825\) −10.3364 −0.359868
\(826\) 20.9824 0.730070
\(827\) −8.08676 −0.281204 −0.140602 0.990066i \(-0.544904\pi\)
−0.140602 + 0.990066i \(0.544904\pi\)
\(828\) 0 0
\(829\) −37.2365 −1.29328 −0.646639 0.762796i \(-0.723826\pi\)
−0.646639 + 0.762796i \(0.723826\pi\)
\(830\) 22.6971 0.787826
\(831\) −21.3674 −0.741225
\(832\) −7.79113 −0.270109
\(833\) 13.7035 0.474797
\(834\) −4.67556 −0.161901
\(835\) −19.9953 −0.691965
\(836\) 7.88760 0.272798
\(837\) −6.48711 −0.224227
\(838\) −4.70233 −0.162439
\(839\) −34.7553 −1.19989 −0.599943 0.800043i \(-0.704810\pi\)
−0.599943 + 0.800043i \(0.704810\pi\)
\(840\) 19.1401 0.660395
\(841\) −24.0805 −0.830362
\(842\) 1.00771 0.0347281
\(843\) −12.3835 −0.426510
\(844\) 0.937030 0.0322539
\(845\) 70.8079 2.43587
\(846\) −2.70019 −0.0928346
\(847\) 30.9622 1.06387
\(848\) 11.6738 0.400880
\(849\) −7.11666 −0.244243
\(850\) −4.02161 −0.137940
\(851\) 0 0
\(852\) 5.05867 0.173307
\(853\) −28.2381 −0.966855 −0.483428 0.875384i \(-0.660608\pi\)
−0.483428 + 0.875384i \(0.660608\pi\)
\(854\) −9.02505 −0.308831
\(855\) 2.83322 0.0968940
\(856\) 7.68525 0.262677
\(857\) −7.43551 −0.253992 −0.126996 0.991903i \(-0.540534\pi\)
−0.126996 + 0.991903i \(0.540534\pi\)
\(858\) 15.9892 0.545862
\(859\) 40.8947 1.39531 0.697654 0.716435i \(-0.254227\pi\)
0.697654 + 0.716435i \(0.254227\pi\)
\(860\) −8.33320 −0.284160
\(861\) 4.80718 0.163828
\(862\) −15.2242 −0.518539
\(863\) −21.2318 −0.722738 −0.361369 0.932423i \(-0.617691\pi\)
−0.361369 + 0.932423i \(0.617691\pi\)
\(864\) −5.41380 −0.184181
\(865\) 15.1743 0.515941
\(866\) −13.9834 −0.475176
\(867\) −7.58085 −0.257459
\(868\) 36.8197 1.24974
\(869\) −34.8623 −1.18262
\(870\) 3.41044 0.115625
\(871\) −1.25932 −0.0426705
\(872\) 28.0534 0.950008
\(873\) 11.5724 0.391668
\(874\) 0 0
\(875\) −24.6785 −0.834285
\(876\) 20.2669 0.684756
\(877\) 18.7101 0.631795 0.315897 0.948793i \(-0.397694\pi\)
0.315897 + 0.948793i \(0.397694\pi\)
\(878\) −3.18376 −0.107447
\(879\) −17.9845 −0.606601
\(880\) −26.2273 −0.884123
\(881\) 35.8925 1.20925 0.604624 0.796511i \(-0.293323\pi\)
0.604624 + 0.796511i \(0.293323\pi\)
\(882\) −2.54053 −0.0855439
\(883\) 6.34991 0.213691 0.106846 0.994276i \(-0.465925\pi\)
0.106846 + 0.994276i \(0.465925\pi\)
\(884\) −32.2107 −1.08336
\(885\) −29.4319 −0.989343
\(886\) −7.12196 −0.239267
\(887\) 15.9876 0.536810 0.268405 0.963306i \(-0.413503\pi\)
0.268405 + 0.963306i \(0.413503\pi\)
\(888\) 0.584764 0.0196234
\(889\) −37.0566 −1.24284
\(890\) 1.34338 0.0450301
\(891\) −4.48823 −0.150361
\(892\) 49.7783 1.66670
\(893\) 4.97537 0.166494
\(894\) 10.5931 0.354286
\(895\) 58.2230 1.94618
\(896\) 39.0597 1.30489
\(897\) 0 0
\(898\) 4.63700 0.154739
\(899\) 14.3884 0.479880
\(900\) −3.86044 −0.128681
\(901\) 16.5688 0.551985
\(902\) 3.62557 0.120718
\(903\) 6.22885 0.207283
\(904\) 1.45351 0.0483431
\(905\) 27.7303 0.921787
\(906\) 3.11198 0.103389
\(907\) −23.4646 −0.779128 −0.389564 0.920999i \(-0.627374\pi\)
−0.389564 + 0.920999i \(0.627374\pi\)
\(908\) 41.3538 1.37238
\(909\) 9.43695 0.313004
\(910\) −32.5980 −1.08061
\(911\) 27.8151 0.921557 0.460778 0.887515i \(-0.347570\pi\)
0.460778 + 0.887515i \(0.347570\pi\)
\(912\) 2.26703 0.0750689
\(913\) 66.2513 2.19260
\(914\) 10.2991 0.340663
\(915\) 12.6594 0.418508
\(916\) 47.7415 1.57742
\(917\) −11.9780 −0.395547
\(918\) −1.74624 −0.0576346
\(919\) 38.7863 1.27944 0.639720 0.768608i \(-0.279050\pi\)
0.639720 + 0.768608i \(0.279050\pi\)
\(920\) 0 0
\(921\) 1.83085 0.0603285
\(922\) −7.45431 −0.245495
\(923\) −18.8951 −0.621939
\(924\) 25.4744 0.838045
\(925\) 0.643829 0.0211690
\(926\) 11.0759 0.363977
\(927\) 4.01274 0.131796
\(928\) 12.0078 0.394175
\(929\) −32.3914 −1.06273 −0.531364 0.847144i \(-0.678320\pi\)
−0.531364 + 0.847144i \(0.678320\pi\)
\(930\) 9.97472 0.327084
\(931\) 4.68116 0.153419
\(932\) 25.2495 0.827076
\(933\) −9.26634 −0.303366
\(934\) 0.680407 0.0222636
\(935\) −37.2247 −1.21738
\(936\) 13.0966 0.428075
\(937\) −1.43049 −0.0467320 −0.0233660 0.999727i \(-0.507438\pi\)
−0.0233660 + 0.999727i \(0.507438\pi\)
\(938\) 0.387499 0.0126523
\(939\) 13.9170 0.454164
\(940\) −21.4975 −0.701171
\(941\) −0.634645 −0.0206889 −0.0103444 0.999946i \(-0.503293\pi\)
−0.0103444 + 0.999946i \(0.503293\pi\)
\(942\) −9.35211 −0.304708
\(943\) 0 0
\(944\) −23.5503 −0.766496
\(945\) 9.15037 0.297661
\(946\) 4.69779 0.152738
\(947\) −33.2751 −1.08130 −0.540648 0.841249i \(-0.681821\pi\)
−0.540648 + 0.841249i \(0.681821\pi\)
\(948\) −13.0203 −0.422881
\(949\) −75.7007 −2.45735
\(950\) −1.37380 −0.0445719
\(951\) −27.0529 −0.877251
\(952\) 21.7369 0.704498
\(953\) −39.9874 −1.29532 −0.647660 0.761930i \(-0.724252\pi\)
−0.647660 + 0.761930i \(0.724252\pi\)
\(954\) −3.07173 −0.0994509
\(955\) 22.8354 0.738935
\(956\) 45.1960 1.46174
\(957\) 9.95488 0.321795
\(958\) 9.94899 0.321437
\(959\) 43.3155 1.39873
\(960\) −3.36278 −0.108533
\(961\) 11.0826 0.357502
\(962\) −0.995927 −0.0321100
\(963\) 3.67412 0.118397
\(964\) −35.3843 −1.13965
\(965\) 1.05964 0.0341109
\(966\) 0 0
\(967\) 50.8204 1.63427 0.817136 0.576444i \(-0.195560\pi\)
0.817136 + 0.576444i \(0.195560\pi\)
\(968\) 19.1271 0.614769
\(969\) 3.21762 0.103365
\(970\) −17.7941 −0.571333
\(971\) 42.9158 1.37723 0.688617 0.725125i \(-0.258218\pi\)
0.688617 + 0.725125i \(0.258218\pi\)
\(972\) −1.67626 −0.0537660
\(973\) 27.8242 0.892003
\(974\) 12.8097 0.410449
\(975\) 14.4194 0.461791
\(976\) 10.1296 0.324240
\(977\) 10.5644 0.337985 0.168992 0.985617i \(-0.445949\pi\)
0.168992 + 0.985617i \(0.445949\pi\)
\(978\) −5.69891 −0.182231
\(979\) 3.92124 0.125323
\(980\) −20.2263 −0.646106
\(981\) 13.4116 0.428199
\(982\) −16.7476 −0.534436
\(983\) 47.3537 1.51035 0.755175 0.655524i \(-0.227552\pi\)
0.755175 + 0.655524i \(0.227552\pi\)
\(984\) 2.96967 0.0946695
\(985\) −60.9852 −1.94315
\(986\) 3.87316 0.123347
\(987\) 16.0688 0.511476
\(988\) −11.0033 −0.350062
\(989\) 0 0
\(990\) 6.90120 0.219334
\(991\) 24.1058 0.765745 0.382872 0.923801i \(-0.374935\pi\)
0.382872 + 0.923801i \(0.374935\pi\)
\(992\) 35.1199 1.11506
\(993\) 16.4225 0.521152
\(994\) 5.81410 0.184412
\(995\) 36.1160 1.14495
\(996\) 24.7435 0.784027
\(997\) 28.2519 0.894747 0.447374 0.894347i \(-0.352359\pi\)
0.447374 + 0.894347i \(0.352359\pi\)
\(998\) 7.38753 0.233848
\(999\) 0.279560 0.00884490
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1587.2.a.u.1.6 10
3.2 odd 2 4761.2.a.bt.1.5 10
23.2 even 11 69.2.e.c.4.2 20
23.12 even 11 69.2.e.c.52.2 yes 20
23.22 odd 2 1587.2.a.t.1.6 10
69.2 odd 22 207.2.i.d.73.1 20
69.35 odd 22 207.2.i.d.190.1 20
69.68 even 2 4761.2.a.bu.1.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.2.e.c.4.2 20 23.2 even 11
69.2.e.c.52.2 yes 20 23.12 even 11
207.2.i.d.73.1 20 69.2 odd 22
207.2.i.d.190.1 20 69.35 odd 22
1587.2.a.t.1.6 10 23.22 odd 2
1587.2.a.u.1.6 10 1.1 even 1 trivial
4761.2.a.bt.1.5 10 3.2 odd 2
4761.2.a.bu.1.5 10 69.68 even 2