Properties

Label 2-1587-1.1-c1-0-33
Degree $2$
Conductor $1587$
Sign $1$
Analytic cond. $12.6722$
Root an. cond. $3.55981$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.568·2-s + 3-s − 1.67·4-s + 2.70·5-s − 0.568·6-s + 3.38·7-s + 2.09·8-s + 9-s − 1.53·10-s − 4.48·11-s − 1.67·12-s + 6.26·13-s − 1.92·14-s + 2.70·15-s + 2.16·16-s + 3.06·17-s − 0.568·18-s + 1.04·19-s − 4.52·20-s + 3.38·21-s + 2.55·22-s + 2.09·24-s + 2.30·25-s − 3.56·26-s + 27-s − 5.67·28-s − 2.21·29-s + ⋯
L(s)  = 1  − 0.402·2-s + 0.577·3-s − 0.838·4-s + 1.20·5-s − 0.232·6-s + 1.27·7-s + 0.739·8-s + 0.333·9-s − 0.486·10-s − 1.35·11-s − 0.483·12-s + 1.73·13-s − 0.514·14-s + 0.697·15-s + 0.540·16-s + 0.744·17-s − 0.134·18-s + 0.240·19-s − 1.01·20-s + 0.738·21-s + 0.544·22-s + 0.426·24-s + 0.460·25-s − 0.698·26-s + 0.192·27-s − 1.07·28-s − 0.411·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1587 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1587 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1587\)    =    \(3 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(12.6722\)
Root analytic conductor: \(3.55981\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1587,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.121467395\)
\(L(\frac12)\) \(\approx\) \(2.121467395\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
23 \( 1 \)
good2 \( 1 + 0.568T + 2T^{2} \)
5 \( 1 - 2.70T + 5T^{2} \)
7 \( 1 - 3.38T + 7T^{2} \)
11 \( 1 + 4.48T + 11T^{2} \)
13 \( 1 - 6.26T + 13T^{2} \)
17 \( 1 - 3.06T + 17T^{2} \)
19 \( 1 - 1.04T + 19T^{2} \)
29 \( 1 + 2.21T + 29T^{2} \)
31 \( 1 + 6.48T + 31T^{2} \)
37 \( 1 - 0.279T + 37T^{2} \)
41 \( 1 - 1.41T + 41T^{2} \)
43 \( 1 - 1.83T + 43T^{2} \)
47 \( 1 - 4.74T + 47T^{2} \)
53 \( 1 - 5.39T + 53T^{2} \)
59 \( 1 + 10.8T + 59T^{2} \)
61 \( 1 - 4.68T + 61T^{2} \)
67 \( 1 + 0.201T + 67T^{2} \)
71 \( 1 + 3.01T + 71T^{2} \)
73 \( 1 + 12.0T + 73T^{2} \)
79 \( 1 - 7.76T + 79T^{2} \)
83 \( 1 + 14.7T + 83T^{2} \)
89 \( 1 + 0.873T + 89T^{2} \)
97 \( 1 - 11.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.220805954706281404168150657705, −8.715121760365091257588913731665, −7.982229516388109774005724646349, −7.43965414043476729429173837731, −5.83002755378234211194352603315, −5.43127861152902909447163974896, −4.45806149524238148064360631784, −3.37679908700225275194005247321, −2.03047225702332060674570037545, −1.21246201841743233179418113235, 1.21246201841743233179418113235, 2.03047225702332060674570037545, 3.37679908700225275194005247321, 4.45806149524238148064360631784, 5.43127861152902909447163974896, 5.83002755378234211194352603315, 7.43965414043476729429173837731, 7.982229516388109774005724646349, 8.715121760365091257588913731665, 9.220805954706281404168150657705

Graph of the $Z$-function along the critical line