Properties

Label 1587.2.a.t.1.6
Level $1587$
Weight $2$
Character 1587.1
Self dual yes
Analytic conductor $12.672$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1587,2,Mod(1,1587)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1587.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1587, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1587 = 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1587.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-2,10,8,-8,-2,-19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.6722588008\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: 10.10.5791333887977.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 12x^{8} + 22x^{7} + 49x^{6} - 84x^{5} - 73x^{4} + 132x^{3} + 17x^{2} - 74x + 23 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.568983\) of defining polynomial
Character \(\chi\) \(=\) 1587.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.568983 q^{2} +1.00000 q^{3} -1.67626 q^{4} -2.70241 q^{5} -0.568983 q^{6} -3.38601 q^{7} +2.09173 q^{8} +1.00000 q^{9} +1.53762 q^{10} +4.48823 q^{11} -1.67626 q^{12} +6.26113 q^{13} +1.92658 q^{14} -2.70241 q^{15} +2.16236 q^{16} -3.06906 q^{17} -0.568983 q^{18} -1.04840 q^{19} +4.52993 q^{20} -3.38601 q^{21} -2.55372 q^{22} +2.09173 q^{24} +2.30301 q^{25} -3.56248 q^{26} +1.00000 q^{27} +5.67582 q^{28} -2.21800 q^{29} +1.53762 q^{30} -6.48711 q^{31} -5.41380 q^{32} +4.48823 q^{33} +1.74624 q^{34} +9.15037 q^{35} -1.67626 q^{36} -0.279560 q^{37} +0.596524 q^{38} +6.26113 q^{39} -5.65270 q^{40} +1.41972 q^{41} +1.92658 q^{42} -1.83959 q^{43} -7.52343 q^{44} -2.70241 q^{45} +4.74565 q^{47} +2.16236 q^{48} +4.46503 q^{49} -1.31037 q^{50} -3.06906 q^{51} -10.4953 q^{52} -5.39864 q^{53} -0.568983 q^{54} -12.1290 q^{55} -7.08260 q^{56} -1.04840 q^{57} +1.26200 q^{58} -10.8910 q^{59} +4.52993 q^{60} -4.68450 q^{61} +3.69105 q^{62} -3.38601 q^{63} -1.24436 q^{64} -16.9201 q^{65} -2.55372 q^{66} +0.201133 q^{67} +5.14454 q^{68} -5.20640 q^{70} -3.01784 q^{71} +2.09173 q^{72} -12.0906 q^{73} +0.159065 q^{74} +2.30301 q^{75} +1.75740 q^{76} -15.1972 q^{77} -3.56248 q^{78} -7.76749 q^{79} -5.84358 q^{80} +1.00000 q^{81} -0.807796 q^{82} +14.7611 q^{83} +5.67582 q^{84} +8.29386 q^{85} +1.04669 q^{86} -2.21800 q^{87} +9.38814 q^{88} +0.873672 q^{89} +1.53762 q^{90} -21.2002 q^{91} -6.48711 q^{93} -2.70019 q^{94} +2.83322 q^{95} -5.41380 q^{96} -11.5724 q^{97} -2.54053 q^{98} +4.48823 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{2} + 10 q^{3} + 8 q^{4} - 8 q^{5} - 2 q^{6} - 19 q^{7} - 6 q^{8} + 10 q^{9} - 13 q^{10} - 3 q^{11} + 8 q^{12} - 4 q^{13} - 8 q^{15} - 4 q^{16} - 11 q^{17} - 2 q^{18} - 22 q^{19} - q^{20} - 19 q^{21}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.568983 −0.402331 −0.201166 0.979557i \(-0.564473\pi\)
−0.201166 + 0.979557i \(0.564473\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.67626 −0.838129
\(5\) −2.70241 −1.20855 −0.604277 0.796775i \(-0.706538\pi\)
−0.604277 + 0.796775i \(0.706538\pi\)
\(6\) −0.568983 −0.232286
\(7\) −3.38601 −1.27979 −0.639895 0.768462i \(-0.721022\pi\)
−0.639895 + 0.768462i \(0.721022\pi\)
\(8\) 2.09173 0.739537
\(9\) 1.00000 0.333333
\(10\) 1.53762 0.486239
\(11\) 4.48823 1.35325 0.676625 0.736327i \(-0.263442\pi\)
0.676625 + 0.736327i \(0.263442\pi\)
\(12\) −1.67626 −0.483894
\(13\) 6.26113 1.73653 0.868263 0.496104i \(-0.165237\pi\)
0.868263 + 0.496104i \(0.165237\pi\)
\(14\) 1.92658 0.514900
\(15\) −2.70241 −0.697759
\(16\) 2.16236 0.540590
\(17\) −3.06906 −0.744357 −0.372179 0.928161i \(-0.621389\pi\)
−0.372179 + 0.928161i \(0.621389\pi\)
\(18\) −0.568983 −0.134110
\(19\) −1.04840 −0.240521 −0.120260 0.992742i \(-0.538373\pi\)
−0.120260 + 0.992742i \(0.538373\pi\)
\(20\) 4.52993 1.01292
\(21\) −3.38601 −0.738887
\(22\) −2.55372 −0.544455
\(23\) 0 0
\(24\) 2.09173 0.426972
\(25\) 2.30301 0.460601
\(26\) −3.56248 −0.698659
\(27\) 1.00000 0.192450
\(28\) 5.67582 1.07263
\(29\) −2.21800 −0.411872 −0.205936 0.978565i \(-0.566024\pi\)
−0.205936 + 0.978565i \(0.566024\pi\)
\(30\) 1.53762 0.280730
\(31\) −6.48711 −1.16512 −0.582559 0.812788i \(-0.697949\pi\)
−0.582559 + 0.812788i \(0.697949\pi\)
\(32\) −5.41380 −0.957034
\(33\) 4.48823 0.781300
\(34\) 1.74624 0.299478
\(35\) 9.15037 1.54669
\(36\) −1.67626 −0.279376
\(37\) −0.279560 −0.0459594 −0.0229797 0.999736i \(-0.507315\pi\)
−0.0229797 + 0.999736i \(0.507315\pi\)
\(38\) 0.596524 0.0967690
\(39\) 6.26113 1.00258
\(40\) −5.65270 −0.893770
\(41\) 1.41972 0.221723 0.110861 0.993836i \(-0.464639\pi\)
0.110861 + 0.993836i \(0.464639\pi\)
\(42\) 1.92658 0.297277
\(43\) −1.83959 −0.280534 −0.140267 0.990114i \(-0.544796\pi\)
−0.140267 + 0.990114i \(0.544796\pi\)
\(44\) −7.52343 −1.13420
\(45\) −2.70241 −0.402851
\(46\) 0 0
\(47\) 4.74565 0.692225 0.346112 0.938193i \(-0.387502\pi\)
0.346112 + 0.938193i \(0.387502\pi\)
\(48\) 2.16236 0.312110
\(49\) 4.46503 0.637862
\(50\) −1.31037 −0.185314
\(51\) −3.06906 −0.429755
\(52\) −10.4953 −1.45543
\(53\) −5.39864 −0.741560 −0.370780 0.928721i \(-0.620910\pi\)
−0.370780 + 0.928721i \(0.620910\pi\)
\(54\) −0.568983 −0.0774287
\(55\) −12.1290 −1.63548
\(56\) −7.08260 −0.946452
\(57\) −1.04840 −0.138865
\(58\) 1.26200 0.165709
\(59\) −10.8910 −1.41789 −0.708944 0.705265i \(-0.750828\pi\)
−0.708944 + 0.705265i \(0.750828\pi\)
\(60\) 4.52993 0.584812
\(61\) −4.68450 −0.599789 −0.299894 0.953972i \(-0.596951\pi\)
−0.299894 + 0.953972i \(0.596951\pi\)
\(62\) 3.69105 0.468764
\(63\) −3.38601 −0.426597
\(64\) −1.24436 −0.155546
\(65\) −16.9201 −2.09868
\(66\) −2.55372 −0.314341
\(67\) 0.201133 0.0245724 0.0122862 0.999925i \(-0.496089\pi\)
0.0122862 + 0.999925i \(0.496089\pi\)
\(68\) 5.14454 0.623868
\(69\) 0 0
\(70\) −5.20640 −0.622284
\(71\) −3.01784 −0.358151 −0.179076 0.983835i \(-0.557311\pi\)
−0.179076 + 0.983835i \(0.557311\pi\)
\(72\) 2.09173 0.246512
\(73\) −12.0906 −1.41510 −0.707548 0.706666i \(-0.750198\pi\)
−0.707548 + 0.706666i \(0.750198\pi\)
\(74\) 0.159065 0.0184909
\(75\) 2.30301 0.265928
\(76\) 1.75740 0.201587
\(77\) −15.1972 −1.73188
\(78\) −3.56248 −0.403371
\(79\) −7.76749 −0.873911 −0.436956 0.899483i \(-0.643943\pi\)
−0.436956 + 0.899483i \(0.643943\pi\)
\(80\) −5.84358 −0.653332
\(81\) 1.00000 0.111111
\(82\) −0.807796 −0.0892061
\(83\) 14.7611 1.62024 0.810122 0.586261i \(-0.199401\pi\)
0.810122 + 0.586261i \(0.199401\pi\)
\(84\) 5.67582 0.619283
\(85\) 8.29386 0.899595
\(86\) 1.04669 0.112868
\(87\) −2.21800 −0.237794
\(88\) 9.38814 1.00078
\(89\) 0.873672 0.0926090 0.0463045 0.998927i \(-0.485256\pi\)
0.0463045 + 0.998927i \(0.485256\pi\)
\(90\) 1.53762 0.162080
\(91\) −21.2002 −2.22239
\(92\) 0 0
\(93\) −6.48711 −0.672682
\(94\) −2.70019 −0.278504
\(95\) 2.83322 0.290682
\(96\) −5.41380 −0.552544
\(97\) −11.5724 −1.17500 −0.587502 0.809223i \(-0.699888\pi\)
−0.587502 + 0.809223i \(0.699888\pi\)
\(98\) −2.54053 −0.256632
\(99\) 4.48823 0.451084
\(100\) −3.86044 −0.386044
\(101\) 9.43695 0.939011 0.469506 0.882929i \(-0.344432\pi\)
0.469506 + 0.882929i \(0.344432\pi\)
\(102\) 1.74624 0.172904
\(103\) −4.01274 −0.395387 −0.197693 0.980264i \(-0.563345\pi\)
−0.197693 + 0.980264i \(0.563345\pi\)
\(104\) 13.0966 1.28423
\(105\) 9.15037 0.892984
\(106\) 3.07173 0.298353
\(107\) −3.67412 −0.355190 −0.177595 0.984104i \(-0.556832\pi\)
−0.177595 + 0.984104i \(0.556832\pi\)
\(108\) −1.67626 −0.161298
\(109\) −13.4116 −1.28460 −0.642299 0.766454i \(-0.722019\pi\)
−0.642299 + 0.766454i \(0.722019\pi\)
\(110\) 6.90120 0.658003
\(111\) −0.279560 −0.0265347
\(112\) −7.32177 −0.691842
\(113\) −0.694886 −0.0653694 −0.0326847 0.999466i \(-0.510406\pi\)
−0.0326847 + 0.999466i \(0.510406\pi\)
\(114\) 0.596524 0.0558696
\(115\) 0 0
\(116\) 3.71794 0.345202
\(117\) 6.26113 0.578842
\(118\) 6.19679 0.570461
\(119\) 10.3919 0.952621
\(120\) −5.65270 −0.516019
\(121\) 9.14417 0.831288
\(122\) 2.66540 0.241314
\(123\) 1.41972 0.128012
\(124\) 10.8741 0.976520
\(125\) 7.28837 0.651892
\(126\) 1.92658 0.171633
\(127\) −10.9440 −0.971127 −0.485563 0.874202i \(-0.661385\pi\)
−0.485563 + 0.874202i \(0.661385\pi\)
\(128\) 11.5356 1.01961
\(129\) −1.83959 −0.161967
\(130\) 9.62726 0.844367
\(131\) −3.53749 −0.309072 −0.154536 0.987987i \(-0.549388\pi\)
−0.154536 + 0.987987i \(0.549388\pi\)
\(132\) −7.52343 −0.654830
\(133\) 3.54990 0.307816
\(134\) −0.114441 −0.00988623
\(135\) −2.70241 −0.232586
\(136\) −6.41964 −0.550480
\(137\) −12.7925 −1.09294 −0.546469 0.837479i \(-0.684028\pi\)
−0.546469 + 0.837479i \(0.684028\pi\)
\(138\) 0 0
\(139\) 8.21741 0.696992 0.348496 0.937310i \(-0.386693\pi\)
0.348496 + 0.937310i \(0.386693\pi\)
\(140\) −15.3384 −1.29633
\(141\) 4.74565 0.399656
\(142\) 1.71710 0.144095
\(143\) 28.1014 2.34996
\(144\) 2.16236 0.180197
\(145\) 5.99393 0.497769
\(146\) 6.87933 0.569337
\(147\) 4.46503 0.368270
\(148\) 0.468615 0.0385199
\(149\) 18.6176 1.52521 0.762607 0.646862i \(-0.223919\pi\)
0.762607 + 0.646862i \(0.223919\pi\)
\(150\) −1.31037 −0.106991
\(151\) −5.46938 −0.445092 −0.222546 0.974922i \(-0.571437\pi\)
−0.222546 + 0.974922i \(0.571437\pi\)
\(152\) −2.19298 −0.177874
\(153\) −3.06906 −0.248119
\(154\) 8.64692 0.696788
\(155\) 17.5308 1.40811
\(156\) −10.4953 −0.840295
\(157\) −16.4366 −1.31178 −0.655890 0.754856i \(-0.727706\pi\)
−0.655890 + 0.754856i \(0.727706\pi\)
\(158\) 4.41957 0.351602
\(159\) −5.39864 −0.428140
\(160\) 14.6303 1.15663
\(161\) 0 0
\(162\) −0.568983 −0.0447035
\(163\) 10.0160 0.784511 0.392256 0.919856i \(-0.371695\pi\)
0.392256 + 0.919856i \(0.371695\pi\)
\(164\) −2.37982 −0.185833
\(165\) −12.1290 −0.944243
\(166\) −8.39883 −0.651875
\(167\) −7.39906 −0.572557 −0.286278 0.958147i \(-0.592418\pi\)
−0.286278 + 0.958147i \(0.592418\pi\)
\(168\) −7.08260 −0.546434
\(169\) 26.2018 2.01552
\(170\) −4.71906 −0.361936
\(171\) −1.04840 −0.0801735
\(172\) 3.08362 0.235124
\(173\) 5.61509 0.426908 0.213454 0.976953i \(-0.431529\pi\)
0.213454 + 0.976953i \(0.431529\pi\)
\(174\) 1.26200 0.0956721
\(175\) −7.79799 −0.589473
\(176\) 9.70517 0.731554
\(177\) −10.8910 −0.818618
\(178\) −0.497104 −0.0372595
\(179\) 21.5449 1.61034 0.805169 0.593046i \(-0.202075\pi\)
0.805169 + 0.593046i \(0.202075\pi\)
\(180\) 4.52993 0.337641
\(181\) −10.2613 −0.762719 −0.381360 0.924427i \(-0.624544\pi\)
−0.381360 + 0.924427i \(0.624544\pi\)
\(182\) 12.0626 0.894137
\(183\) −4.68450 −0.346288
\(184\) 0 0
\(185\) 0.755486 0.0555444
\(186\) 3.69105 0.270641
\(187\) −13.7746 −1.00730
\(188\) −7.95494 −0.580174
\(189\) −3.38601 −0.246296
\(190\) −1.61205 −0.116950
\(191\) −8.45001 −0.611421 −0.305710 0.952125i \(-0.598894\pi\)
−0.305710 + 0.952125i \(0.598894\pi\)
\(192\) −1.24436 −0.0898043
\(193\) 0.392108 0.0282246 0.0141123 0.999900i \(-0.495508\pi\)
0.0141123 + 0.999900i \(0.495508\pi\)
\(194\) 6.58452 0.472741
\(195\) −16.9201 −1.21168
\(196\) −7.48455 −0.534611
\(197\) −22.5670 −1.60783 −0.803915 0.594744i \(-0.797253\pi\)
−0.803915 + 0.594744i \(0.797253\pi\)
\(198\) −2.55372 −0.181485
\(199\) −13.3644 −0.947375 −0.473687 0.880693i \(-0.657077\pi\)
−0.473687 + 0.880693i \(0.657077\pi\)
\(200\) 4.81726 0.340632
\(201\) 0.201133 0.0141869
\(202\) −5.36946 −0.377794
\(203\) 7.51015 0.527109
\(204\) 5.14454 0.360190
\(205\) −3.83666 −0.267964
\(206\) 2.28318 0.159076
\(207\) 0 0
\(208\) 13.5388 0.938749
\(209\) −4.70548 −0.325485
\(210\) −5.20640 −0.359276
\(211\) −0.559001 −0.0384832 −0.0192416 0.999815i \(-0.506125\pi\)
−0.0192416 + 0.999815i \(0.506125\pi\)
\(212\) 9.04951 0.621523
\(213\) −3.01784 −0.206779
\(214\) 2.09051 0.142904
\(215\) 4.97131 0.339041
\(216\) 2.09173 0.142324
\(217\) 21.9654 1.49111
\(218\) 7.63097 0.516834
\(219\) −12.0906 −0.817006
\(220\) 20.3314 1.37074
\(221\) −19.2158 −1.29260
\(222\) 0.159065 0.0106757
\(223\) −29.6961 −1.98860 −0.994299 0.106631i \(-0.965994\pi\)
−0.994299 + 0.106631i \(0.965994\pi\)
\(224\) 18.3312 1.22480
\(225\) 2.30301 0.153534
\(226\) 0.395378 0.0263002
\(227\) 24.6703 1.63743 0.818713 0.574203i \(-0.194688\pi\)
0.818713 + 0.574203i \(0.194688\pi\)
\(228\) 1.75740 0.116387
\(229\) 28.4810 1.88207 0.941037 0.338302i \(-0.109853\pi\)
0.941037 + 0.338302i \(0.109853\pi\)
\(230\) 0 0
\(231\) −15.1972 −0.999899
\(232\) −4.63945 −0.304595
\(233\) −15.0630 −0.986812 −0.493406 0.869799i \(-0.664248\pi\)
−0.493406 + 0.869799i \(0.664248\pi\)
\(234\) −3.56248 −0.232886
\(235\) −12.8247 −0.836591
\(236\) 18.2561 1.18837
\(237\) −7.76749 −0.504553
\(238\) −5.91279 −0.383269
\(239\) −26.9624 −1.74405 −0.872027 0.489457i \(-0.837195\pi\)
−0.872027 + 0.489457i \(0.837195\pi\)
\(240\) −5.84358 −0.377202
\(241\) −21.1091 −1.35976 −0.679879 0.733324i \(-0.737968\pi\)
−0.679879 + 0.733324i \(0.737968\pi\)
\(242\) −5.20287 −0.334453
\(243\) 1.00000 0.0641500
\(244\) 7.85243 0.502701
\(245\) −12.0663 −0.770890
\(246\) −0.807796 −0.0515032
\(247\) −6.56420 −0.417670
\(248\) −13.5693 −0.861649
\(249\) 14.7611 0.935449
\(250\) −4.14696 −0.262277
\(251\) 2.32705 0.146882 0.0734411 0.997300i \(-0.476602\pi\)
0.0734411 + 0.997300i \(0.476602\pi\)
\(252\) 5.67582 0.357543
\(253\) 0 0
\(254\) 6.22697 0.390715
\(255\) 8.29386 0.519382
\(256\) −4.07484 −0.254677
\(257\) 26.6953 1.66520 0.832602 0.553871i \(-0.186850\pi\)
0.832602 + 0.553871i \(0.186850\pi\)
\(258\) 1.04669 0.0651642
\(259\) 0.946593 0.0588184
\(260\) 28.3625 1.75897
\(261\) −2.21800 −0.137291
\(262\) 2.01277 0.124349
\(263\) −10.0028 −0.616801 −0.308401 0.951257i \(-0.599794\pi\)
−0.308401 + 0.951257i \(0.599794\pi\)
\(264\) 9.38814 0.577800
\(265\) 14.5893 0.896215
\(266\) −2.01983 −0.123844
\(267\) 0.873672 0.0534678
\(268\) −0.337152 −0.0205948
\(269\) −17.5445 −1.06971 −0.534853 0.844945i \(-0.679633\pi\)
−0.534853 + 0.844945i \(0.679633\pi\)
\(270\) 1.53762 0.0935767
\(271\) 1.13946 0.0692174 0.0346087 0.999401i \(-0.488982\pi\)
0.0346087 + 0.999401i \(0.488982\pi\)
\(272\) −6.63642 −0.402392
\(273\) −21.2002 −1.28310
\(274\) 7.27872 0.439724
\(275\) 10.3364 0.623309
\(276\) 0 0
\(277\) −21.3674 −1.28384 −0.641920 0.766772i \(-0.721862\pi\)
−0.641920 + 0.766772i \(0.721862\pi\)
\(278\) −4.67556 −0.280422
\(279\) −6.48711 −0.388373
\(280\) 19.1401 1.14384
\(281\) 12.3835 0.738737 0.369369 0.929283i \(-0.379574\pi\)
0.369369 + 0.929283i \(0.379574\pi\)
\(282\) −2.70019 −0.160794
\(283\) 7.11666 0.423041 0.211521 0.977374i \(-0.432158\pi\)
0.211521 + 0.977374i \(0.432158\pi\)
\(284\) 5.05867 0.300177
\(285\) 2.83322 0.167825
\(286\) −15.9892 −0.945461
\(287\) −4.80718 −0.283759
\(288\) −5.41380 −0.319011
\(289\) −7.58085 −0.445932
\(290\) −3.41044 −0.200268
\(291\) −11.5724 −0.678389
\(292\) 20.2669 1.18603
\(293\) 17.9845 1.05066 0.525332 0.850898i \(-0.323941\pi\)
0.525332 + 0.850898i \(0.323941\pi\)
\(294\) −2.54053 −0.148166
\(295\) 29.4319 1.71359
\(296\) −0.584764 −0.0339887
\(297\) 4.48823 0.260433
\(298\) −10.5931 −0.613641
\(299\) 0 0
\(300\) −3.86044 −0.222882
\(301\) 6.22885 0.359025
\(302\) 3.11198 0.179074
\(303\) 9.43695 0.542138
\(304\) −2.26703 −0.130023
\(305\) 12.6594 0.724877
\(306\) 1.74624 0.0998261
\(307\) 1.83085 0.104492 0.0522460 0.998634i \(-0.483362\pi\)
0.0522460 + 0.998634i \(0.483362\pi\)
\(308\) 25.4744 1.45154
\(309\) −4.01274 −0.228277
\(310\) −9.97472 −0.566526
\(311\) −9.26634 −0.525446 −0.262723 0.964871i \(-0.584621\pi\)
−0.262723 + 0.964871i \(0.584621\pi\)
\(312\) 13.0966 0.741448
\(313\) −13.9170 −0.786634 −0.393317 0.919403i \(-0.628673\pi\)
−0.393317 + 0.919403i \(0.628673\pi\)
\(314\) 9.35211 0.527770
\(315\) 9.15037 0.515565
\(316\) 13.0203 0.732451
\(317\) −27.0529 −1.51944 −0.759722 0.650248i \(-0.774665\pi\)
−0.759722 + 0.650248i \(0.774665\pi\)
\(318\) 3.07173 0.172254
\(319\) −9.95488 −0.557366
\(320\) 3.36278 0.187985
\(321\) −3.67412 −0.205069
\(322\) 0 0
\(323\) 3.21762 0.179033
\(324\) −1.67626 −0.0931255
\(325\) 14.4194 0.799846
\(326\) −5.69891 −0.315633
\(327\) −13.4116 −0.741663
\(328\) 2.96967 0.163972
\(329\) −16.0688 −0.885902
\(330\) 6.90120 0.379898
\(331\) 16.4225 0.902661 0.451331 0.892357i \(-0.350949\pi\)
0.451331 + 0.892357i \(0.350949\pi\)
\(332\) −24.7435 −1.35797
\(333\) −0.279560 −0.0153198
\(334\) 4.20994 0.230358
\(335\) −0.543544 −0.0296970
\(336\) −7.32177 −0.399435
\(337\) 16.5746 0.902878 0.451439 0.892302i \(-0.350911\pi\)
0.451439 + 0.892302i \(0.350911\pi\)
\(338\) −14.9084 −0.810908
\(339\) −0.694886 −0.0377411
\(340\) −13.9027 −0.753977
\(341\) −29.1156 −1.57670
\(342\) 0.596524 0.0322563
\(343\) 8.58341 0.463461
\(344\) −3.84791 −0.207466
\(345\) 0 0
\(346\) −3.19489 −0.171758
\(347\) −0.186730 −0.0100242 −0.00501208 0.999987i \(-0.501595\pi\)
−0.00501208 + 0.999987i \(0.501595\pi\)
\(348\) 3.71794 0.199302
\(349\) 10.5157 0.562892 0.281446 0.959577i \(-0.409186\pi\)
0.281446 + 0.959577i \(0.409186\pi\)
\(350\) 4.43692 0.237163
\(351\) 6.26113 0.334195
\(352\) −24.2984 −1.29511
\(353\) −20.6655 −1.09991 −0.549956 0.835194i \(-0.685355\pi\)
−0.549956 + 0.835194i \(0.685355\pi\)
\(354\) 6.19679 0.329356
\(355\) 8.15542 0.432845
\(356\) −1.46450 −0.0776183
\(357\) 10.3919 0.549996
\(358\) −12.2586 −0.647889
\(359\) −15.6775 −0.827425 −0.413712 0.910408i \(-0.635768\pi\)
−0.413712 + 0.910408i \(0.635768\pi\)
\(360\) −5.65270 −0.297923
\(361\) −17.9008 −0.942150
\(362\) 5.83852 0.306866
\(363\) 9.14417 0.479944
\(364\) 35.5371 1.86265
\(365\) 32.6737 1.71022
\(366\) 2.66540 0.139323
\(367\) −5.44563 −0.284259 −0.142130 0.989848i \(-0.545395\pi\)
−0.142130 + 0.989848i \(0.545395\pi\)
\(368\) 0 0
\(369\) 1.41972 0.0739076
\(370\) −0.429858 −0.0223473
\(371\) 18.2798 0.949041
\(372\) 10.8741 0.563794
\(373\) 4.02738 0.208530 0.104265 0.994550i \(-0.466751\pi\)
0.104265 + 0.994550i \(0.466751\pi\)
\(374\) 7.83753 0.405269
\(375\) 7.28837 0.376370
\(376\) 9.92661 0.511926
\(377\) −13.8872 −0.715226
\(378\) 1.92658 0.0990925
\(379\) 11.1490 0.572684 0.286342 0.958127i \(-0.407561\pi\)
0.286342 + 0.958127i \(0.407561\pi\)
\(380\) −4.74921 −0.243629
\(381\) −10.9440 −0.560680
\(382\) 4.80791 0.245994
\(383\) 15.0122 0.767090 0.383545 0.923522i \(-0.374703\pi\)
0.383545 + 0.923522i \(0.374703\pi\)
\(384\) 11.5356 0.588675
\(385\) 41.0689 2.09307
\(386\) −0.223103 −0.0113556
\(387\) −1.83959 −0.0935114
\(388\) 19.3984 0.984805
\(389\) 33.1611 1.68134 0.840668 0.541551i \(-0.182163\pi\)
0.840668 + 0.541551i \(0.182163\pi\)
\(390\) 9.62726 0.487495
\(391\) 0 0
\(392\) 9.33963 0.471723
\(393\) −3.53749 −0.178443
\(394\) 12.8402 0.646881
\(395\) 20.9909 1.05617
\(396\) −7.52343 −0.378066
\(397\) −6.67063 −0.334789 −0.167395 0.985890i \(-0.553535\pi\)
−0.167395 + 0.985890i \(0.553535\pi\)
\(398\) 7.60409 0.381159
\(399\) 3.54990 0.177718
\(400\) 4.97993 0.248997
\(401\) 6.22639 0.310931 0.155466 0.987841i \(-0.450312\pi\)
0.155466 + 0.987841i \(0.450312\pi\)
\(402\) −0.114441 −0.00570782
\(403\) −40.6166 −2.02326
\(404\) −15.8188 −0.787013
\(405\) −2.70241 −0.134284
\(406\) −4.27315 −0.212073
\(407\) −1.25473 −0.0621946
\(408\) −6.41964 −0.317820
\(409\) −1.95994 −0.0969128 −0.0484564 0.998825i \(-0.515430\pi\)
−0.0484564 + 0.998825i \(0.515430\pi\)
\(410\) 2.18299 0.107810
\(411\) −12.7925 −0.631008
\(412\) 6.72638 0.331385
\(413\) 36.8770 1.81460
\(414\) 0 0
\(415\) −39.8906 −1.95815
\(416\) −33.8965 −1.66191
\(417\) 8.21741 0.402408
\(418\) 2.67733 0.130953
\(419\) −8.26445 −0.403745 −0.201872 0.979412i \(-0.564703\pi\)
−0.201872 + 0.979412i \(0.564703\pi\)
\(420\) −15.3384 −0.748436
\(421\) 1.77108 0.0863170 0.0431585 0.999068i \(-0.486258\pi\)
0.0431585 + 0.999068i \(0.486258\pi\)
\(422\) 0.318062 0.0154830
\(423\) 4.74565 0.230742
\(424\) −11.2925 −0.548411
\(425\) −7.06807 −0.342852
\(426\) 1.71710 0.0831936
\(427\) 15.8617 0.767604
\(428\) 6.15877 0.297695
\(429\) 28.1014 1.35675
\(430\) −2.82859 −0.136407
\(431\) −26.7569 −1.28884 −0.644418 0.764674i \(-0.722900\pi\)
−0.644418 + 0.764674i \(0.722900\pi\)
\(432\) 2.16236 0.104037
\(433\) −24.5762 −1.18106 −0.590529 0.807017i \(-0.701081\pi\)
−0.590529 + 0.807017i \(0.701081\pi\)
\(434\) −12.4979 −0.599919
\(435\) 5.99393 0.287387
\(436\) 22.4813 1.07666
\(437\) 0 0
\(438\) 6.87933 0.328707
\(439\) 5.59553 0.267060 0.133530 0.991045i \(-0.457369\pi\)
0.133530 + 0.991045i \(0.457369\pi\)
\(440\) −25.3706 −1.20950
\(441\) 4.46503 0.212621
\(442\) 10.9335 0.520052
\(443\) 12.5170 0.594701 0.297351 0.954768i \(-0.403897\pi\)
0.297351 + 0.954768i \(0.403897\pi\)
\(444\) 0.468615 0.0222395
\(445\) −2.36102 −0.111923
\(446\) 16.8966 0.800075
\(447\) 18.6176 0.880583
\(448\) 4.21343 0.199066
\(449\) −8.14963 −0.384605 −0.192302 0.981336i \(-0.561595\pi\)
−0.192302 + 0.981336i \(0.561595\pi\)
\(450\) −1.31037 −0.0617715
\(451\) 6.37202 0.300047
\(452\) 1.16481 0.0547880
\(453\) −5.46938 −0.256974
\(454\) −14.0370 −0.658788
\(455\) 57.2917 2.68587
\(456\) −2.19298 −0.102696
\(457\) 18.1009 0.846723 0.423361 0.905961i \(-0.360850\pi\)
0.423361 + 0.905961i \(0.360850\pi\)
\(458\) −16.2052 −0.757218
\(459\) −3.06906 −0.143252
\(460\) 0 0
\(461\) 13.1011 0.610180 0.305090 0.952324i \(-0.401313\pi\)
0.305090 + 0.952324i \(0.401313\pi\)
\(462\) 8.64692 0.402291
\(463\) −19.4661 −0.904668 −0.452334 0.891849i \(-0.649409\pi\)
−0.452334 + 0.891849i \(0.649409\pi\)
\(464\) −4.79611 −0.222654
\(465\) 17.5308 0.812972
\(466\) 8.57060 0.397025
\(467\) 1.19583 0.0553365 0.0276682 0.999617i \(-0.491192\pi\)
0.0276682 + 0.999617i \(0.491192\pi\)
\(468\) −10.4953 −0.485144
\(469\) −0.681039 −0.0314474
\(470\) 7.29702 0.336587
\(471\) −16.4366 −0.757357
\(472\) −22.7810 −1.04858
\(473\) −8.25648 −0.379633
\(474\) 4.41957 0.202998
\(475\) −2.41448 −0.110784
\(476\) −17.4195 −0.798419
\(477\) −5.39864 −0.247187
\(478\) 15.3412 0.701688
\(479\) 17.4856 0.798937 0.399468 0.916747i \(-0.369195\pi\)
0.399468 + 0.916747i \(0.369195\pi\)
\(480\) 14.6303 0.667779
\(481\) −1.75036 −0.0798097
\(482\) 12.0107 0.547073
\(483\) 0 0
\(484\) −15.3280 −0.696727
\(485\) 31.2735 1.42005
\(486\) −0.568983 −0.0258096
\(487\) −22.5133 −1.02018 −0.510088 0.860122i \(-0.670387\pi\)
−0.510088 + 0.860122i \(0.670387\pi\)
\(488\) −9.79870 −0.443566
\(489\) 10.0160 0.452938
\(490\) 6.86554 0.310153
\(491\) 29.4342 1.32835 0.664174 0.747578i \(-0.268783\pi\)
0.664174 + 0.747578i \(0.268783\pi\)
\(492\) −2.37982 −0.107290
\(493\) 6.80718 0.306580
\(494\) 3.73492 0.168042
\(495\) −12.1290 −0.545159
\(496\) −14.0275 −0.629852
\(497\) 10.2184 0.458358
\(498\) −8.39883 −0.376360
\(499\) −12.9838 −0.581233 −0.290616 0.956840i \(-0.593860\pi\)
−0.290616 + 0.956840i \(0.593860\pi\)
\(500\) −12.2172 −0.546370
\(501\) −7.39906 −0.330566
\(502\) −1.32405 −0.0590953
\(503\) 0.735172 0.0327797 0.0163898 0.999866i \(-0.494783\pi\)
0.0163898 + 0.999866i \(0.494783\pi\)
\(504\) −7.08260 −0.315484
\(505\) −25.5025 −1.13485
\(506\) 0 0
\(507\) 26.2018 1.16366
\(508\) 18.3450 0.813930
\(509\) 2.76431 0.122526 0.0612629 0.998122i \(-0.480487\pi\)
0.0612629 + 0.998122i \(0.480487\pi\)
\(510\) −4.71906 −0.208964
\(511\) 40.9388 1.81102
\(512\) −20.7527 −0.917150
\(513\) −1.04840 −0.0462882
\(514\) −15.1891 −0.669964
\(515\) 10.8440 0.477846
\(516\) 3.08362 0.135749
\(517\) 21.2996 0.936754
\(518\) −0.538595 −0.0236645
\(519\) 5.61509 0.246475
\(520\) −35.3923 −1.55206
\(521\) 16.3874 0.717944 0.358972 0.933348i \(-0.383127\pi\)
0.358972 + 0.933348i \(0.383127\pi\)
\(522\) 1.26200 0.0552363
\(523\) −24.8590 −1.08701 −0.543504 0.839406i \(-0.682903\pi\)
−0.543504 + 0.839406i \(0.682903\pi\)
\(524\) 5.92975 0.259042
\(525\) −7.79799 −0.340332
\(526\) 5.69144 0.248159
\(527\) 19.9093 0.867265
\(528\) 9.70517 0.422363
\(529\) 0 0
\(530\) −8.30107 −0.360575
\(531\) −10.8910 −0.472629
\(532\) −5.95056 −0.257989
\(533\) 8.88905 0.385028
\(534\) −0.497104 −0.0215118
\(535\) 9.92896 0.429267
\(536\) 0.420716 0.0181722
\(537\) 21.5449 0.929729
\(538\) 9.98250 0.430376
\(539\) 20.0401 0.863187
\(540\) 4.52993 0.194937
\(541\) 38.3120 1.64716 0.823581 0.567199i \(-0.191973\pi\)
0.823581 + 0.567199i \(0.191973\pi\)
\(542\) −0.648334 −0.0278483
\(543\) −10.2613 −0.440356
\(544\) 16.6153 0.712375
\(545\) 36.2436 1.55251
\(546\) 12.0626 0.516230
\(547\) −18.8583 −0.806324 −0.403162 0.915129i \(-0.632089\pi\)
−0.403162 + 0.915129i \(0.632089\pi\)
\(548\) 21.4436 0.916024
\(549\) −4.68450 −0.199930
\(550\) −5.88124 −0.250777
\(551\) 2.32536 0.0990637
\(552\) 0 0
\(553\) 26.3008 1.11842
\(554\) 12.1577 0.516529
\(555\) 0.755486 0.0320686
\(556\) −13.7745 −0.584169
\(557\) −22.7686 −0.964736 −0.482368 0.875969i \(-0.660223\pi\)
−0.482368 + 0.875969i \(0.660223\pi\)
\(558\) 3.69105 0.156255
\(559\) −11.5179 −0.487155
\(560\) 19.7864 0.836128
\(561\) −13.7746 −0.581566
\(562\) −7.04599 −0.297217
\(563\) 18.2054 0.767264 0.383632 0.923486i \(-0.374673\pi\)
0.383632 + 0.923486i \(0.374673\pi\)
\(564\) −7.95494 −0.334964
\(565\) 1.87787 0.0790024
\(566\) −4.04925 −0.170203
\(567\) −3.38601 −0.142199
\(568\) −6.31249 −0.264866
\(569\) 31.5087 1.32091 0.660456 0.750865i \(-0.270363\pi\)
0.660456 + 0.750865i \(0.270363\pi\)
\(570\) −1.61205 −0.0675214
\(571\) −4.84071 −0.202577 −0.101289 0.994857i \(-0.532297\pi\)
−0.101289 + 0.994857i \(0.532297\pi\)
\(572\) −47.1052 −1.96957
\(573\) −8.45001 −0.353004
\(574\) 2.73520 0.114165
\(575\) 0 0
\(576\) −1.24436 −0.0518485
\(577\) 25.1384 1.04653 0.523263 0.852171i \(-0.324715\pi\)
0.523263 + 0.852171i \(0.324715\pi\)
\(578\) 4.31337 0.179413
\(579\) 0.392108 0.0162955
\(580\) −10.0474 −0.417195
\(581\) −49.9813 −2.07357
\(582\) 6.58452 0.272937
\(583\) −24.2303 −1.00352
\(584\) −25.2902 −1.04652
\(585\) −16.9201 −0.699561
\(586\) −10.2328 −0.422715
\(587\) 31.1328 1.28499 0.642495 0.766290i \(-0.277899\pi\)
0.642495 + 0.766290i \(0.277899\pi\)
\(588\) −7.48455 −0.308658
\(589\) 6.80111 0.280235
\(590\) −16.7462 −0.689432
\(591\) −22.5670 −0.928281
\(592\) −0.604510 −0.0248452
\(593\) −25.8767 −1.06263 −0.531315 0.847174i \(-0.678302\pi\)
−0.531315 + 0.847174i \(0.678302\pi\)
\(594\) −2.55372 −0.104780
\(595\) −28.0831 −1.15129
\(596\) −31.2079 −1.27833
\(597\) −13.3644 −0.546967
\(598\) 0 0
\(599\) −43.7707 −1.78842 −0.894210 0.447647i \(-0.852262\pi\)
−0.894210 + 0.447647i \(0.852262\pi\)
\(600\) 4.81726 0.196664
\(601\) 13.0905 0.533972 0.266986 0.963700i \(-0.413972\pi\)
0.266986 + 0.963700i \(0.413972\pi\)
\(602\) −3.54411 −0.144447
\(603\) 0.201133 0.00819079
\(604\) 9.16810 0.373045
\(605\) −24.7113 −1.00466
\(606\) −5.36946 −0.218119
\(607\) 12.1643 0.493732 0.246866 0.969050i \(-0.420599\pi\)
0.246866 + 0.969050i \(0.420599\pi\)
\(608\) 5.67585 0.230186
\(609\) 7.51015 0.304327
\(610\) −7.20299 −0.291641
\(611\) 29.7132 1.20207
\(612\) 5.14454 0.207956
\(613\) −42.6873 −1.72412 −0.862062 0.506802i \(-0.830827\pi\)
−0.862062 + 0.506802i \(0.830827\pi\)
\(614\) −1.04172 −0.0420404
\(615\) −3.83666 −0.154709
\(616\) −31.7883 −1.28079
\(617\) −0.397854 −0.0160170 −0.00800849 0.999968i \(-0.502549\pi\)
−0.00800849 + 0.999968i \(0.502549\pi\)
\(618\) 2.28318 0.0918428
\(619\) 30.0498 1.20780 0.603902 0.797058i \(-0.293612\pi\)
0.603902 + 0.797058i \(0.293612\pi\)
\(620\) −29.3862 −1.18018
\(621\) 0 0
\(622\) 5.27239 0.211403
\(623\) −2.95826 −0.118520
\(624\) 13.5388 0.541987
\(625\) −31.2112 −1.24845
\(626\) 7.91852 0.316488
\(627\) −4.70548 −0.187919
\(628\) 27.5519 1.09944
\(629\) 0.857988 0.0342102
\(630\) −5.20640 −0.207428
\(631\) 24.1375 0.960900 0.480450 0.877022i \(-0.340473\pi\)
0.480450 + 0.877022i \(0.340473\pi\)
\(632\) −16.2475 −0.646290
\(633\) −0.559001 −0.0222183
\(634\) 15.3926 0.611320
\(635\) 29.5753 1.17366
\(636\) 9.04951 0.358836
\(637\) 27.9562 1.10766
\(638\) 5.66415 0.224246
\(639\) −3.01784 −0.119384
\(640\) −31.1740 −1.23226
\(641\) −32.9635 −1.30198 −0.650990 0.759086i \(-0.725646\pi\)
−0.650990 + 0.759086i \(0.725646\pi\)
\(642\) 2.09051 0.0825058
\(643\) −7.50786 −0.296081 −0.148040 0.988981i \(-0.547297\pi\)
−0.148040 + 0.988981i \(0.547297\pi\)
\(644\) 0 0
\(645\) 4.97131 0.195745
\(646\) −1.83077 −0.0720307
\(647\) 13.8074 0.542824 0.271412 0.962463i \(-0.412509\pi\)
0.271412 + 0.962463i \(0.412509\pi\)
\(648\) 2.09173 0.0821708
\(649\) −48.8813 −1.91876
\(650\) −8.20441 −0.321803
\(651\) 21.9654 0.860891
\(652\) −16.7894 −0.657522
\(653\) 23.8790 0.934458 0.467229 0.884136i \(-0.345252\pi\)
0.467229 + 0.884136i \(0.345252\pi\)
\(654\) 7.63097 0.298394
\(655\) 9.55974 0.373530
\(656\) 3.06995 0.119861
\(657\) −12.0906 −0.471698
\(658\) 9.14287 0.356426
\(659\) −20.6448 −0.804207 −0.402104 0.915594i \(-0.631721\pi\)
−0.402104 + 0.915594i \(0.631721\pi\)
\(660\) 20.3314 0.791397
\(661\) 45.8471 1.78325 0.891624 0.452777i \(-0.149567\pi\)
0.891624 + 0.452777i \(0.149567\pi\)
\(662\) −9.34411 −0.363169
\(663\) −19.2158 −0.746280
\(664\) 30.8763 1.19823
\(665\) −9.59329 −0.372012
\(666\) 0.159065 0.00616364
\(667\) 0 0
\(668\) 12.4027 0.479877
\(669\) −29.6961 −1.14812
\(670\) 0.309267 0.0119480
\(671\) −21.0251 −0.811665
\(672\) 18.3312 0.707140
\(673\) 34.7483 1.33945 0.669725 0.742609i \(-0.266412\pi\)
0.669725 + 0.742609i \(0.266412\pi\)
\(674\) −9.43068 −0.363256
\(675\) 2.30301 0.0886428
\(676\) −43.9210 −1.68927
\(677\) −31.2288 −1.20022 −0.600109 0.799918i \(-0.704876\pi\)
−0.600109 + 0.799918i \(0.704876\pi\)
\(678\) 0.395378 0.0151844
\(679\) 39.1844 1.50376
\(680\) 17.3485 0.665284
\(681\) 24.6703 0.945368
\(682\) 16.5663 0.634355
\(683\) 25.0559 0.958738 0.479369 0.877613i \(-0.340866\pi\)
0.479369 + 0.877613i \(0.340866\pi\)
\(684\) 1.75740 0.0671958
\(685\) 34.5706 1.32087
\(686\) −4.88381 −0.186465
\(687\) 28.4810 1.08662
\(688\) −3.97785 −0.151654
\(689\) −33.8016 −1.28774
\(690\) 0 0
\(691\) 47.0943 1.79155 0.895775 0.444507i \(-0.146621\pi\)
0.895775 + 0.444507i \(0.146621\pi\)
\(692\) −9.41235 −0.357804
\(693\) −15.1972 −0.577292
\(694\) 0.106246 0.00403304
\(695\) −22.2068 −0.842351
\(696\) −4.63945 −0.175858
\(697\) −4.35721 −0.165041
\(698\) −5.98325 −0.226469
\(699\) −15.0630 −0.569736
\(700\) 13.0715 0.494055
\(701\) −25.5709 −0.965799 −0.482900 0.875676i \(-0.660416\pi\)
−0.482900 + 0.875676i \(0.660416\pi\)
\(702\) −3.56248 −0.134457
\(703\) 0.293092 0.0110542
\(704\) −5.58499 −0.210492
\(705\) −12.8247 −0.483006
\(706\) 11.7583 0.442529
\(707\) −31.9536 −1.20174
\(708\) 18.2561 0.686108
\(709\) 21.3040 0.800089 0.400045 0.916496i \(-0.368995\pi\)
0.400045 + 0.916496i \(0.368995\pi\)
\(710\) −4.64029 −0.174147
\(711\) −7.76749 −0.291304
\(712\) 1.82748 0.0684878
\(713\) 0 0
\(714\) −5.91279 −0.221281
\(715\) −75.9414 −2.84005
\(716\) −36.1147 −1.34967
\(717\) −26.9624 −1.00693
\(718\) 8.92020 0.332899
\(719\) −16.8868 −0.629771 −0.314885 0.949130i \(-0.601966\pi\)
−0.314885 + 0.949130i \(0.601966\pi\)
\(720\) −5.84358 −0.217777
\(721\) 13.5871 0.506012
\(722\) 10.1853 0.379057
\(723\) −21.1091 −0.785056
\(724\) 17.2007 0.639257
\(725\) −5.10807 −0.189709
\(726\) −5.20287 −0.193097
\(727\) 46.8022 1.73580 0.867898 0.496742i \(-0.165471\pi\)
0.867898 + 0.496742i \(0.165471\pi\)
\(728\) −44.3451 −1.64354
\(729\) 1.00000 0.0370370
\(730\) −18.5907 −0.688074
\(731\) 5.64581 0.208818
\(732\) 7.85243 0.290234
\(733\) 1.21960 0.0450470 0.0225235 0.999746i \(-0.492830\pi\)
0.0225235 + 0.999746i \(0.492830\pi\)
\(734\) 3.09847 0.114367
\(735\) −12.0663 −0.445074
\(736\) 0 0
\(737\) 0.902732 0.0332526
\(738\) −0.807796 −0.0297354
\(739\) −29.0460 −1.06848 −0.534238 0.845334i \(-0.679401\pi\)
−0.534238 + 0.845334i \(0.679401\pi\)
\(740\) −1.26639 −0.0465534
\(741\) −6.56420 −0.241142
\(742\) −10.4009 −0.381829
\(743\) 26.6891 0.979128 0.489564 0.871967i \(-0.337156\pi\)
0.489564 + 0.871967i \(0.337156\pi\)
\(744\) −13.5693 −0.497473
\(745\) −50.3124 −1.84330
\(746\) −2.29151 −0.0838982
\(747\) 14.7611 0.540082
\(748\) 23.0899 0.844249
\(749\) 12.4406 0.454569
\(750\) −4.14696 −0.151425
\(751\) −1.36537 −0.0498232 −0.0249116 0.999690i \(-0.507930\pi\)
−0.0249116 + 0.999690i \(0.507930\pi\)
\(752\) 10.2618 0.374210
\(753\) 2.32705 0.0848024
\(754\) 7.90156 0.287758
\(755\) 14.7805 0.537917
\(756\) 5.67582 0.206428
\(757\) −52.1755 −1.89635 −0.948176 0.317746i \(-0.897074\pi\)
−0.948176 + 0.317746i \(0.897074\pi\)
\(758\) −6.34357 −0.230409
\(759\) 0 0
\(760\) 5.92632 0.214970
\(761\) 21.7889 0.789847 0.394923 0.918714i \(-0.370771\pi\)
0.394923 + 0.918714i \(0.370771\pi\)
\(762\) 6.22697 0.225579
\(763\) 45.4118 1.64402
\(764\) 14.1644 0.512450
\(765\) 8.29386 0.299865
\(766\) −8.54170 −0.308624
\(767\) −68.1900 −2.46220
\(768\) −4.07484 −0.147038
\(769\) −37.6505 −1.35771 −0.678856 0.734271i \(-0.737524\pi\)
−0.678856 + 0.734271i \(0.737524\pi\)
\(770\) −23.3675 −0.842106
\(771\) 26.6953 0.961407
\(772\) −0.657275 −0.0236559
\(773\) −1.82449 −0.0656225 −0.0328112 0.999462i \(-0.510446\pi\)
−0.0328112 + 0.999462i \(0.510446\pi\)
\(774\) 1.04669 0.0376226
\(775\) −14.9399 −0.536655
\(776\) −24.2064 −0.868959
\(777\) 0.946593 0.0339588
\(778\) −18.8681 −0.676454
\(779\) −1.48844 −0.0533289
\(780\) 28.3625 1.01554
\(781\) −13.5447 −0.484668
\(782\) 0 0
\(783\) −2.21800 −0.0792648
\(784\) 9.65501 0.344822
\(785\) 44.4183 1.58536
\(786\) 2.01277 0.0717931
\(787\) 28.8204 1.02734 0.513668 0.857989i \(-0.328286\pi\)
0.513668 + 0.857989i \(0.328286\pi\)
\(788\) 37.8281 1.34757
\(789\) −10.0028 −0.356110
\(790\) −11.9435 −0.424930
\(791\) 2.35289 0.0836591
\(792\) 9.38814 0.333593
\(793\) −29.3303 −1.04155
\(794\) 3.79547 0.134696
\(795\) 14.5893 0.517430
\(796\) 22.4021 0.794023
\(797\) 0.897615 0.0317952 0.0158976 0.999874i \(-0.494939\pi\)
0.0158976 + 0.999874i \(0.494939\pi\)
\(798\) −2.01983 −0.0715013
\(799\) −14.5647 −0.515262
\(800\) −12.4680 −0.440811
\(801\) 0.873672 0.0308697
\(802\) −3.54271 −0.125097
\(803\) −54.2652 −1.91498
\(804\) −0.337152 −0.0118904
\(805\) 0 0
\(806\) 23.1102 0.814021
\(807\) −17.5445 −0.617595
\(808\) 19.7395 0.694434
\(809\) −37.6547 −1.32387 −0.661934 0.749562i \(-0.730264\pi\)
−0.661934 + 0.749562i \(0.730264\pi\)
\(810\) 1.53762 0.0540266
\(811\) −20.4727 −0.718893 −0.359446 0.933166i \(-0.617034\pi\)
−0.359446 + 0.933166i \(0.617034\pi\)
\(812\) −12.5890 −0.441786
\(813\) 1.13946 0.0399627
\(814\) 0.713919 0.0250229
\(815\) −27.0672 −0.948124
\(816\) −6.63642 −0.232321
\(817\) 1.92863 0.0674743
\(818\) 1.11517 0.0389911
\(819\) −21.2002 −0.740796
\(820\) 6.43124 0.224589
\(821\) −16.1822 −0.564761 −0.282381 0.959302i \(-0.591124\pi\)
−0.282381 + 0.959302i \(0.591124\pi\)
\(822\) 7.27872 0.253875
\(823\) −17.8806 −0.623279 −0.311640 0.950200i \(-0.600878\pi\)
−0.311640 + 0.950200i \(0.600878\pi\)
\(824\) −8.39355 −0.292403
\(825\) 10.3364 0.359868
\(826\) −20.9824 −0.730070
\(827\) 8.08676 0.281204 0.140602 0.990066i \(-0.455096\pi\)
0.140602 + 0.990066i \(0.455096\pi\)
\(828\) 0 0
\(829\) −37.2365 −1.29328 −0.646639 0.762796i \(-0.723826\pi\)
−0.646639 + 0.762796i \(0.723826\pi\)
\(830\) 22.6971 0.787826
\(831\) −21.3674 −0.741225
\(832\) −7.79113 −0.270109
\(833\) −13.7035 −0.474797
\(834\) −4.67556 −0.161901
\(835\) 19.9953 0.691965
\(836\) 7.88760 0.272798
\(837\) −6.48711 −0.224227
\(838\) 4.70233 0.162439
\(839\) 34.7553 1.19989 0.599943 0.800043i \(-0.295190\pi\)
0.599943 + 0.800043i \(0.295190\pi\)
\(840\) 19.1401 0.660395
\(841\) −24.0805 −0.830362
\(842\) −1.00771 −0.0347281
\(843\) 12.3835 0.426510
\(844\) 0.937030 0.0322539
\(845\) −70.8079 −2.43587
\(846\) −2.70019 −0.0928346
\(847\) −30.9622 −1.06387
\(848\) −11.6738 −0.400880
\(849\) 7.11666 0.244243
\(850\) 4.02161 0.137940
\(851\) 0 0
\(852\) 5.05867 0.173307
\(853\) −28.2381 −0.966855 −0.483428 0.875384i \(-0.660608\pi\)
−0.483428 + 0.875384i \(0.660608\pi\)
\(854\) −9.02505 −0.308831
\(855\) 2.83322 0.0968940
\(856\) −7.68525 −0.262677
\(857\) −7.43551 −0.253992 −0.126996 0.991903i \(-0.540534\pi\)
−0.126996 + 0.991903i \(0.540534\pi\)
\(858\) −15.9892 −0.545862
\(859\) 40.8947 1.39531 0.697654 0.716435i \(-0.254227\pi\)
0.697654 + 0.716435i \(0.254227\pi\)
\(860\) −8.33320 −0.284160
\(861\) −4.80718 −0.163828
\(862\) 15.2242 0.518539
\(863\) −21.2318 −0.722738 −0.361369 0.932423i \(-0.617691\pi\)
−0.361369 + 0.932423i \(0.617691\pi\)
\(864\) −5.41380 −0.184181
\(865\) −15.1743 −0.515941
\(866\) 13.9834 0.475176
\(867\) −7.58085 −0.257459
\(868\) −36.8197 −1.24974
\(869\) −34.8623 −1.18262
\(870\) −3.41044 −0.115625
\(871\) 1.25932 0.0426705
\(872\) −28.0534 −0.950008
\(873\) −11.5724 −0.391668
\(874\) 0 0
\(875\) −24.6785 −0.834285
\(876\) 20.2669 0.684756
\(877\) 18.7101 0.631795 0.315897 0.948793i \(-0.397694\pi\)
0.315897 + 0.948793i \(0.397694\pi\)
\(878\) −3.18376 −0.107447
\(879\) 17.9845 0.606601
\(880\) −26.2273 −0.884123
\(881\) −35.8925 −1.20925 −0.604624 0.796511i \(-0.706677\pi\)
−0.604624 + 0.796511i \(0.706677\pi\)
\(882\) −2.54053 −0.0855439
\(883\) 6.34991 0.213691 0.106846 0.994276i \(-0.465925\pi\)
0.106846 + 0.994276i \(0.465925\pi\)
\(884\) 32.2107 1.08336
\(885\) 29.4319 0.989343
\(886\) −7.12196 −0.239267
\(887\) 15.9876 0.536810 0.268405 0.963306i \(-0.413503\pi\)
0.268405 + 0.963306i \(0.413503\pi\)
\(888\) −0.584764 −0.0196234
\(889\) 37.0566 1.24284
\(890\) 1.34338 0.0450301
\(891\) 4.48823 0.150361
\(892\) 49.7783 1.66670
\(893\) −4.97537 −0.166494
\(894\) −10.5931 −0.354286
\(895\) −58.2230 −1.94618
\(896\) −39.0597 −1.30489
\(897\) 0 0
\(898\) 4.63700 0.154739
\(899\) 14.3884 0.479880
\(900\) −3.86044 −0.128681
\(901\) 16.5688 0.551985
\(902\) −3.62557 −0.120718
\(903\) 6.22885 0.207283
\(904\) −1.45351 −0.0483431
\(905\) 27.7303 0.921787
\(906\) 3.11198 0.103389
\(907\) 23.4646 0.779128 0.389564 0.920999i \(-0.372626\pi\)
0.389564 + 0.920999i \(0.372626\pi\)
\(908\) −41.3538 −1.37238
\(909\) 9.43695 0.313004
\(910\) −32.5980 −1.08061
\(911\) −27.8151 −0.921557 −0.460778 0.887515i \(-0.652430\pi\)
−0.460778 + 0.887515i \(0.652430\pi\)
\(912\) −2.26703 −0.0750689
\(913\) 66.2513 2.19260
\(914\) −10.2991 −0.340663
\(915\) 12.6594 0.418508
\(916\) −47.7415 −1.57742
\(917\) 11.9780 0.395547
\(918\) 1.74624 0.0576346
\(919\) −38.7863 −1.27944 −0.639720 0.768608i \(-0.720950\pi\)
−0.639720 + 0.768608i \(0.720950\pi\)
\(920\) 0 0
\(921\) 1.83085 0.0603285
\(922\) −7.45431 −0.245495
\(923\) −18.8951 −0.621939
\(924\) 25.4744 0.838045
\(925\) −0.643829 −0.0211690
\(926\) 11.0759 0.363977
\(927\) −4.01274 −0.131796
\(928\) 12.0078 0.394175
\(929\) −32.3914 −1.06273 −0.531364 0.847144i \(-0.678320\pi\)
−0.531364 + 0.847144i \(0.678320\pi\)
\(930\) −9.97472 −0.327084
\(931\) −4.68116 −0.153419
\(932\) 25.2495 0.827076
\(933\) −9.26634 −0.303366
\(934\) −0.680407 −0.0222636
\(935\) 37.2247 1.21738
\(936\) 13.0966 0.428075
\(937\) 1.43049 0.0467320 0.0233660 0.999727i \(-0.492562\pi\)
0.0233660 + 0.999727i \(0.492562\pi\)
\(938\) 0.387499 0.0126523
\(939\) −13.9170 −0.454164
\(940\) 21.4975 0.701171
\(941\) 0.634645 0.0206889 0.0103444 0.999946i \(-0.496707\pi\)
0.0103444 + 0.999946i \(0.496707\pi\)
\(942\) 9.35211 0.304708
\(943\) 0 0
\(944\) −23.5503 −0.766496
\(945\) 9.15037 0.297661
\(946\) 4.69779 0.152738
\(947\) −33.2751 −1.08130 −0.540648 0.841249i \(-0.681821\pi\)
−0.540648 + 0.841249i \(0.681821\pi\)
\(948\) 13.0203 0.422881
\(949\) −75.7007 −2.45735
\(950\) 1.37380 0.0445719
\(951\) −27.0529 −0.877251
\(952\) 21.7369 0.704498
\(953\) 39.9874 1.29532 0.647660 0.761930i \(-0.275748\pi\)
0.647660 + 0.761930i \(0.275748\pi\)
\(954\) 3.07173 0.0994509
\(955\) 22.8354 0.738935
\(956\) 45.1960 1.46174
\(957\) −9.95488 −0.321795
\(958\) −9.94899 −0.321437
\(959\) 43.3155 1.39873
\(960\) 3.36278 0.108533
\(961\) 11.0826 0.357502
\(962\) 0.995927 0.0321100
\(963\) −3.67412 −0.118397
\(964\) 35.3843 1.13965
\(965\) −1.05964 −0.0341109
\(966\) 0 0
\(967\) 50.8204 1.63427 0.817136 0.576444i \(-0.195560\pi\)
0.817136 + 0.576444i \(0.195560\pi\)
\(968\) 19.1271 0.614769
\(969\) 3.21762 0.103365
\(970\) −17.7941 −0.571333
\(971\) −42.9158 −1.37723 −0.688617 0.725125i \(-0.741782\pi\)
−0.688617 + 0.725125i \(0.741782\pi\)
\(972\) −1.67626 −0.0537660
\(973\) −27.8242 −0.892003
\(974\) 12.8097 0.410449
\(975\) 14.4194 0.461791
\(976\) −10.1296 −0.324240
\(977\) −10.5644 −0.337985 −0.168992 0.985617i \(-0.554051\pi\)
−0.168992 + 0.985617i \(0.554051\pi\)
\(978\) −5.69891 −0.182231
\(979\) 3.92124 0.125323
\(980\) 20.2263 0.646106
\(981\) −13.4116 −0.428199
\(982\) −16.7476 −0.534436
\(983\) −47.3537 −1.51035 −0.755175 0.655524i \(-0.772448\pi\)
−0.755175 + 0.655524i \(0.772448\pi\)
\(984\) 2.96967 0.0946695
\(985\) 60.9852 1.94315
\(986\) −3.87316 −0.123347
\(987\) −16.0688 −0.511476
\(988\) 11.0033 0.350062
\(989\) 0 0
\(990\) 6.90120 0.219334
\(991\) 24.1058 0.765745 0.382872 0.923801i \(-0.374935\pi\)
0.382872 + 0.923801i \(0.374935\pi\)
\(992\) 35.1199 1.11506
\(993\) 16.4225 0.521152
\(994\) −5.81410 −0.184412
\(995\) 36.1160 1.14495
\(996\) −24.7435 −0.784027
\(997\) 28.2519 0.894747 0.447374 0.894347i \(-0.352359\pi\)
0.447374 + 0.894347i \(0.352359\pi\)
\(998\) 7.38753 0.233848
\(999\) −0.279560 −0.00884490
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1587.2.a.t.1.6 10
3.2 odd 2 4761.2.a.bu.1.5 10
23.11 odd 22 69.2.e.c.52.2 yes 20
23.21 odd 22 69.2.e.c.4.2 20
23.22 odd 2 1587.2.a.u.1.6 10
69.11 even 22 207.2.i.d.190.1 20
69.44 even 22 207.2.i.d.73.1 20
69.68 even 2 4761.2.a.bt.1.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.2.e.c.4.2 20 23.21 odd 22
69.2.e.c.52.2 yes 20 23.11 odd 22
207.2.i.d.73.1 20 69.44 even 22
207.2.i.d.190.1 20 69.11 even 22
1587.2.a.t.1.6 10 1.1 even 1 trivial
1587.2.a.u.1.6 10 23.22 odd 2
4761.2.a.bt.1.5 10 69.68 even 2
4761.2.a.bu.1.5 10 3.2 odd 2