Properties

Label 15800.2
Level 15800
Weight 2
Dimension 3874502
Nonzero newspaces 72
Sturm bound 29952000

Downloads

Learn more

Defining parameters

Level: N N = 15800=235279 15800 = 2^{3} \cdot 5^{2} \cdot 79
Weight: k k = 2 2
Nonzero newspaces: 72 72
Sturm bound: 2995200029952000

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(15800))M_{2}(\Gamma_1(15800)).

Total New Old
Modular forms 7514208 3887130 3627078
Cusp forms 7461793 3874502 3587291
Eisenstein series 52415 12628 39787

Decomposition of S2new(Γ1(15800))S_{2}^{\mathrm{new}}(\Gamma_1(15800))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
15800.2.a χ15800(1,)\chi_{15800}(1, \cdot) 15800.2.a.a 1 1
15800.2.a.b 1
15800.2.a.c 1
15800.2.a.d 1
15800.2.a.e 1
15800.2.a.f 2
15800.2.a.g 2
15800.2.a.h 2
15800.2.a.i 3
15800.2.a.j 4
15800.2.a.k 5
15800.2.a.l 6
15800.2.a.m 6
15800.2.a.n 7
15800.2.a.o 7
15800.2.a.p 8
15800.2.a.q 13
15800.2.a.r 13
15800.2.a.s 15
15800.2.a.t 17
15800.2.a.u 17
15800.2.a.v 18
15800.2.a.w 18
15800.2.a.x 21
15800.2.a.y 21
15800.2.a.z 22
15800.2.a.ba 22
15800.2.a.bb 29
15800.2.a.bc 29
15800.2.a.bd 29
15800.2.a.be 29
15800.2.d χ15800(8849,)\chi_{15800}(8849, \cdot) n/a 352 1
15800.2.f χ15800(7901,)\chi_{15800}(7901, \cdot) n/a 1482 1
15800.2.h χ15800(14851,)\chi_{15800}(14851, \cdot) n/a 1514 1
15800.2.k χ15800(949,)\chi_{15800}(949, \cdot) n/a 1404 1
15800.2.m χ15800(7899,)\chi_{15800}(7899, \cdot) n/a 1436 1
15800.2.q χ15800(13801,)\chi_{15800}(13801, \cdot) n/a 760 2
15800.2.r χ15800(157,)\chi_{15800}(157, \cdot) n/a 2872 2
15800.2.w χ15800(1107,)\chi_{15800}(1107, \cdot) n/a 2808 2
15800.2.y χ15800(6793,)\chi_{15800}(6793, \cdot) n/a 720 2
15800.2.z χ15800(3161,)\chi_{15800}(3161, \cdot) n/a 2344 4
15800.2.bd χ15800(9299,)\chi_{15800}(9299, \cdot) n/a 2872 2
15800.2.bf χ15800(14749,)\chi_{15800}(14749, \cdot) n/a 2872 2
15800.2.bi χ15800(451,)\chi_{15800}(451, \cdot) n/a 3028 2
15800.2.bk χ15800(5901,)\chi_{15800}(5901, \cdot) n/a 3028 2
15800.2.bm χ15800(6849,)\chi_{15800}(6849, \cdot) n/a 720 2
15800.2.bp χ15800(1579,)\chi_{15800}(1579, \cdot) n/a 9584 4
15800.2.br χ15800(4109,)\chi_{15800}(4109, \cdot) n/a 9360 4
15800.2.bx χ15800(2529,)\chi_{15800}(2529, \cdot) n/a 2336 4
15800.2.cb χ15800(2211,)\chi_{15800}(2211, \cdot) n/a 9584 4
15800.2.cd χ15800(1581,)\chi_{15800}(1581, \cdot) n/a 9360 4
15800.2.ce χ15800(13643,)\chi_{15800}(13643, \cdot) n/a 5744 4
15800.2.cg χ15800(8193,)\chi_{15800}(8193, \cdot) n/a 1440 4
15800.2.cj χ15800(293,)\chi_{15800}(293, \cdot) n/a 5744 4
15800.2.cm χ15800(1601,)\chi_{15800}(1601, \cdot) n/a 4560 12
15800.2.cn χ15800(1161,)\chi_{15800}(1161, \cdot) n/a 4800 8
15800.2.co χ15800(473,)\chi_{15800}(473, \cdot) n/a 4800 8
15800.2.cq χ15800(3003,)\chi_{15800}(3003, \cdot) n/a 18720 8
15800.2.cv χ15800(2053,)\chi_{15800}(2053, \cdot) n/a 19168 8
15800.2.cz χ15800(4299,)\chi_{15800}(4299, \cdot) n/a 17232 12
15800.2.db χ15800(749,)\chi_{15800}(749, \cdot) n/a 17232 12
15800.2.de χ15800(251,)\chi_{15800}(251, \cdot) n/a 18168 12
15800.2.dg χ15800(101,)\chi_{15800}(101, \cdot) n/a 18168 12
15800.2.di χ15800(1049,)\chi_{15800}(1049, \cdot) n/a 4320 12
15800.2.dl χ15800(181,)\chi_{15800}(181, \cdot) n/a 19168 8
15800.2.dn χ15800(3611,)\chi_{15800}(3611, \cdot) n/a 19168 8
15800.2.dr χ15800(529,)\chi_{15800}(529, \cdot) n/a 4800 8
15800.2.dx χ15800(2109,)\chi_{15800}(2109, \cdot) n/a 19168 8
15800.2.dz χ15800(419,)\chi_{15800}(419, \cdot) n/a 19168 8
15800.2.ea χ15800(801,)\chi_{15800}(801, \cdot) n/a 9120 24
15800.2.eb χ15800(57,)\chi_{15800}(57, \cdot) n/a 8640 24
15800.2.ed χ15800(907,)\chi_{15800}(907, \cdot) n/a 34464 24
15800.2.ei χ15800(93,)\chi_{15800}(93, \cdot) n/a 34464 24
15800.2.el χ15800(3453,)\chi_{15800}(3453, \cdot) n/a 38336 16
15800.2.eo χ15800(577,)\chi_{15800}(577, \cdot) n/a 9600 16
15800.2.eq χ15800(1003,)\chi_{15800}(1003, \cdot) n/a 38336 16
15800.2.er χ15800(441,)\chi_{15800}(441, \cdot) n/a 28800 48
15800.2.eu χ15800(49,)\chi_{15800}(49, \cdot) n/a 8640 24
15800.2.ew χ15800(901,)\chi_{15800}(901, \cdot) n/a 36336 24
15800.2.ey χ15800(1251,)\chi_{15800}(1251, \cdot) n/a 36336 24
15800.2.fb χ15800(1749,)\chi_{15800}(1749, \cdot) n/a 34464 24
15800.2.fd χ15800(899,)\chi_{15800}(899, \cdot) n/a 34464 24
15800.2.fh χ15800(21,)\chi_{15800}(21, \cdot) n/a 115008 48
15800.2.fj χ15800(91,)\chi_{15800}(91, \cdot) n/a 115008 48
15800.2.fn χ15800(89,)\chi_{15800}(89, \cdot) n/a 28800 48
15800.2.ft χ15800(1389,)\chi_{15800}(1389, \cdot) n/a 115008 48
15800.2.fv χ15800(219,)\chi_{15800}(219, \cdot) n/a 115008 48
15800.2.fy χ15800(1093,)\chi_{15800}(1093, \cdot) n/a 68928 48
15800.2.gb χ15800(193,)\chi_{15800}(193, \cdot) n/a 17280 48
15800.2.gd χ15800(643,)\chi_{15800}(643, \cdot) n/a 68928 48
15800.2.ge χ15800(81,)\chi_{15800}(81, \cdot) n/a 57600 96
15800.2.gf χ15800(173,)\chi_{15800}(173, \cdot) n/a 230016 96
15800.2.gk χ15800(67,)\chi_{15800}(67, \cdot) n/a 230016 96
15800.2.gm χ15800(17,)\chi_{15800}(17, \cdot) n/a 57600 96
15800.2.gn χ15800(59,)\chi_{15800}(59, \cdot) n/a 230016 96
15800.2.gp χ15800(189,)\chi_{15800}(189, \cdot) n/a 230016 96
15800.2.gv χ15800(9,)\chi_{15800}(9, \cdot) n/a 57600 96
15800.2.gz χ15800(211,)\chi_{15800}(211, \cdot) n/a 230016 96
15800.2.hb χ15800(341,)\chi_{15800}(341, \cdot) n/a 230016 96
15800.2.hc χ15800(83,)\chi_{15800}(83, \cdot) n/a 460032 192
15800.2.he χ15800(113,)\chi_{15800}(113, \cdot) n/a 115200 192
15800.2.hh χ15800(37,)\chi_{15800}(37, \cdot) n/a 460032 192

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(15800))S_{2}^{\mathrm{old}}(\Gamma_1(15800)) into lower level spaces

S2old(Γ1(15800)) S_{2}^{\mathrm{old}}(\Gamma_1(15800)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))24^{\oplus 24}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))18^{\oplus 18}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))12^{\oplus 12}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))16^{\oplus 16}\oplusS2new(Γ1(8))S_{2}^{\mathrm{new}}(\Gamma_1(8))6^{\oplus 6}\oplusS2new(Γ1(10))S_{2}^{\mathrm{new}}(\Gamma_1(10))12^{\oplus 12}\oplusS2new(Γ1(20))S_{2}^{\mathrm{new}}(\Gamma_1(20))8^{\oplus 8}\oplusS2new(Γ1(25))S_{2}^{\mathrm{new}}(\Gamma_1(25))8^{\oplus 8}\oplusS2new(Γ1(40))S_{2}^{\mathrm{new}}(\Gamma_1(40))4^{\oplus 4}\oplusS2new(Γ1(50))S_{2}^{\mathrm{new}}(\Gamma_1(50))6^{\oplus 6}\oplusS2new(Γ1(79))S_{2}^{\mathrm{new}}(\Gamma_1(79))12^{\oplus 12}\oplusS2new(Γ1(100))S_{2}^{\mathrm{new}}(\Gamma_1(100))4^{\oplus 4}\oplusS2new(Γ1(158))S_{2}^{\mathrm{new}}(\Gamma_1(158))9^{\oplus 9}\oplusS2new(Γ1(200))S_{2}^{\mathrm{new}}(\Gamma_1(200))2^{\oplus 2}\oplusS2new(Γ1(316))S_{2}^{\mathrm{new}}(\Gamma_1(316))6^{\oplus 6}\oplusS2new(Γ1(395))S_{2}^{\mathrm{new}}(\Gamma_1(395))8^{\oplus 8}\oplusS2new(Γ1(632))S_{2}^{\mathrm{new}}(\Gamma_1(632))3^{\oplus 3}\oplusS2new(Γ1(790))S_{2}^{\mathrm{new}}(\Gamma_1(790))6^{\oplus 6}\oplusS2new(Γ1(1580))S_{2}^{\mathrm{new}}(\Gamma_1(1580))4^{\oplus 4}\oplusS2new(Γ1(1975))S_{2}^{\mathrm{new}}(\Gamma_1(1975))4^{\oplus 4}\oplusS2new(Γ1(3160))S_{2}^{\mathrm{new}}(\Gamma_1(3160))2^{\oplus 2}\oplusS2new(Γ1(3950))S_{2}^{\mathrm{new}}(\Gamma_1(3950))3^{\oplus 3}\oplusS2new(Γ1(7900))S_{2}^{\mathrm{new}}(\Gamma_1(7900))2^{\oplus 2}