Properties

Label 15800.he
Modulus $15800$
Conductor $1975$
Order $780$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15800, base_ring=CyclotomicField(780)) M = H._module chi = DirichletCharacter(H, M([0,0,741,250])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(113,15800)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(15800\)
Conductor: \(1975\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(780\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1975.bv
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{780})$
Fixed field: Number field defined by a degree 780 polynomial (not computed)

First 21 of 192 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{15800}(113,\cdot)\) \(1\) \(1\) \(e\left(\frac{757}{780}\right)\) \(e\left(\frac{115}{156}\right)\) \(e\left(\frac{367}{390}\right)\) \(e\left(\frac{194}{195}\right)\) \(e\left(\frac{739}{780}\right)\) \(e\left(\frac{21}{260}\right)\) \(e\left(\frac{139}{390}\right)\) \(e\left(\frac{46}{65}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{237}{260}\right)\)
\(\chi_{15800}(153,\cdot)\) \(1\) \(1\) \(e\left(\frac{581}{780}\right)\) \(e\left(\frac{59}{156}\right)\) \(e\left(\frac{191}{390}\right)\) \(e\left(\frac{127}{195}\right)\) \(e\left(\frac{527}{780}\right)\) \(e\left(\frac{193}{260}\right)\) \(e\left(\frac{287}{390}\right)\) \(e\left(\frac{8}{65}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{61}{260}\right)\)
\(\chi_{15800}(217,\cdot)\) \(1\) \(1\) \(e\left(\frac{739}{780}\right)\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{349}{390}\right)\) \(e\left(\frac{83}{195}\right)\) \(e\left(\frac{673}{780}\right)\) \(e\left(\frac{207}{260}\right)\) \(e\left(\frac{163}{390}\right)\) \(e\left(\frac{17}{65}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{219}{260}\right)\)
\(\chi_{15800}(233,\cdot)\) \(1\) \(1\) \(e\left(\frac{509}{780}\right)\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{119}{390}\right)\) \(e\left(\frac{73}{195}\right)\) \(e\left(\frac{263}{780}\right)\) \(e\left(\frac{157}{260}\right)\) \(e\left(\frac{383}{390}\right)\) \(e\left(\frac{22}{65}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{249}{260}\right)\)
\(\chi_{15800}(297,\cdot)\) \(1\) \(1\) \(e\left(\frac{671}{780}\right)\) \(e\left(\frac{77}{156}\right)\) \(e\left(\frac{281}{390}\right)\) \(e\left(\frac{97}{195}\right)\) \(e\left(\frac{77}{780}\right)\) \(e\left(\frac{43}{260}\right)\) \(e\left(\frac{167}{390}\right)\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{151}{260}\right)\)
\(\chi_{15800}(353,\cdot)\) \(1\) \(1\) \(e\left(\frac{541}{780}\right)\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{151}{390}\right)\) \(e\left(\frac{32}{195}\right)\) \(e\left(\frac{727}{780}\right)\) \(e\left(\frac{173}{260}\right)\) \(e\left(\frac{37}{390}\right)\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{21}{260}\right)\)
\(\chi_{15800}(513,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{780}\right)\) \(e\left(\frac{83}{156}\right)\) \(e\left(\frac{77}{390}\right)\) \(e\left(\frac{139}{195}\right)\) \(e\left(\frac{239}{780}\right)\) \(e\left(\frac{201}{260}\right)\) \(e\left(\frac{179}{390}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{77}{260}\right)\)
\(\chi_{15800}(537,\cdot)\) \(1\) \(1\) \(e\left(\frac{667}{780}\right)\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{277}{390}\right)\) \(e\left(\frac{29}{195}\right)\) \(e\left(\frac{409}{780}\right)\) \(e\left(\frac{171}{260}\right)\) \(e\left(\frac{259}{390}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{147}{260}\right)\)
\(\chi_{15800}(777,\cdot)\) \(1\) \(1\) \(e\left(\frac{223}{780}\right)\) \(e\left(\frac{133}{156}\right)\) \(e\left(\frac{223}{390}\right)\) \(e\left(\frac{86}{195}\right)\) \(e\left(\frac{601}{780}\right)\) \(e\left(\frac{79}{260}\right)\) \(e\left(\frac{331}{390}\right)\) \(e\left(\frac{9}{65}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{223}{260}\right)\)
\(\chi_{15800}(833,\cdot)\) \(1\) \(1\) \(e\left(\frac{529}{780}\right)\) \(e\left(\frac{7}{156}\right)\) \(e\left(\frac{139}{390}\right)\) \(e\left(\frac{23}{195}\right)\) \(e\left(\frac{163}{780}\right)\) \(e\left(\frac{37}{260}\right)\) \(e\left(\frac{313}{390}\right)\) \(e\left(\frac{47}{65}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{9}{260}\right)\)
\(\chi_{15800}(897,\cdot)\) \(1\) \(1\) \(e\left(\frac{571}{780}\right)\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{181}{390}\right)\) \(e\left(\frac{152}{195}\right)\) \(e\left(\frac{577}{780}\right)\) \(e\left(\frac{123}{260}\right)\) \(e\left(\frac{127}{390}\right)\) \(e\left(\frac{28}{65}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{51}{260}\right)\)
\(\chi_{15800}(937,\cdot)\) \(1\) \(1\) \(e\left(\frac{407}{780}\right)\) \(e\left(\frac{149}{156}\right)\) \(e\left(\frac{17}{390}\right)\) \(e\left(\frac{94}{195}\right)\) \(e\left(\frac{149}{780}\right)\) \(e\left(\frac{171}{260}\right)\) \(e\left(\frac{389}{390}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{147}{260}\right)\)
\(\chi_{15800}(977,\cdot)\) \(1\) \(1\) \(e\left(\frac{383}{780}\right)\) \(e\left(\frac{113}{156}\right)\) \(e\left(\frac{383}{390}\right)\) \(e\left(\frac{76}{195}\right)\) \(e\left(\frac{581}{780}\right)\) \(e\left(\frac{159}{260}\right)\) \(e\left(\frac{161}{390}\right)\) \(e\left(\frac{14}{65}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{123}{260}\right)\)
\(\chi_{15800}(1033,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{780}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{89}{390}\right)\) \(e\left(\frac{148}{195}\right)\) \(e\left(\frac{23}{780}\right)\) \(e\left(\frac{77}{260}\right)\) \(e\left(\frac{293}{390}\right)\) \(e\left(\frac{17}{65}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{89}{260}\right)\)
\(\chi_{15800}(1097,\cdot)\) \(1\) \(1\) \(e\left(\frac{371}{780}\right)\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{371}{390}\right)\) \(e\left(\frac{67}{195}\right)\) \(e\left(\frac{17}{780}\right)\) \(e\left(\frac{23}{260}\right)\) \(e\left(\frac{47}{390}\right)\) \(e\left(\frac{38}{65}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{111}{260}\right)\)
\(\chi_{15800}(1113,\cdot)\) \(1\) \(1\) \(e\left(\frac{257}{780}\right)\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{257}{390}\right)\) \(e\left(\frac{79}{195}\right)\) \(e\left(\frac{119}{780}\right)\) \(e\left(\frac{161}{260}\right)\) \(e\left(\frac{329}{390}\right)\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{257}{260}\right)\)
\(\chi_{15800}(1153,\cdot)\) \(1\) \(1\) \(e\left(\frac{161}{780}\right)\) \(e\left(\frac{131}{156}\right)\) \(e\left(\frac{161}{390}\right)\) \(e\left(\frac{7}{195}\right)\) \(e\left(\frac{287}{780}\right)\) \(e\left(\frac{113}{260}\right)\) \(e\left(\frac{197}{390}\right)\) \(e\left(\frac{3}{65}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{161}{260}\right)\)
\(\chi_{15800}(1233,\cdot)\) \(1\) \(1\) \(e\left(\frac{209}{780}\right)\) \(e\left(\frac{47}{156}\right)\) \(e\left(\frac{209}{390}\right)\) \(e\left(\frac{43}{195}\right)\) \(e\left(\frac{203}{780}\right)\) \(e\left(\frac{137}{260}\right)\) \(e\left(\frac{263}{390}\right)\) \(e\left(\frac{37}{65}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{209}{260}\right)\)
\(\chi_{15800}(1377,\cdot)\) \(1\) \(1\) \(e\left(\frac{523}{780}\right)\) \(e\left(\frac{37}{156}\right)\) \(e\left(\frac{133}{390}\right)\) \(e\left(\frac{116}{195}\right)\) \(e\left(\frac{661}{780}\right)\) \(e\left(\frac{99}{260}\right)\) \(e\left(\frac{61}{390}\right)\) \(e\left(\frac{59}{65}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{3}{260}\right)\)
\(\chi_{15800}(1417,\cdot)\) \(1\) \(1\) \(e\left(\frac{659}{780}\right)\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{269}{390}\right)\) \(e\left(\frac{88}{195}\right)\) \(e\left(\frac{293}{780}\right)\) \(e\left(\frac{167}{260}\right)\) \(e\left(\frac{53}{390}\right)\) \(e\left(\frac{47}{65}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{139}{260}\right)\)
\(\chi_{15800}(1497,\cdot)\) \(1\) \(1\) \(e\left(\frac{431}{780}\right)\) \(e\left(\frac{29}{156}\right)\) \(e\left(\frac{41}{390}\right)\) \(e\left(\frac{112}{195}\right)\) \(e\left(\frac{497}{780}\right)\) \(e\left(\frac{183}{260}\right)\) \(e\left(\frac{227}{390}\right)\) \(e\left(\frac{48}{65}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{171}{260}\right)\)