Properties

Label 200.2
Level 200
Weight 2
Dimension 581
Nonzero newspaces 10
Newform subspaces 35
Sturm bound 4800
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 35 \)
Sturm bound: \(4800\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(200))\).

Total New Old
Modular forms 1368 663 705
Cusp forms 1033 581 452
Eisenstein series 335 82 253

Trace form

\( 581 q - 12 q^{2} - 12 q^{3} - 12 q^{4} + q^{5} - 20 q^{6} - 4 q^{7} - 12 q^{8} - 14 q^{9} - 16 q^{10} - 12 q^{11} - 36 q^{12} + 4 q^{13} - 36 q^{14} - 24 q^{15} - 52 q^{16} - 28 q^{17} - 68 q^{18} - 44 q^{19}+ \cdots + 188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(200))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
200.2.a \(\chi_{200}(1, \cdot)\) 200.2.a.a 1 1
200.2.a.b 1
200.2.a.c 1
200.2.a.d 1
200.2.a.e 1
200.2.c \(\chi_{200}(49, \cdot)\) 200.2.c.a 2 1
200.2.c.b 2
200.2.d \(\chi_{200}(101, \cdot)\) 200.2.d.a 2 1
200.2.d.b 2
200.2.d.c 2
200.2.d.d 2
200.2.d.e 4
200.2.d.f 4
200.2.f \(\chi_{200}(149, \cdot)\) 200.2.f.a 2 1
200.2.f.b 2
200.2.f.c 4
200.2.f.d 4
200.2.f.e 4
200.2.j \(\chi_{200}(7, \cdot)\) None 0 2
200.2.k \(\chi_{200}(43, \cdot)\) 200.2.k.a 2 2
200.2.k.b 2
200.2.k.c 2
200.2.k.d 2
200.2.k.e 4
200.2.k.f 4
200.2.k.g 8
200.2.k.h 8
200.2.m \(\chi_{200}(41, \cdot)\) 200.2.m.a 4 4
200.2.m.b 8
200.2.m.c 16
200.2.o \(\chi_{200}(29, \cdot)\) 200.2.o.a 112 4
200.2.q \(\chi_{200}(9, \cdot)\) 200.2.q.a 32 4
200.2.t \(\chi_{200}(21, \cdot)\) 200.2.t.a 112 4
200.2.v \(\chi_{200}(3, \cdot)\) 200.2.v.a 8 8
200.2.v.b 8
200.2.v.c 208
200.2.w \(\chi_{200}(23, \cdot)\) None 0 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(200))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(200)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 2}\)