Newspace parameters
Level: | \( N \) | \(=\) | \( 158 = 2 \cdot 79 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 158.e (of order \(13\), degree \(12\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.26163635194\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{13})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{13}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21.1 | −0.748511 | + | 0.663123i | −0.972085 | + | 1.40831i | 0.120537 | − | 0.992709i | 4.21009 | − | 1.03769i | −0.206265 | − | 1.69874i | −0.541791 | + | 0.784920i | 0.568065 | + | 0.822984i | 0.0254326 | + | 0.0670603i | −2.46318 | + | 3.56853i |
21.2 | −0.748511 | + | 0.663123i | 0.0800968 | − | 0.116040i | 0.120537 | − | 0.992709i | −2.53849 | + | 0.625681i | 0.0169956 | + | 0.139971i | −2.24316 | + | 3.24977i | 0.568065 | + | 0.822984i | 1.05676 | + | 2.78646i | 1.48518 | − | 2.15166i |
21.3 | −0.748511 | + | 0.663123i | 0.298584 | − | 0.432573i | 0.120537 | − | 0.992709i | −0.874632 | + | 0.215577i | 0.0633559 | + | 0.521783i | 2.93311 | − | 4.24935i | 0.568065 | + | 0.822984i | 0.965847 | + | 2.54673i | 0.511717 | − | 0.741350i |
21.4 | −0.748511 | + | 0.663123i | 1.72953 | − | 2.50566i | 0.120537 | − | 0.992709i | 1.08849 | − | 0.268288i | 0.366987 | + | 3.02241i | −1.08132 | + | 1.56657i | 0.568065 | + | 0.822984i | −2.22324 | − | 5.86221i | −0.636836 | + | 0.922617i |
65.1 | −0.970942 | + | 0.239316i | −2.36412 | − | 2.09443i | 0.885456 | − | 0.464723i | 0.339740 | + | 0.492198i | 2.79665 | + | 1.46780i | −2.09534 | − | 1.85631i | −0.748511 | + | 0.663123i | 0.840827 | + | 6.92483i | −0.447659 | − | 0.396591i |
65.2 | −0.970942 | + | 0.239316i | −0.718589 | − | 0.636615i | 0.885456 | − | 0.464723i | −0.0135650 | − | 0.0196524i | 0.850060 | + | 0.446146i | 1.84669 | + | 1.63602i | −0.748511 | + | 0.663123i | −0.250518 | − | 2.06320i | 0.0178740 | + | 0.0158350i |
65.3 | −0.970942 | + | 0.239316i | 0.371738 | + | 0.329331i | 0.885456 | − | 0.464723i | −2.16941 | − | 3.14293i | −0.439750 | − | 0.230799i | −1.77830 | − | 1.57544i | −0.748511 | + | 0.663123i | −0.331880 | − | 2.73328i | 2.85852 | + | 2.53243i |
65.4 | −0.970942 | + | 0.239316i | 1.21395 | + | 1.07547i | 0.885456 | − | 0.464723i | 2.48863 | + | 3.60540i | −1.43605 | − | 0.753697i | −2.49643 | − | 2.21164i | −0.748511 | + | 0.663123i | −0.0445623 | − | 0.367004i | −3.27914 | − | 2.90507i |
67.1 | 0.120537 | + | 0.992709i | −1.14543 | + | 3.02024i | −0.970942 | + | 0.239316i | 1.75811 | + | 0.922729i | −3.13628 | − | 0.773025i | 0.00805121 | − | 0.0212293i | −0.354605 | − | 0.935016i | −5.56431 | − | 4.92955i | −0.704084 | + | 1.85652i |
67.2 | 0.120537 | + | 0.992709i | −0.410768 | + | 1.08311i | −0.970942 | + | 0.239316i | −3.00343 | − | 1.57632i | −1.12472 | − | 0.277219i | −1.51386 | + | 3.99172i | −0.354605 | − | 0.935016i | 1.24114 | + | 1.09956i | 1.20280 | − | 3.17153i |
67.3 | 0.120537 | + | 0.992709i | 0.254860 | − | 0.672010i | −0.970942 | + | 0.239316i | 1.37518 | + | 0.721749i | 0.697830 | + | 0.172000i | −0.934864 | + | 2.46503i | −0.354605 | − | 0.935016i | 1.85889 | + | 1.64683i | −0.550727 | + | 1.45215i |
67.4 | 0.120537 | + | 0.992709i | 0.592124 | − | 1.56130i | −0.970942 | + | 0.239316i | 1.43820 | + | 0.754826i | 1.62129 | + | 0.399613i | 1.16412 | − | 3.06952i | −0.354605 | − | 0.935016i | 0.158475 | + | 0.140397i | −0.575967 | + | 1.51870i |
87.1 | −0.354605 | + | 0.935016i | −1.44243 | − | 0.757048i | −0.748511 | − | 0.663123i | 0.0397927 | − | 0.327722i | 1.21935 | − | 1.08025i | −2.46280 | − | 1.29258i | 0.885456 | − | 0.464723i | −0.196700 | − | 0.284970i | 0.292315 | + | 0.153419i |
87.2 | −0.354605 | + | 0.935016i | 0.210806 | + | 0.110640i | −0.748511 | − | 0.663123i | 0.420007 | − | 3.45907i | −0.178203 | + | 0.157874i | 4.05051 | + | 2.12587i | 0.885456 | − | 0.464723i | −1.67200 | − | 2.42230i | 3.08535 | + | 1.61932i |
87.3 | −0.354605 | + | 0.935016i | 0.295387 | + | 0.155031i | −0.748511 | − | 0.663123i | −0.452351 | + | 3.72544i | −0.249702 | + | 0.221217i | −0.130033 | − | 0.0682466i | 0.885456 | − | 0.464723i | −1.64098 | − | 2.37736i | −3.32295 | − | 1.74402i |
87.4 | −0.354605 | + | 0.935016i | 2.70715 | + | 1.42082i | −0.748511 | − | 0.663123i | 0.0216091 | − | 0.177967i | −2.28846 | + | 2.02740i | −0.585393 | − | 0.307238i | 0.885456 | − | 0.464723i | 3.60574 | + | 5.22382i | 0.158739 | + | 0.0833128i |
89.1 | −0.354605 | − | 0.935016i | −1.44243 | + | 0.757048i | −0.748511 | + | 0.663123i | 0.0397927 | + | 0.327722i | 1.21935 | + | 1.08025i | −2.46280 | + | 1.29258i | 0.885456 | + | 0.464723i | −0.196700 | + | 0.284970i | 0.292315 | − | 0.153419i |
89.2 | −0.354605 | − | 0.935016i | 0.210806 | − | 0.110640i | −0.748511 | + | 0.663123i | 0.420007 | + | 3.45907i | −0.178203 | − | 0.157874i | 4.05051 | − | 2.12587i | 0.885456 | + | 0.464723i | −1.67200 | + | 2.42230i | 3.08535 | − | 1.61932i |
89.3 | −0.354605 | − | 0.935016i | 0.295387 | − | 0.155031i | −0.748511 | + | 0.663123i | −0.452351 | − | 3.72544i | −0.249702 | − | 0.221217i | −0.130033 | + | 0.0682466i | 0.885456 | + | 0.464723i | −1.64098 | + | 2.37736i | −3.32295 | + | 1.74402i |
89.4 | −0.354605 | − | 0.935016i | 2.70715 | − | 1.42082i | −0.748511 | + | 0.663123i | 0.0216091 | + | 0.177967i | −2.28846 | − | 2.02740i | −0.585393 | + | 0.307238i | 0.885456 | + | 0.464723i | 3.60574 | − | 5.22382i | 0.158739 | − | 0.0833128i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
79.e | even | 13 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 158.2.e.a | ✓ | 48 |
79.e | even | 13 | 1 | inner | 158.2.e.a | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
158.2.e.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
158.2.e.a | ✓ | 48 | 79.e | even | 13 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{48} + 2 T_{3}^{47} + 17 T_{3}^{46} + 33 T_{3}^{45} + 79 T_{3}^{44} + 262 T_{3}^{43} + \cdots + 32761 \)
acting on \(S_{2}^{\mathrm{new}}(158, [\chi])\).