Defining parameters
Level: | \( N \) | \(=\) | \( 158 = 2 \cdot 79 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 158.e (of order \(13\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 79 \) |
Character field: | \(\Q(\zeta_{13})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(158, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 264 | 96 | 168 |
Cusp forms | 216 | 96 | 120 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(158, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
158.2.e.a | $48$ | $1.262$ | None | \(-4\) | \(-2\) | \(11\) | \(-8\) | ||
158.2.e.b | $48$ | $1.262$ | None | \(4\) | \(0\) | \(-11\) | \(-4\) |
Decomposition of \(S_{2}^{\mathrm{old}}(158, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(158, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(79, [\chi])\)\(^{\oplus 2}\)