Properties

Label 158.2.e
Level $158$
Weight $2$
Character orbit 158.e
Rep. character $\chi_{158}(21,\cdot)$
Character field $\Q(\zeta_{13})$
Dimension $96$
Newform subspaces $2$
Sturm bound $40$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 158 = 2 \cdot 79 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 158.e (of order \(13\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 79 \)
Character field: \(\Q(\zeta_{13})\)
Newform subspaces: \( 2 \)
Sturm bound: \(40\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(158, [\chi])\).

Total New Old
Modular forms 264 96 168
Cusp forms 216 96 120
Eisenstein series 48 0 48

Trace form

\( 96 q - 2 q^{3} - 8 q^{4} - 2 q^{6} - 12 q^{7} - 20 q^{9} - 4 q^{10} - 12 q^{11} - 2 q^{12} - 12 q^{13} - 4 q^{14} + 20 q^{15} - 8 q^{16} - 20 q^{17} - 16 q^{18} - 16 q^{19} + 12 q^{21} + 22 q^{22} - 20 q^{23}+ \cdots - 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(158, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
158.2.e.a 158.e 79.e $48$ $1.262$ None 158.2.e.a \(-4\) \(-2\) \(11\) \(-8\) $\mathrm{SU}(2)[C_{13}]$
158.2.e.b 158.e 79.e $48$ $1.262$ None 158.2.e.b \(4\) \(0\) \(-11\) \(-4\) $\mathrm{SU}(2)[C_{13}]$

Decomposition of \(S_{2}^{\mathrm{old}}(158, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(158, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(79, [\chi])\)\(^{\oplus 2}\)