Properties

Label 156.3.l.c.47.6
Level $156$
Weight $3$
Character 156.47
Analytic conductor $4.251$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [156,3,Mod(47,156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("156.47"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(156, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 156.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,-36,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.25069212402\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.6
Character \(\chi\) \(=\) 156.47
Dual form 156.3.l.c.83.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.87876 + 0.685761i) q^{2} +(2.74902 + 1.20121i) q^{3} +(3.05946 - 2.57676i) q^{4} +(-2.23749 + 2.23749i) q^{5} +(-5.98848 - 0.371622i) q^{6} +(1.91723 + 1.91723i) q^{7} +(-3.98095 + 6.93916i) q^{8} +(6.11417 + 6.60431i) q^{9} +(2.66932 - 5.73809i) q^{10} +(-6.43837 + 6.43837i) q^{11} +(11.5058 - 3.40848i) q^{12} +(12.9887 - 0.543102i) q^{13} +(-4.91678 - 2.28725i) q^{14} +(-8.83861 + 3.46320i) q^{15} +(2.72064 - 15.7670i) q^{16} +7.93049 q^{17} +(-16.0160 - 8.21504i) q^{18} +(-13.1475 + 13.1475i) q^{19} +(-1.08005 + 12.6110i) q^{20} +(2.96749 + 7.57350i) q^{21} +(7.68096 - 16.5113i) q^{22} +13.4703i q^{23} +(-19.2791 + 14.2939i) q^{24} +14.9872i q^{25} +(-24.0301 + 9.92747i) q^{26} +(8.87477 + 25.4998i) q^{27} +(10.8059 + 0.925460i) q^{28} -10.9793i q^{29} +(14.2307 - 12.5677i) q^{30} +(-4.01999 + 4.01999i) q^{31} +(5.70096 + 31.4881i) q^{32} +(-25.4330 + 9.96532i) q^{33} +(-14.8995 + 5.43842i) q^{34} -8.57958 q^{35} +(35.7238 + 4.45091i) q^{36} +(1.70839 - 1.70839i) q^{37} +(15.6849 - 33.7170i) q^{38} +(36.3584 + 14.1091i) q^{39} +(-6.61898 - 24.4337i) q^{40} +(35.1614 - 35.1614i) q^{41} +(-10.7688 - 12.1938i) q^{42} -46.1935 q^{43} +(-3.10784 + 36.2881i) q^{44} +(-28.4575 - 1.09668i) q^{45} +(-9.23738 - 25.3074i) q^{46} +(45.9388 - 45.9388i) q^{47} +(26.4186 - 40.0756i) q^{48} -41.6485i q^{49} +(-10.2777 - 28.1574i) q^{50} +(21.8010 + 9.52621i) q^{51} +(38.3389 - 35.1302i) q^{52} -96.7348i q^{53} +(-34.1603 - 41.8219i) q^{54} -28.8116i q^{55} +(-20.9364 + 5.67157i) q^{56} +(-51.9357 + 20.3497i) q^{57} +(7.52915 + 20.6274i) q^{58} +(-19.8925 + 19.8925i) q^{59} +(-18.1176 + 33.3705i) q^{60} +107.892 q^{61} +(4.79584 - 10.3094i) q^{62} +(-0.939704 + 24.3843i) q^{63} +(-32.3040 - 55.2490i) q^{64} +(-27.8468 + 30.2772i) q^{65} +(40.9487 - 36.1634i) q^{66} +(57.5421 - 57.5421i) q^{67} +(24.2631 - 20.4350i) q^{68} +(-16.1807 + 37.0300i) q^{69} +(16.1190 - 5.88354i) q^{70} +(15.3918 + 15.3918i) q^{71} +(-70.1686 + 16.1358i) q^{72} +(-52.5418 + 52.5418i) q^{73} +(-2.03811 + 4.38120i) q^{74} +(-18.0029 + 41.2002i) q^{75} +(-6.34639 + 74.1023i) q^{76} -24.6877 q^{77} +(-77.9841 - 1.57452i) q^{78} -46.1756i q^{79} +(29.1911 + 41.3660i) q^{80} +(-6.23379 + 80.7598i) q^{81} +(-41.9475 + 90.1721i) q^{82} +(-88.7459 - 88.7459i) q^{83} +(28.5940 + 15.5243i) q^{84} +(-17.7444 + 17.7444i) q^{85} +(86.7865 - 31.6777i) q^{86} +(13.1884 - 30.1822i) q^{87} +(-19.0461 - 70.3077i) q^{88} +(96.2535 + 96.2535i) q^{89} +(54.2168 - 17.4547i) q^{90} +(25.9435 + 23.8610i) q^{91} +(34.7096 + 41.2118i) q^{92} +(-15.8799 + 6.22216i) q^{93} +(-54.8049 + 117.811i) q^{94} -58.8349i q^{95} +(-22.1519 + 93.4093i) q^{96} +(-42.4947 - 42.4947i) q^{97} +(28.5609 + 78.2474i) q^{98} +(-81.8863 - 3.15568i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 36 q^{6} - 64 q^{9} - 8 q^{13} + 80 q^{16} + 48 q^{18} + 8 q^{21} + 124 q^{24} - 8 q^{28} + 24 q^{33} + 64 q^{34} - 128 q^{37} - 136 q^{40} - 140 q^{42} - 160 q^{45} + 88 q^{46} - 108 q^{48} - 320 q^{52}+ \cdots + 336 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.87876 + 0.685761i −0.939379 + 0.342880i
\(3\) 2.74902 + 1.20121i 0.916339 + 0.400404i
\(4\) 3.05946 2.57676i 0.764866 0.644189i
\(5\) −2.23749 + 2.23749i −0.447499 + 0.447499i −0.894522 0.447024i \(-0.852484\pi\)
0.447024 + 0.894522i \(0.352484\pi\)
\(6\) −5.98848 0.371622i −0.998080 0.0619370i
\(7\) 1.91723 + 1.91723i 0.273890 + 0.273890i 0.830664 0.556774i \(-0.187961\pi\)
−0.556774 + 0.830664i \(0.687961\pi\)
\(8\) −3.98095 + 6.93916i −0.497619 + 0.867396i
\(9\) 6.11417 + 6.60431i 0.679353 + 0.733812i
\(10\) 2.66932 5.73809i 0.266932 0.573809i
\(11\) −6.43837 + 6.43837i −0.585306 + 0.585306i −0.936357 0.351050i \(-0.885825\pi\)
0.351050 + 0.936357i \(0.385825\pi\)
\(12\) 11.5058 3.40848i 0.958813 0.284040i
\(13\) 12.9887 0.543102i 0.999127 0.0417771i
\(14\) −4.91678 2.28725i −0.351198 0.163375i
\(15\) −8.83861 + 3.46320i −0.589241 + 0.230880i
\(16\) 2.72064 15.7670i 0.170040 0.985437i
\(17\) 7.93049 0.466499 0.233250 0.972417i \(-0.425064\pi\)
0.233250 + 0.972417i \(0.425064\pi\)
\(18\) −16.0160 8.21504i −0.889779 0.456391i
\(19\) −13.1475 + 13.1475i −0.691974 + 0.691974i −0.962666 0.270692i \(-0.912748\pi\)
0.270692 + 0.962666i \(0.412748\pi\)
\(20\) −1.08005 + 12.6110i −0.0540026 + 0.630550i
\(21\) 2.96749 + 7.57350i 0.141309 + 0.360643i
\(22\) 7.68096 16.5113i 0.349134 0.750514i
\(23\) 13.4703i 0.585664i 0.956164 + 0.292832i \(0.0945977\pi\)
−0.956164 + 0.292832i \(0.905402\pi\)
\(24\) −19.2791 + 14.2939i −0.803297 + 0.595579i
\(25\) 14.9872i 0.599490i
\(26\) −24.0301 + 9.92747i −0.924234 + 0.381826i
\(27\) 8.87477 + 25.4998i 0.328695 + 0.944436i
\(28\) 10.8059 + 0.925460i 0.385926 + 0.0330521i
\(29\) 10.9793i 0.378595i −0.981920 0.189298i \(-0.939379\pi\)
0.981920 0.189298i \(-0.0606211\pi\)
\(30\) 14.2307 12.5677i 0.474356 0.418923i
\(31\) −4.01999 + 4.01999i −0.129677 + 0.129677i −0.768966 0.639289i \(-0.779229\pi\)
0.639289 + 0.768966i \(0.279229\pi\)
\(32\) 5.70096 + 31.4881i 0.178155 + 0.984002i
\(33\) −25.4330 + 9.96532i −0.770698 + 0.301979i
\(34\) −14.8995 + 5.43842i −0.438220 + 0.159954i
\(35\) −8.57958 −0.245131
\(36\) 35.7238 + 4.45091i 0.992328 + 0.123636i
\(37\) 1.70839 1.70839i 0.0461727 0.0461727i −0.683643 0.729816i \(-0.739606\pi\)
0.729816 + 0.683643i \(0.239606\pi\)
\(38\) 15.6849 33.7170i 0.412762 0.887290i
\(39\) 36.3584 + 14.1091i 0.932266 + 0.361773i
\(40\) −6.61898 24.4337i −0.165474 0.610842i
\(41\) 35.1614 35.1614i 0.857595 0.857595i −0.133459 0.991054i \(-0.542608\pi\)
0.991054 + 0.133459i \(0.0426084\pi\)
\(42\) −10.7688 12.1938i −0.256400 0.290328i
\(43\) −46.1935 −1.07427 −0.537134 0.843497i \(-0.680493\pi\)
−0.537134 + 0.843497i \(0.680493\pi\)
\(44\) −3.10784 + 36.2881i −0.0706328 + 0.824729i
\(45\) −28.4575 1.09668i −0.632389 0.0243706i
\(46\) −9.23738 25.3074i −0.200813 0.550160i
\(47\) 45.9388 45.9388i 0.977422 0.977422i −0.0223285 0.999751i \(-0.507108\pi\)
0.999751 + 0.0223285i \(0.00710798\pi\)
\(48\) 26.4186 40.0756i 0.550388 0.834909i
\(49\) 41.6485i 0.849968i
\(50\) −10.2777 28.1574i −0.205553 0.563148i
\(51\) 21.8010 + 9.52621i 0.427471 + 0.186788i
\(52\) 38.3389 35.1302i 0.737286 0.675581i
\(53\) 96.7348i 1.82518i −0.408870 0.912592i \(-0.634077\pi\)
0.408870 0.912592i \(-0.365923\pi\)
\(54\) −34.1603 41.8219i −0.632598 0.774480i
\(55\) 28.8116i 0.523847i
\(56\) −20.9364 + 5.67157i −0.373864 + 0.101278i
\(57\) −51.9357 + 20.3497i −0.911152 + 0.357013i
\(58\) 7.52915 + 20.6274i 0.129813 + 0.355645i
\(59\) −19.8925 + 19.8925i −0.337162 + 0.337162i −0.855298 0.518136i \(-0.826626\pi\)
0.518136 + 0.855298i \(0.326626\pi\)
\(60\) −18.1176 + 33.3705i −0.301960 + 0.556175i
\(61\) 107.892 1.76872 0.884360 0.466805i \(-0.154595\pi\)
0.884360 + 0.466805i \(0.154595\pi\)
\(62\) 4.79584 10.3094i 0.0773523 0.166280i
\(63\) −0.939704 + 24.3843i −0.0149159 + 0.387052i
\(64\) −32.3040 55.2490i −0.504750 0.863265i
\(65\) −27.8468 + 30.2772i −0.428413 + 0.465803i
\(66\) 40.9487 36.1634i 0.620435 0.547930i
\(67\) 57.5421 57.5421i 0.858838 0.858838i −0.132364 0.991201i \(-0.542257\pi\)
0.991201 + 0.132364i \(0.0422567\pi\)
\(68\) 24.2631 20.4350i 0.356810 0.300514i
\(69\) −16.1807 + 37.0300i −0.234502 + 0.536666i
\(70\) 16.1190 5.88354i 0.230271 0.0840506i
\(71\) 15.3918 + 15.3918i 0.216785 + 0.216785i 0.807142 0.590357i \(-0.201013\pi\)
−0.590357 + 0.807142i \(0.701013\pi\)
\(72\) −70.1686 + 16.1358i −0.974564 + 0.224108i
\(73\) −52.5418 + 52.5418i −0.719751 + 0.719751i −0.968554 0.248803i \(-0.919963\pi\)
0.248803 + 0.968554i \(0.419963\pi\)
\(74\) −2.03811 + 4.38120i −0.0275420 + 0.0592054i
\(75\) −18.0029 + 41.2002i −0.240038 + 0.549336i
\(76\) −6.34639 + 74.1023i −0.0835051 + 0.975030i
\(77\) −24.6877 −0.320619
\(78\) −77.9841 1.57452i −0.999796 0.0201861i
\(79\) 46.1756i 0.584501i −0.956342 0.292251i \(-0.905596\pi\)
0.956342 0.292251i \(-0.0944042\pi\)
\(80\) 29.1911 + 41.3660i 0.364889 + 0.517074i
\(81\) −6.23379 + 80.7598i −0.0769603 + 0.997034i
\(82\) −41.9475 + 90.1721i −0.511555 + 1.09966i
\(83\) −88.7459 88.7459i −1.06923 1.06923i −0.997418 0.0718100i \(-0.977122\pi\)
−0.0718100 0.997418i \(-0.522878\pi\)
\(84\) 28.5940 + 15.5243i 0.340405 + 0.184814i
\(85\) −17.7444 + 17.7444i −0.208758 + 0.208758i
\(86\) 86.7865 31.6777i 1.00915 0.368346i
\(87\) 13.1884 30.1822i 0.151591 0.346922i
\(88\) −19.0461 70.3077i −0.216432 0.798952i
\(89\) 96.2535 + 96.2535i 1.08150 + 1.08150i 0.996370 + 0.0851298i \(0.0271305\pi\)
0.0851298 + 0.996370i \(0.472869\pi\)
\(90\) 54.2168 17.4547i 0.602409 0.193941i
\(91\) 25.9435 + 23.8610i 0.285093 + 0.262209i
\(92\) 34.7096 + 41.2118i 0.377279 + 0.447954i
\(93\) −15.8799 + 6.22216i −0.170752 + 0.0669049i
\(94\) −54.8049 + 117.811i −0.583031 + 1.25331i
\(95\) 58.8349i 0.619315i
\(96\) −22.1519 + 93.4093i −0.230749 + 0.973013i
\(97\) −42.4947 42.4947i −0.438090 0.438090i 0.453279 0.891369i \(-0.350254\pi\)
−0.891369 + 0.453279i \(0.850254\pi\)
\(98\) 28.5609 + 78.2474i 0.291438 + 0.798442i
\(99\) −81.8863 3.15568i −0.827134 0.0318755i
\(100\) 38.6185 + 45.8529i 0.386185 + 0.458529i
\(101\) 82.7044 0.818855 0.409428 0.912343i \(-0.365728\pi\)
0.409428 + 0.912343i \(0.365728\pi\)
\(102\) −47.4916 2.94715i −0.465604 0.0288936i
\(103\) 136.814 1.32829 0.664144 0.747605i \(-0.268796\pi\)
0.664144 + 0.747605i \(0.268796\pi\)
\(104\) −47.9385 + 92.2924i −0.460948 + 0.887427i
\(105\) −23.5854 10.3059i −0.224623 0.0981515i
\(106\) 66.3369 + 181.741i 0.625820 + 1.71454i
\(107\) −93.4017 −0.872913 −0.436457 0.899725i \(-0.643767\pi\)
−0.436457 + 0.899725i \(0.643767\pi\)
\(108\) 92.8588 + 55.1475i 0.859803 + 0.510625i
\(109\) −98.4697 98.4697i −0.903392 0.903392i 0.0923359 0.995728i \(-0.470567\pi\)
−0.995728 + 0.0923359i \(0.970567\pi\)
\(110\) 19.7579 + 54.1300i 0.179617 + 0.492091i
\(111\) 6.74854 2.64425i 0.0607976 0.0238221i
\(112\) 35.4451 25.0129i 0.316474 0.223329i
\(113\) 85.7284i 0.758658i −0.925262 0.379329i \(-0.876155\pi\)
0.925262 0.379329i \(-0.123845\pi\)
\(114\) 83.6195 73.8477i 0.733504 0.647787i
\(115\) −30.1396 30.1396i −0.262084 0.262084i
\(116\) −28.2909 33.5907i −0.243887 0.289575i
\(117\) 83.0017 + 82.4604i 0.709416 + 0.704790i
\(118\) 23.7317 51.0148i 0.201116 0.432329i
\(119\) 15.2046 + 15.2046i 0.127770 + 0.127770i
\(120\) 11.1544 75.1194i 0.0929534 0.625995i
\(121\) 38.0948i 0.314833i
\(122\) −202.703 + 73.9881i −1.66150 + 0.606460i
\(123\) 138.896 54.4229i 1.12923 0.442463i
\(124\) −1.94048 + 22.6576i −0.0156490 + 0.182722i
\(125\) −89.4712 89.4712i −0.715770 0.715770i
\(126\) −14.9563 46.4566i −0.118701 0.368703i
\(127\) −93.7596 −0.738265 −0.369132 0.929377i \(-0.620345\pi\)
−0.369132 + 0.929377i \(0.620345\pi\)
\(128\) 98.5790 + 81.6467i 0.770149 + 0.637864i
\(129\) −126.987 55.4883i −0.984394 0.430142i
\(130\) 31.5545 75.9798i 0.242727 0.584460i
\(131\) −56.4833 −0.431170 −0.215585 0.976485i \(-0.569166\pi\)
−0.215585 + 0.976485i \(0.569166\pi\)
\(132\) −52.1332 + 96.0233i −0.394949 + 0.727449i
\(133\) −50.4136 −0.379050
\(134\) −68.6476 + 147.568i −0.512295 + 1.10125i
\(135\) −76.9128 37.1983i −0.569725 0.275543i
\(136\) −31.5709 + 55.0310i −0.232139 + 0.404640i
\(137\) 9.93664 + 9.93664i 0.0725302 + 0.0725302i 0.742441 0.669911i \(-0.233668\pi\)
−0.669911 + 0.742441i \(0.733668\pi\)
\(138\) 5.00585 80.6665i 0.0362743 0.584540i
\(139\) 157.438i 1.13265i 0.824183 + 0.566324i \(0.191635\pi\)
−0.824183 + 0.566324i \(0.808365\pi\)
\(140\) −26.2489 + 22.1075i −0.187492 + 0.157911i
\(141\) 181.469 71.1042i 1.28701 0.504285i
\(142\) −39.4725 18.3623i −0.277975 0.129312i
\(143\) −80.1290 + 87.1224i −0.560343 + 0.609248i
\(144\) 120.765 78.4342i 0.838643 0.544682i
\(145\) 24.5660 + 24.5660i 0.169421 + 0.169421i
\(146\) 62.6823 134.745i 0.429331 0.922908i
\(147\) 50.0287 114.492i 0.340331 0.778859i
\(148\) 0.824652 9.62887i 0.00557197 0.0650599i
\(149\) 73.2706 73.2706i 0.491749 0.491749i −0.417108 0.908857i \(-0.636956\pi\)
0.908857 + 0.417108i \(0.136956\pi\)
\(150\) 5.56960 89.7508i 0.0371306 0.598339i
\(151\) −95.2616 95.2616i −0.630871 0.630871i 0.317415 0.948287i \(-0.397185\pi\)
−0.948287 + 0.317415i \(0.897185\pi\)
\(152\) −38.8931 143.572i −0.255876 0.944555i
\(153\) 48.4884 + 52.3754i 0.316918 + 0.342323i
\(154\) 46.3822 16.9298i 0.301183 0.109934i
\(155\) 17.9894i 0.116061i
\(156\) 147.593 50.5203i 0.946109 0.323848i
\(157\) −174.497 −1.11145 −0.555724 0.831367i \(-0.687559\pi\)
−0.555724 + 0.831367i \(0.687559\pi\)
\(158\) 31.6654 + 86.7528i 0.200414 + 0.549068i
\(159\) 116.199 265.925i 0.730812 1.67249i
\(160\) −83.2102 57.6985i −0.520064 0.360616i
\(161\) −25.8256 + 25.8256i −0.160408 + 0.160408i
\(162\) −43.6701 156.003i −0.269569 0.962981i
\(163\) 204.207 + 204.207i 1.25280 + 1.25280i 0.954459 + 0.298343i \(0.0964340\pi\)
0.298343 + 0.954459i \(0.403566\pi\)
\(164\) 16.9726 198.178i 0.103492 1.20840i
\(165\) 34.6089 79.2036i 0.209751 0.480022i
\(166\) 227.591 + 105.874i 1.37103 + 0.637793i
\(167\) 73.3239 73.3239i 0.439066 0.439066i −0.452632 0.891697i \(-0.649515\pi\)
0.891697 + 0.452632i \(0.149515\pi\)
\(168\) −64.3672 9.55783i −0.383138 0.0568918i
\(169\) 168.410 14.1083i 0.996509 0.0834812i
\(170\) 21.1690 45.5059i 0.124524 0.267682i
\(171\) −167.216 6.44407i −0.977873 0.0376846i
\(172\) −141.328 + 119.030i −0.821672 + 0.692032i
\(173\) −47.5804 −0.275031 −0.137516 0.990500i \(-0.543912\pi\)
−0.137516 + 0.990500i \(0.543912\pi\)
\(174\) −4.08014 + 65.7491i −0.0234491 + 0.377868i
\(175\) −28.7340 + 28.7340i −0.164194 + 0.164194i
\(176\) 83.9972 + 119.030i 0.477257 + 0.676308i
\(177\) −78.5801 + 30.7897i −0.443955 + 0.173953i
\(178\) −246.844 114.830i −1.38676 0.645113i
\(179\) 348.521i 1.94704i 0.228591 + 0.973522i \(0.426588\pi\)
−0.228591 + 0.973522i \(0.573412\pi\)
\(180\) −89.8906 + 69.9729i −0.499392 + 0.388738i
\(181\) 170.140i 0.940001i 0.882666 + 0.470000i \(0.155746\pi\)
−0.882666 + 0.470000i \(0.844254\pi\)
\(182\) −65.1045 27.0380i −0.357717 0.148560i
\(183\) 296.597 + 129.601i 1.62075 + 0.708204i
\(184\) −93.4724 53.6245i −0.508002 0.291438i
\(185\) 7.64503i 0.0413245i
\(186\) 25.5676 22.5797i 0.137460 0.121396i
\(187\) −51.0594 + 51.0594i −0.273045 + 0.273045i
\(188\) 22.1750 258.921i 0.117952 1.37724i
\(189\) −31.8740 + 65.9039i −0.168645 + 0.348698i
\(190\) 40.3467 + 110.537i 0.212351 + 0.581771i
\(191\) 364.231 1.90697 0.953483 0.301445i \(-0.0974691\pi\)
0.953483 + 0.301445i \(0.0974691\pi\)
\(192\) −22.4384 190.684i −0.116867 0.993148i
\(193\) 27.5701 27.5701i 0.142850 0.142850i −0.632065 0.774915i \(-0.717792\pi\)
0.774915 + 0.632065i \(0.217792\pi\)
\(194\) 108.978 + 50.6961i 0.561745 + 0.261320i
\(195\) −112.921 + 49.7825i −0.579081 + 0.255295i
\(196\) −107.318 127.422i −0.547541 0.650112i
\(197\) −174.867 + 174.867i −0.887650 + 0.887650i −0.994297 0.106647i \(-0.965989\pi\)
0.106647 + 0.994297i \(0.465989\pi\)
\(198\) 156.009 50.2256i 0.787922 0.253665i
\(199\) −217.321 −1.09207 −0.546033 0.837764i \(-0.683863\pi\)
−0.546033 + 0.837764i \(0.683863\pi\)
\(200\) −103.999 59.6635i −0.519995 0.298318i
\(201\) 227.305 89.0638i 1.13087 0.443103i
\(202\) −155.382 + 56.7154i −0.769216 + 0.280769i
\(203\) 21.0498 21.0498i 0.103694 0.103694i
\(204\) 91.2462 27.0309i 0.447285 0.132504i
\(205\) 157.347i 0.767546i
\(206\) −257.040 + 93.8215i −1.24777 + 0.455444i
\(207\) −88.9618 + 82.3596i −0.429767 + 0.397872i
\(208\) 26.7744 206.270i 0.128723 0.991681i
\(209\) 169.297i 0.810034i
\(210\) 51.3787 + 3.18836i 0.244660 + 0.0151827i
\(211\) 16.1284i 0.0764381i −0.999269 0.0382191i \(-0.987832\pi\)
0.999269 0.0382191i \(-0.0121685\pi\)
\(212\) −249.262 295.957i −1.17576 1.39602i
\(213\) 23.8234 + 60.8010i 0.111847 + 0.285451i
\(214\) 175.479 64.0512i 0.819996 0.299305i
\(215\) 103.358 103.358i 0.480734 0.480734i
\(216\) −212.277 39.9299i −0.982765 0.184861i
\(217\) −15.4145 −0.0710346
\(218\) 252.527 + 117.474i 1.15838 + 0.538872i
\(219\) −207.552 + 81.3244i −0.947727 + 0.371344i
\(220\) −74.2405 88.1481i −0.337457 0.400673i
\(221\) 103.006 4.30707i 0.466092 0.0194890i
\(222\) −10.8655 + 9.59579i −0.0489439 + 0.0432243i
\(223\) 216.887 216.887i 0.972590 0.972590i −0.0270445 0.999634i \(-0.508610\pi\)
0.999634 + 0.0270445i \(0.00860960\pi\)
\(224\) −49.4399 + 71.3000i −0.220714 + 0.318303i
\(225\) −98.9804 + 91.6346i −0.439913 + 0.407265i
\(226\) 58.7891 + 161.063i 0.260129 + 0.712667i
\(227\) −170.053 170.053i −0.749133 0.749133i 0.225184 0.974316i \(-0.427702\pi\)
−0.974316 + 0.225184i \(0.927702\pi\)
\(228\) −106.459 + 196.085i −0.466925 + 0.860022i
\(229\) −28.7277 + 28.7277i −0.125448 + 0.125448i −0.767044 0.641595i \(-0.778273\pi\)
0.641595 + 0.767044i \(0.278273\pi\)
\(230\) 77.2937 + 35.9565i 0.336059 + 0.156333i
\(231\) −67.8668 29.6552i −0.293796 0.128377i
\(232\) 76.1869 + 43.7079i 0.328392 + 0.188396i
\(233\) −127.409 −0.546818 −0.273409 0.961898i \(-0.588151\pi\)
−0.273409 + 0.961898i \(0.588151\pi\)
\(234\) −212.488 98.0039i −0.908069 0.418820i
\(235\) 205.576i 0.874790i
\(236\) −9.60226 + 112.119i −0.0406875 + 0.475080i
\(237\) 55.4668 126.937i 0.234037 0.535601i
\(238\) −38.9924 18.1390i −0.163834 0.0762144i
\(239\) −9.41795 9.41795i −0.0394057 0.0394057i 0.687129 0.726535i \(-0.258871\pi\)
−0.726535 + 0.687129i \(0.758871\pi\)
\(240\) 30.5575 + 148.780i 0.127323 + 0.619918i
\(241\) 330.162 330.162i 1.36997 1.36997i 0.509492 0.860475i \(-0.329833\pi\)
0.860475 0.509492i \(-0.170167\pi\)
\(242\) −26.1239 71.5709i −0.107950 0.295748i
\(243\) −114.146 + 214.522i −0.469739 + 0.882806i
\(244\) 330.092 278.011i 1.35283 1.13939i
\(245\) 93.1881 + 93.1881i 0.380360 + 0.380360i
\(246\) −223.630 + 197.497i −0.909066 + 0.802832i
\(247\) −163.628 + 177.909i −0.662461 + 0.720279i
\(248\) −11.8920 43.8988i −0.0479516 0.177011i
\(249\) −137.361 350.567i −0.551651 1.40790i
\(250\) 229.451 + 106.739i 0.917802 + 0.426956i
\(251\) 131.726i 0.524804i 0.964959 + 0.262402i \(0.0845147\pi\)
−0.964959 + 0.262402i \(0.915485\pi\)
\(252\) 59.9574 + 77.0242i 0.237926 + 0.305652i
\(253\) −86.7266 86.7266i −0.342793 0.342793i
\(254\) 176.152 64.2967i 0.693510 0.253137i
\(255\) −70.0945 + 27.4648i −0.274880 + 0.107705i
\(256\) −241.196 85.7927i −0.942173 0.335128i
\(257\) 145.078 0.564505 0.282252 0.959340i \(-0.408918\pi\)
0.282252 + 0.959340i \(0.408918\pi\)
\(258\) 276.629 + 17.1666i 1.07221 + 0.0665370i
\(259\) 6.55076 0.0252925
\(260\) −7.17936 + 164.387i −0.0276129 + 0.632256i
\(261\) 72.5105 67.1291i 0.277818 0.257200i
\(262\) 106.118 38.7340i 0.405032 0.147840i
\(263\) 73.5496 0.279656 0.139828 0.990176i \(-0.455345\pi\)
0.139828 + 0.990176i \(0.455345\pi\)
\(264\) 32.0967 216.155i 0.121578 0.818771i
\(265\) 216.443 + 216.443i 0.816768 + 0.816768i
\(266\) 94.7150 34.5717i 0.356071 0.129969i
\(267\) 148.981 + 380.223i 0.557982 + 1.42406i
\(268\) 27.7760 324.320i 0.103642 1.21015i
\(269\) 329.441i 1.22469i 0.790591 + 0.612345i \(0.209774\pi\)
−0.790591 + 0.612345i \(0.790226\pi\)
\(270\) 170.010 + 17.1429i 0.629666 + 0.0634921i
\(271\) 163.971 + 163.971i 0.605061 + 0.605061i 0.941651 0.336590i \(-0.109274\pi\)
−0.336590 + 0.941651i \(0.609274\pi\)
\(272\) 21.5760 125.040i 0.0793236 0.459706i
\(273\) 42.6569 + 96.7579i 0.156252 + 0.354425i
\(274\) −25.4827 11.8544i −0.0930026 0.0432642i
\(275\) −96.4934 96.4934i −0.350885 0.350885i
\(276\) 45.9131 + 154.986i 0.166352 + 0.561542i
\(277\) 165.945i 0.599078i −0.954084 0.299539i \(-0.903167\pi\)
0.954084 0.299539i \(-0.0968329\pi\)
\(278\) −107.965 295.788i −0.388363 1.06399i
\(279\) −51.1282 1.97034i −0.183255 0.00706217i
\(280\) 34.1549 59.5351i 0.121982 0.212625i
\(281\) 13.7443 + 13.7443i 0.0489121 + 0.0489121i 0.731140 0.682228i \(-0.238989\pi\)
−0.682228 + 0.731140i \(0.738989\pi\)
\(282\) −292.176 + 258.032i −1.03608 + 0.915007i
\(283\) −330.563 −1.16807 −0.584033 0.811730i \(-0.698526\pi\)
−0.584033 + 0.811730i \(0.698526\pi\)
\(284\) 86.7514 + 7.42971i 0.305463 + 0.0261609i
\(285\) 70.6733 161.738i 0.247976 0.567502i
\(286\) 90.7979 218.631i 0.317475 0.764445i
\(287\) 134.825 0.469774
\(288\) −173.100 + 230.174i −0.601043 + 0.799217i
\(289\) −226.107 −0.782378
\(290\) −63.0001 29.3072i −0.217242 0.101059i
\(291\) −65.7734 167.864i −0.226025 0.576851i
\(292\) −25.3623 + 296.137i −0.0868572 + 1.01417i
\(293\) 20.8531 + 20.8531i 0.0711711 + 0.0711711i 0.741796 0.670625i \(-0.233974\pi\)
−0.670625 + 0.741796i \(0.733974\pi\)
\(294\) −15.4775 + 249.411i −0.0526445 + 0.848336i
\(295\) 89.0188i 0.301759i
\(296\) 5.05378 + 18.6558i 0.0170736 + 0.0630265i
\(297\) −221.316 107.038i −0.745172 0.360397i
\(298\) −87.4117 + 187.904i −0.293328 + 0.630550i
\(299\) 7.31573 + 174.961i 0.0244673 + 0.585153i
\(300\) 51.0837 + 172.440i 0.170279 + 0.574798i
\(301\) −88.5637 88.5637i −0.294232 0.294232i
\(302\) 244.300 + 113.647i 0.808941 + 0.376314i
\(303\) 227.356 + 99.3456i 0.750349 + 0.327873i
\(304\) 171.527 + 243.066i 0.564234 + 0.799560i
\(305\) −241.408 + 241.408i −0.791500 + 0.791500i
\(306\) −127.015 65.1493i −0.415082 0.212906i
\(307\) −330.034 330.034i −1.07503 1.07503i −0.996947 0.0780834i \(-0.975120\pi\)
−0.0780834 0.996947i \(-0.524880\pi\)
\(308\) −75.5311 + 63.6142i −0.245231 + 0.206539i
\(309\) 376.103 + 164.342i 1.21716 + 0.531853i
\(310\) 12.3364 + 33.7978i 0.0397950 + 0.109025i
\(311\) 291.242i 0.936470i −0.883604 0.468235i \(-0.844890\pi\)
0.883604 0.468235i \(-0.155110\pi\)
\(312\) −242.647 + 196.129i −0.777714 + 0.628618i
\(313\) 342.505 1.09427 0.547133 0.837046i \(-0.315719\pi\)
0.547133 + 0.837046i \(0.315719\pi\)
\(314\) 327.838 119.663i 1.04407 0.381094i
\(315\) −52.4570 56.6622i −0.166530 0.179880i
\(316\) −118.983 141.273i −0.376530 0.447065i
\(317\) −399.011 + 399.011i −1.25871 + 1.25871i −0.306999 + 0.951710i \(0.599325\pi\)
−0.951710 + 0.306999i \(0.900675\pi\)
\(318\) −35.9488 + 579.294i −0.113047 + 1.82168i
\(319\) 70.6886 + 70.6886i 0.221594 + 0.221594i
\(320\) 195.899 + 51.3392i 0.612185 + 0.160435i
\(321\) −256.763 112.195i −0.799884 0.349518i
\(322\) 30.8099 66.2303i 0.0956829 0.205684i
\(323\) −104.266 + 104.266i −0.322806 + 0.322806i
\(324\) 189.026 + 263.145i 0.583414 + 0.812175i
\(325\) 8.13961 + 194.664i 0.0250449 + 0.598967i
\(326\) −523.692 243.618i −1.60642 0.747295i
\(327\) −152.412 388.978i −0.466091 1.18954i
\(328\) 104.015 + 383.967i 0.317119 + 1.17063i
\(329\) 176.151 0.535413
\(330\) −10.7070 + 172.538i −0.0324456 + 0.522842i
\(331\) 386.713 386.713i 1.16832 1.16832i 0.185715 0.982604i \(-0.440540\pi\)
0.982604 0.185715i \(-0.0594601\pi\)
\(332\) −500.192 42.8383i −1.50660 0.129031i
\(333\) 21.7281 + 0.837344i 0.0652497 + 0.00251455i
\(334\) −87.4753 + 188.041i −0.261902 + 0.562996i
\(335\) 257.500i 0.768657i
\(336\) 127.485 26.1837i 0.379419 0.0779276i
\(337\) 61.3087i 0.181925i −0.995854 0.0909625i \(-0.971006\pi\)
0.995854 0.0909625i \(-0.0289944\pi\)
\(338\) −306.727 + 141.995i −0.907476 + 0.420104i
\(339\) 102.978 235.669i 0.303770 0.695188i
\(340\) −8.56535 + 100.011i −0.0251922 + 0.294151i
\(341\) 51.7644i 0.151802i
\(342\) 318.578 102.564i 0.931515 0.299893i
\(343\) 173.794 173.794i 0.506688 0.506688i
\(344\) 183.894 320.545i 0.534577 0.931816i
\(345\) −46.6502 119.058i −0.135218 0.345097i
\(346\) 89.3921 32.6288i 0.258359 0.0943028i
\(347\) −27.4780 −0.0791872 −0.0395936 0.999216i \(-0.512606\pi\)
−0.0395936 + 0.999216i \(0.512606\pi\)
\(348\) −37.4226 126.325i −0.107536 0.363002i
\(349\) −241.315 + 241.315i −0.691447 + 0.691447i −0.962550 0.271103i \(-0.912612\pi\)
0.271103 + 0.962550i \(0.412612\pi\)
\(350\) 34.2796 73.6889i 0.0979417 0.210540i
\(351\) 129.120 + 326.388i 0.367864 + 0.929880i
\(352\) −239.437 166.027i −0.680218 0.471668i
\(353\) −268.532 + 268.532i −0.760715 + 0.760715i −0.976452 0.215737i \(-0.930785\pi\)
0.215737 + 0.976452i \(0.430785\pi\)
\(354\) 126.519 111.734i 0.357397 0.315632i
\(355\) −68.8779 −0.194022
\(356\) 542.506 + 46.4622i 1.52389 + 0.130512i
\(357\) 23.5337 + 60.0616i 0.0659207 + 0.168240i
\(358\) −239.002 654.787i −0.667604 1.82901i
\(359\) 43.0730 43.0730i 0.119981 0.119981i −0.644567 0.764548i \(-0.722962\pi\)
0.764548 + 0.644567i \(0.222962\pi\)
\(360\) 120.898 193.106i 0.335828 0.536404i
\(361\) 15.2861i 0.0423437i
\(362\) −116.675 319.652i −0.322308 0.883017i
\(363\) −45.7600 + 104.723i −0.126061 + 0.288494i
\(364\) 140.857 + 6.15175i 0.386970 + 0.0169004i
\(365\) 235.124i 0.644175i
\(366\) −646.109 40.0951i −1.76532 0.109549i
\(367\) 499.591i 1.36128i −0.732616 0.680642i \(-0.761701\pi\)
0.732616 0.680642i \(-0.238299\pi\)
\(368\) 212.386 + 36.6478i 0.577135 + 0.0995864i
\(369\) 447.200 + 17.2339i 1.21192 + 0.0467043i
\(370\) −5.24266 14.3632i −0.0141694 0.0388193i
\(371\) 185.463 185.463i 0.499900 0.499900i
\(372\) −32.5510 + 59.9551i −0.0875027 + 0.161170i
\(373\) −332.025 −0.890147 −0.445073 0.895494i \(-0.646822\pi\)
−0.445073 + 0.895494i \(0.646822\pi\)
\(374\) 60.9138 130.943i 0.162871 0.350115i
\(375\) −138.484 353.432i −0.369290 0.942485i
\(376\) 135.897 + 501.658i 0.361428 + 1.33420i
\(377\) −5.96286 142.606i −0.0158166 0.378265i
\(378\) 14.6891 145.675i 0.0388601 0.385385i
\(379\) 468.317 468.317i 1.23567 1.23567i 0.273911 0.961755i \(-0.411683\pi\)
0.961755 0.273911i \(-0.0883173\pi\)
\(380\) −151.603 180.003i −0.398956 0.473693i
\(381\) −257.747 112.625i −0.676500 0.295605i
\(382\) −684.301 + 249.775i −1.79136 + 0.653862i
\(383\) 101.144 + 101.144i 0.264083 + 0.264083i 0.826711 0.562627i \(-0.190209\pi\)
−0.562627 + 0.826711i \(0.690209\pi\)
\(384\) 172.920 + 342.862i 0.450313 + 0.892871i
\(385\) 55.2385 55.2385i 0.143477 0.143477i
\(386\) −32.8911 + 70.7041i −0.0852100 + 0.183171i
\(387\) −282.435 305.076i −0.729807 0.788311i
\(388\) −239.509 20.5125i −0.617293 0.0528672i
\(389\) 456.268 1.17293 0.586463 0.809976i \(-0.300520\pi\)
0.586463 + 0.809976i \(0.300520\pi\)
\(390\) 178.012 170.966i 0.456441 0.438374i
\(391\) 106.826i 0.273212i
\(392\) 289.005 + 165.801i 0.737259 + 0.422961i
\(393\) −155.273 67.8485i −0.395098 0.172642i
\(394\) 208.616 448.450i 0.529482 1.13820i
\(395\) 103.318 + 103.318i 0.261564 + 0.261564i
\(396\) −258.660 + 201.346i −0.653181 + 0.508450i
\(397\) 300.957 300.957i 0.758078 0.758078i −0.217895 0.975972i \(-0.569919\pi\)
0.975972 + 0.217895i \(0.0699189\pi\)
\(398\) 408.294 149.030i 1.02586 0.374448i
\(399\) −138.588 60.5575i −0.347338 0.151773i
\(400\) 236.304 + 40.7749i 0.590760 + 0.101937i
\(401\) −252.305 252.305i −0.629190 0.629190i 0.318674 0.947864i \(-0.396762\pi\)
−0.947864 + 0.318674i \(0.896762\pi\)
\(402\) −365.974 + 323.206i −0.910382 + 0.803995i
\(403\) −50.0310 + 54.3976i −0.124146 + 0.134982i
\(404\) 253.031 213.109i 0.626315 0.527498i
\(405\) −166.751 194.647i −0.411732 0.480611i
\(406\) −25.1123 + 53.9826i −0.0618531 + 0.132962i
\(407\) 21.9985i 0.0540504i
\(408\) −152.893 + 113.358i −0.374737 + 0.277837i
\(409\) −75.5531 75.5531i −0.184726 0.184726i 0.608685 0.793412i \(-0.291697\pi\)
−0.793412 + 0.608685i \(0.791697\pi\)
\(410\) −107.902 295.617i −0.263176 0.721016i
\(411\) 15.3800 + 39.2520i 0.0374208 + 0.0955036i
\(412\) 418.577 352.536i 1.01596 0.855669i
\(413\) −76.2772 −0.184691
\(414\) 110.659 215.740i 0.267292 0.521112i
\(415\) 397.137 0.956956
\(416\) 91.1490 + 405.891i 0.219108 + 0.975701i
\(417\) −189.117 + 432.799i −0.453517 + 1.03789i
\(418\) 116.097 + 318.068i 0.277745 + 0.760929i
\(419\) −354.855 −0.846909 −0.423454 0.905917i \(-0.639183\pi\)
−0.423454 + 0.905917i \(0.639183\pi\)
\(420\) −98.7145 + 29.2433i −0.235035 + 0.0696269i
\(421\) −148.325 148.325i −0.352315 0.352315i 0.508655 0.860970i \(-0.330143\pi\)
−0.860970 + 0.508655i \(0.830143\pi\)
\(422\) 11.0603 + 30.3014i 0.0262091 + 0.0718044i
\(423\) 584.272 + 22.5163i 1.38126 + 0.0532300i
\(424\) 671.259 + 385.097i 1.58316 + 0.908247i
\(425\) 118.856i 0.279662i
\(426\) −86.4533 97.8932i −0.202942 0.229796i
\(427\) 206.854 + 206.854i 0.484435 + 0.484435i
\(428\) −285.759 + 240.674i −0.667662 + 0.562321i
\(429\) −324.929 + 143.249i −0.757409 + 0.333913i
\(430\) −123.306 + 265.063i −0.286757 + 0.616425i
\(431\) 129.751 + 129.751i 0.301047 + 0.301047i 0.841424 0.540376i \(-0.181718\pi\)
−0.540376 + 0.841424i \(0.681718\pi\)
\(432\) 426.200 70.5527i 0.986574 0.163316i
\(433\) 277.129i 0.640020i −0.947414 0.320010i \(-0.896314\pi\)
0.947414 0.320010i \(-0.103686\pi\)
\(434\) 28.9601 10.5707i 0.0667285 0.0243564i
\(435\) 38.0234 + 97.0414i 0.0874100 + 0.223084i
\(436\) −554.997 47.5320i −1.27293 0.109018i
\(437\) −177.101 177.101i −0.405264 0.405264i
\(438\) 334.171 295.120i 0.762948 0.673790i
\(439\) −824.382 −1.87786 −0.938932 0.344104i \(-0.888183\pi\)
−0.938932 + 0.344104i \(0.888183\pi\)
\(440\) 199.929 + 114.698i 0.454383 + 0.260677i
\(441\) 275.059 254.646i 0.623717 0.577428i
\(442\) −190.570 + 78.7297i −0.431155 + 0.178121i
\(443\) −296.524 −0.669354 −0.334677 0.942333i \(-0.608627\pi\)
−0.334677 + 0.942333i \(0.608627\pi\)
\(444\) 13.8333 25.4793i 0.0311561 0.0573859i
\(445\) −430.733 −0.967939
\(446\) −258.746 + 556.212i −0.580148 + 1.24711i
\(447\) 289.436 113.408i 0.647507 0.253710i
\(448\) 43.9908 167.859i 0.0981938 0.374686i
\(449\) −102.052 102.052i −0.227288 0.227288i 0.584271 0.811559i \(-0.301381\pi\)
−0.811559 + 0.584271i \(0.801381\pi\)
\(450\) 123.121 240.036i 0.273602 0.533414i
\(451\) 452.764i 1.00391i
\(452\) −220.901 262.283i −0.488719 0.580272i
\(453\) −147.446 376.305i −0.325488 0.830695i
\(454\) 436.104 + 202.873i 0.960583 + 0.446857i
\(455\) −111.437 + 4.65959i −0.244917 + 0.0102409i
\(456\) 65.5433 441.402i 0.143735 0.967986i
\(457\) 297.399 + 297.399i 0.650763 + 0.650763i 0.953177 0.302414i \(-0.0977925\pi\)
−0.302414 + 0.953177i \(0.597792\pi\)
\(458\) 34.2721 73.6727i 0.0748298 0.160857i
\(459\) 70.3813 + 202.226i 0.153336 + 0.440579i
\(460\) −169.874 14.5486i −0.369291 0.0316274i
\(461\) −304.031 + 304.031i −0.659503 + 0.659503i −0.955262 0.295759i \(-0.904427\pi\)
0.295759 + 0.955262i \(0.404427\pi\)
\(462\) 147.842 + 9.17449i 0.320004 + 0.0198582i
\(463\) 141.035 + 141.035i 0.304612 + 0.304612i 0.842815 0.538203i \(-0.180897\pi\)
−0.538203 + 0.842815i \(0.680897\pi\)
\(464\) −173.110 29.8706i −0.373082 0.0643764i
\(465\) 21.6091 49.4532i 0.0464713 0.106351i
\(466\) 239.370 87.3718i 0.513669 0.187493i
\(467\) 546.532i 1.17030i −0.810923 0.585152i \(-0.801035\pi\)
0.810923 0.585152i \(-0.198965\pi\)
\(468\) 466.421 + 38.4096i 0.996626 + 0.0820718i
\(469\) 220.643 0.470454
\(470\) −140.976 386.227i −0.299948 0.821760i
\(471\) −479.696 209.609i −1.01846 0.445029i
\(472\) −58.8463 217.229i −0.124674 0.460231i
\(473\) 297.411 297.411i 0.628776 0.628776i
\(474\) −17.1599 + 276.522i −0.0362023 + 0.583379i
\(475\) −197.045 197.045i −0.414832 0.414832i
\(476\) 85.6964 + 7.33935i 0.180034 + 0.0154188i
\(477\) 638.866 591.453i 1.33934 1.23994i
\(478\) 24.1525 + 11.2356i 0.0505283 + 0.0235054i
\(479\) 111.887 111.887i 0.233585 0.233585i −0.580602 0.814187i \(-0.697183\pi\)
0.814187 + 0.580602i \(0.197183\pi\)
\(480\) −159.438 258.567i −0.332162 0.538682i
\(481\) 21.2619 23.1175i 0.0442035 0.0480614i
\(482\) −393.883 + 846.707i −0.817184 + 1.75665i
\(483\) −102.017 + 39.9730i −0.211216 + 0.0827597i
\(484\) 98.1611 + 116.550i 0.202812 + 0.240805i
\(485\) 190.163 0.392089
\(486\) 67.3430 481.312i 0.138566 0.990353i
\(487\) −149.033 + 149.033i −0.306022 + 0.306022i −0.843364 0.537343i \(-0.819428\pi\)
0.537343 + 0.843364i \(0.319428\pi\)
\(488\) −429.513 + 748.680i −0.880149 + 1.53418i
\(489\) 316.072 + 806.663i 0.646363 + 1.64962i
\(490\) −238.983 111.173i −0.487720 0.226884i
\(491\) 431.862i 0.879555i 0.898107 + 0.439778i \(0.144943\pi\)
−0.898107 + 0.439778i \(0.855057\pi\)
\(492\) 284.712 524.405i 0.578682 1.06586i
\(493\) 87.0710i 0.176615i
\(494\) 185.414 446.457i 0.375333 0.903760i
\(495\) 190.281 176.159i 0.384406 0.355877i
\(496\) 52.4463 + 74.3202i 0.105738 + 0.149839i
\(497\) 59.0191i 0.118751i
\(498\) 498.473 + 564.433i 1.00095 + 1.13340i
\(499\) −249.737 + 249.737i −0.500475 + 0.500475i −0.911586 0.411111i \(-0.865141\pi\)
0.411111 + 0.911586i \(0.365141\pi\)
\(500\) −504.279 43.1883i −1.00856 0.0863767i
\(501\) 289.646 113.491i 0.578136 0.226529i
\(502\) −90.3324 247.481i −0.179945 0.492990i
\(503\) −19.5125 −0.0387923 −0.0193961 0.999812i \(-0.506174\pi\)
−0.0193961 + 0.999812i \(0.506174\pi\)
\(504\) −165.466 103.593i −0.328305 0.205542i
\(505\) −185.051 + 185.051i −0.366437 + 0.366437i
\(506\) 222.412 + 103.465i 0.439549 + 0.204475i
\(507\) 479.909 + 163.512i 0.946566 + 0.322510i
\(508\) −286.854 + 241.596i −0.564674 + 0.475582i
\(509\) 291.110 291.110i 0.571926 0.571926i −0.360740 0.932666i \(-0.617476\pi\)
0.932666 + 0.360740i \(0.117476\pi\)
\(510\) 112.856 99.6679i 0.221287 0.195427i
\(511\) −201.470 −0.394265
\(512\) 511.983 4.21922i 0.999966 0.00824067i
\(513\) −451.940 218.577i −0.880974 0.426077i
\(514\) −272.566 + 99.4886i −0.530284 + 0.193558i
\(515\) −306.120 + 306.120i −0.594407 + 0.594407i
\(516\) −531.491 + 157.450i −1.03002 + 0.305135i
\(517\) 591.542i 1.14418i
\(518\) −12.3073 + 4.49225i −0.0237593 + 0.00867231i
\(519\) −130.799 57.1542i −0.252022 0.110124i
\(520\) −99.2416 313.766i −0.190849 0.603396i
\(521\) 554.046i 1.06343i 0.846924 + 0.531714i \(0.178452\pi\)
−0.846924 + 0.531714i \(0.821548\pi\)
\(522\) −90.1951 + 175.844i −0.172788 + 0.336866i
\(523\) 565.353i 1.08098i 0.841350 + 0.540491i \(0.181761\pi\)
−0.841350 + 0.540491i \(0.818239\pi\)
\(524\) −172.809 + 145.544i −0.329787 + 0.277755i
\(525\) −113.506 + 44.4746i −0.216202 + 0.0847135i
\(526\) −138.182 + 50.4374i −0.262703 + 0.0958887i
\(527\) −31.8805 + 31.8805i −0.0604944 + 0.0604944i
\(528\) 87.9290 + 428.115i 0.166532 + 0.810823i
\(529\) 347.552 0.656998
\(530\) −555.073 258.216i −1.04731 0.487201i
\(531\) −253.003 9.75005i −0.476465 0.0183617i
\(532\) −154.239 + 129.904i −0.289922 + 0.244180i
\(533\) 437.603 475.796i 0.821019 0.892675i
\(534\) −540.642 612.182i −1.01244 1.14641i
\(535\) 208.986 208.986i 0.390627 0.390627i
\(536\) 170.222 + 628.367i 0.317578 + 1.17233i
\(537\) −418.648 + 958.090i −0.779606 + 1.78415i
\(538\) −225.918 618.941i −0.419922 1.15045i
\(539\) 268.148 + 268.148i 0.497492 + 0.497492i
\(540\) −331.163 + 84.3787i −0.613265 + 0.156257i
\(541\) −173.050 + 173.050i −0.319870 + 0.319870i −0.848717 0.528847i \(-0.822624\pi\)
0.528847 + 0.848717i \(0.322624\pi\)
\(542\) −420.508 195.618i −0.775845 0.360918i
\(543\) −204.375 + 467.718i −0.376380 + 0.861359i
\(544\) 45.2114 + 249.716i 0.0831092 + 0.459037i
\(545\) 440.651 0.808533
\(546\) −146.495 152.532i −0.268306 0.279363i
\(547\) 745.007i 1.36199i 0.732289 + 0.680994i \(0.238452\pi\)
−0.732289 + 0.680994i \(0.761548\pi\)
\(548\) 56.0051 + 4.79648i 0.102199 + 0.00875270i
\(549\) 659.670 + 712.552i 1.20158 + 1.29791i
\(550\) 247.459 + 115.116i 0.449926 + 0.209303i
\(551\) 144.350 + 144.350i 0.261978 + 0.261978i
\(552\) −192.543 259.695i −0.348809 0.470462i
\(553\) 88.5293 88.5293i 0.160089 0.160089i
\(554\) 113.798 + 311.770i 0.205412 + 0.562761i
\(555\) −9.18331 + 21.0163i −0.0165465 + 0.0378672i
\(556\) 405.679 + 481.676i 0.729639 + 0.866323i
\(557\) 343.993 + 343.993i 0.617582 + 0.617582i 0.944911 0.327328i \(-0.106148\pi\)
−0.327328 + 0.944911i \(0.606148\pi\)
\(558\) 97.4088 31.3599i 0.174568 0.0562006i
\(559\) −599.992 + 25.0878i −1.07333 + 0.0448798i
\(560\) −23.3420 + 135.274i −0.0416821 + 0.241561i
\(561\) −201.696 + 79.0299i −0.359530 + 0.140873i
\(562\) −35.2475 16.3969i −0.0627180 0.0291760i
\(563\) 904.253i 1.60613i −0.595890 0.803066i \(-0.703200\pi\)
0.595890 0.803066i \(-0.296800\pi\)
\(564\) 371.979 685.142i 0.659538 1.21479i
\(565\) 191.817 + 191.817i 0.339498 + 0.339498i
\(566\) 621.047 226.687i 1.09726 0.400507i
\(567\) −166.787 + 142.884i −0.294157 + 0.251999i
\(568\) −168.080 + 45.5321i −0.295915 + 0.0801621i
\(569\) −938.529 −1.64944 −0.824718 0.565545i \(-0.808666\pi\)
−0.824718 + 0.565545i \(0.808666\pi\)
\(570\) −21.8644 + 352.332i −0.0383585 + 0.618126i
\(571\) 472.192 0.826956 0.413478 0.910514i \(-0.364314\pi\)
0.413478 + 0.910514i \(0.364314\pi\)
\(572\) −20.6586 + 473.021i −0.0361164 + 0.826960i
\(573\) 1001.28 + 437.519i 1.74743 + 0.763558i
\(574\) −253.304 + 92.4578i −0.441296 + 0.161076i
\(575\) −201.882 −0.351100
\(576\) 167.369 551.148i 0.290571 0.956853i
\(577\) 27.8631 + 27.8631i 0.0482896 + 0.0482896i 0.730839 0.682550i \(-0.239129\pi\)
−0.682550 + 0.730839i \(0.739129\pi\)
\(578\) 424.801 155.056i 0.734950 0.268262i
\(579\) 108.908 42.6731i 0.188097 0.0737013i
\(580\) 138.460 + 11.8582i 0.238723 + 0.0204451i
\(581\) 340.293i 0.585702i
\(582\) 238.687 + 270.271i 0.410115 + 0.464382i
\(583\) 622.814 + 622.814i 1.06829 + 1.06829i
\(584\) −155.430 573.763i −0.266147 0.982471i
\(585\) −370.220 + 1.21099i −0.632855 + 0.00207007i
\(586\) −53.4783 24.8777i −0.0912598 0.0424535i
\(587\) 478.108 + 478.108i 0.814494 + 0.814494i 0.985304 0.170810i \(-0.0546384\pi\)
−0.170810 + 0.985304i \(0.554638\pi\)
\(588\) −141.958 479.197i −0.241425 0.814960i
\(589\) 105.706i 0.179467i
\(590\) 61.0456 + 167.245i 0.103467 + 0.283466i
\(591\) −690.765 + 270.660i −1.16881 + 0.457969i
\(592\) −22.2883 31.5841i −0.0376491 0.0533515i
\(593\) 80.9828 + 80.9828i 0.136565 + 0.136565i 0.772084 0.635520i \(-0.219214\pi\)
−0.635520 + 0.772084i \(0.719214\pi\)
\(594\) 489.202 + 49.3285i 0.823572 + 0.0830446i
\(595\) −68.0403 −0.114353
\(596\) 35.3682 412.970i 0.0593427 0.692902i
\(597\) −597.419 261.049i −1.00070 0.437268i
\(598\) −133.726 323.692i −0.223621 0.541291i
\(599\) −686.856 −1.14667 −0.573336 0.819321i \(-0.694351\pi\)
−0.573336 + 0.819321i \(0.694351\pi\)
\(600\) −214.226 288.941i −0.357044 0.481568i
\(601\) −294.571 −0.490135 −0.245067 0.969506i \(-0.578810\pi\)
−0.245067 + 0.969506i \(0.578810\pi\)
\(602\) 227.123 + 105.656i 0.377281 + 0.175509i
\(603\) 731.848 + 28.2035i 1.21368 + 0.0467719i
\(604\) −536.915 45.9834i −0.888933 0.0761314i
\(605\) −85.2369 85.2369i −0.140887 0.140887i
\(606\) −495.274 30.7348i −0.817283 0.0507175i
\(607\) 834.152i 1.37422i 0.726553 + 0.687110i \(0.241121\pi\)
−0.726553 + 0.687110i \(0.758879\pi\)
\(608\) −488.943 339.036i −0.804183 0.557626i
\(609\) 83.1515 32.5809i 0.136538 0.0534990i
\(610\) 287.999 619.094i 0.472129 1.01491i
\(611\) 571.734 621.633i 0.935735 1.01740i
\(612\) 283.307 + 35.2979i 0.462920 + 0.0576762i
\(613\) 71.3441 + 71.3441i 0.116385 + 0.116385i 0.762901 0.646516i \(-0.223774\pi\)
−0.646516 + 0.762901i \(0.723774\pi\)
\(614\) 846.379 + 393.730i 1.37847 + 0.641254i
\(615\) −189.007 + 432.549i −0.307329 + 0.703332i
\(616\) 98.2805 171.312i 0.159546 0.278104i
\(617\) 222.842 222.842i 0.361169 0.361169i −0.503074 0.864243i \(-0.667798\pi\)
0.864243 + 0.503074i \(0.167798\pi\)
\(618\) −819.306 50.8430i −1.32574 0.0822703i
\(619\) −534.752 534.752i −0.863896 0.863896i 0.127892 0.991788i \(-0.459179\pi\)
−0.991788 + 0.127892i \(0.959179\pi\)
\(620\) −46.3544 55.0380i −0.0747651 0.0887709i
\(621\) −343.489 + 119.546i −0.553122 + 0.192505i
\(622\) 199.722 + 547.173i 0.321097 + 0.879700i
\(623\) 369.080i 0.592424i
\(624\) 321.377 534.876i 0.515027 0.857174i
\(625\) 25.7012 0.0411219
\(626\) −643.484 + 234.877i −1.02793 + 0.375202i
\(627\) 203.362 465.400i 0.324341 0.742265i
\(628\) −533.869 + 449.638i −0.850109 + 0.715983i
\(629\) 13.5484 13.5484i 0.0215396 0.0215396i
\(630\) 137.411 + 70.4816i 0.218112 + 0.111876i
\(631\) −35.0852 35.0852i −0.0556025 0.0556025i 0.678759 0.734361i \(-0.262518\pi\)
−0.734361 + 0.678759i \(0.762518\pi\)
\(632\) 320.420 + 183.823i 0.506994 + 0.290859i
\(633\) 19.3737 44.3373i 0.0306062 0.0700432i
\(634\) 476.019 1023.27i 0.750818 1.61399i
\(635\) 209.787 209.787i 0.330372 0.330372i
\(636\) −329.718 1113.01i −0.518425 1.75001i
\(637\) −22.6194 540.957i −0.0355092 0.849226i
\(638\) −181.282 84.3313i −0.284141 0.132181i
\(639\) −7.54406 + 195.760i −0.0118060 + 0.306353i
\(640\) −403.254 + 37.8861i −0.630084 + 0.0591970i
\(641\) 918.436 1.43282 0.716409 0.697680i \(-0.245784\pi\)
0.716409 + 0.697680i \(0.245784\pi\)
\(642\) 559.334 + 34.7102i 0.871237 + 0.0540657i
\(643\) 174.939 174.939i 0.272066 0.272066i −0.557865 0.829932i \(-0.688379\pi\)
0.829932 + 0.557865i \(0.188379\pi\)
\(644\) −12.4662 + 145.559i −0.0193575 + 0.226023i
\(645\) 408.287 159.977i 0.633003 0.248027i
\(646\) 124.389 267.393i 0.192553 0.413920i
\(647\) 1087.32i 1.68056i −0.542151 0.840281i \(-0.682390\pi\)
0.542151 0.840281i \(-0.317610\pi\)
\(648\) −535.589 364.758i −0.826526 0.562898i
\(649\) 256.151i 0.394686i
\(650\) −148.785 360.145i −0.228901 0.554069i
\(651\) −42.3747 18.5161i −0.0650918 0.0284426i
\(652\) 1150.95 + 98.5719i 1.76527 + 0.151184i
\(653\) 915.597i 1.40214i −0.713093 0.701070i \(-0.752706\pi\)
0.713093 0.701070i \(-0.247294\pi\)
\(654\) 553.090 + 626.278i 0.845704 + 0.957611i
\(655\) 126.381 126.381i 0.192948 0.192948i
\(656\) −458.728 650.051i −0.699281 0.990932i
\(657\) −668.252 25.7526i −1.01713 0.0391973i
\(658\) −330.945 + 120.797i −0.502955 + 0.183582i
\(659\) 330.590 0.501653 0.250827 0.968032i \(-0.419298\pi\)
0.250827 + 0.968032i \(0.419298\pi\)
\(660\) −98.2037 331.499i −0.148794 0.502272i
\(661\) −388.081 + 388.081i −0.587112 + 0.587112i −0.936848 0.349736i \(-0.886271\pi\)
0.349736 + 0.936848i \(0.386271\pi\)
\(662\) −461.348 + 991.734i −0.696900 + 1.49809i
\(663\) 288.340 + 111.892i 0.434902 + 0.168767i
\(664\) 969.116 262.529i 1.45951 0.395375i
\(665\) 112.800 112.800i 0.169624 0.169624i
\(666\) −41.3961 + 13.3271i −0.0621564 + 0.0200107i
\(667\) 147.894 0.221730
\(668\) 35.3940 413.270i 0.0529850 0.618668i
\(669\) 856.755 335.699i 1.28065 0.501792i
\(670\) −176.584 483.781i −0.263558 0.722061i
\(671\) −694.648 + 694.648i −1.03524 + 1.03524i
\(672\) −221.557 + 136.617i −0.329699 + 0.203299i
\(673\) 186.978i 0.277827i −0.990304 0.138914i \(-0.955639\pi\)
0.990304 0.138914i \(-0.0443611\pi\)
\(674\) 42.0431 + 115.184i 0.0623785 + 0.170897i
\(675\) −382.171 + 133.008i −0.566180 + 0.197049i
\(676\) 478.891 477.116i 0.708418 0.705793i
\(677\) 368.883i 0.544879i −0.962173 0.272440i \(-0.912170\pi\)
0.962173 0.272440i \(-0.0878305\pi\)
\(678\) −31.8586 + 513.383i −0.0469890 + 0.757201i
\(679\) 162.944i 0.239977i
\(680\) −52.4917 193.771i −0.0771937 0.284958i
\(681\) −263.209 671.749i −0.386503 0.986415i
\(682\) 35.4980 + 97.2528i 0.0520499 + 0.142599i
\(683\) 455.745 455.745i 0.667269 0.667269i −0.289814 0.957083i \(-0.593593\pi\)
0.957083 + 0.289814i \(0.0935934\pi\)
\(684\) −528.197 + 411.161i −0.772218 + 0.601112i
\(685\) −44.4663 −0.0649143
\(686\) −207.336 + 445.698i −0.302239 + 0.649706i
\(687\) −113.481 + 44.4648i −0.165183 + 0.0647231i
\(688\) −125.676 + 728.333i −0.182669 + 1.05862i
\(689\) −52.5369 1256.45i −0.0762509 1.82359i
\(690\) 169.290 + 191.691i 0.245348 + 0.277813i
\(691\) 252.600 252.600i 0.365557 0.365557i −0.500297 0.865854i \(-0.666776\pi\)
0.865854 + 0.500297i \(0.166776\pi\)
\(692\) −145.571 + 122.603i −0.210362 + 0.177172i
\(693\) −150.945 163.045i −0.217813 0.235274i
\(694\) 51.6244 18.8433i 0.0743868 0.0271517i
\(695\) −352.266 352.266i −0.506858 0.506858i
\(696\) 156.936 + 211.671i 0.225483 + 0.304124i
\(697\) 278.847 278.847i 0.400068 0.400068i
\(698\) 287.888 618.857i 0.412447 0.886615i
\(699\) −350.248 153.045i −0.501070 0.218948i
\(700\) −13.8701 + 161.951i −0.0198144 + 0.231359i
\(701\) −684.290 −0.976162 −0.488081 0.872798i \(-0.662303\pi\)
−0.488081 + 0.872798i \(0.662303\pi\)
\(702\) −466.410 524.658i −0.664401 0.747376i
\(703\) 44.9222i 0.0639007i
\(704\) 563.699 + 147.728i 0.800708 + 0.209841i
\(705\) −246.940 + 565.131i −0.350270 + 0.801604i
\(706\) 320.358 688.656i 0.453765 0.975434i
\(707\) 158.563 + 158.563i 0.224276 + 0.224276i
\(708\) −161.075 + 296.682i −0.227508 + 0.419042i
\(709\) −801.423 + 801.423i −1.13036 + 1.13036i −0.140240 + 0.990118i \(0.544787\pi\)
−0.990118 + 0.140240i \(0.955213\pi\)
\(710\) 129.405 47.2338i 0.182261 0.0665265i
\(711\) 304.958 282.326i 0.428914 0.397083i
\(712\) −1051.10 + 284.738i −1.47626 + 0.399913i
\(713\) −54.1504 54.1504i −0.0759473 0.0759473i
\(714\) −85.4020 96.7027i −0.119611 0.135438i
\(715\) −15.6476 374.224i −0.0218848 0.523390i
\(716\) 898.054 + 1066.29i 1.25427 + 1.48923i
\(717\) −14.5771 37.2031i −0.0203307 0.0518871i
\(718\) −51.3860 + 110.462i −0.0715683 + 0.153846i
\(719\) 931.573i 1.29565i 0.761789 + 0.647825i \(0.224321\pi\)
−0.761789 + 0.647825i \(0.775679\pi\)
\(720\) −94.7140 + 445.706i −0.131547 + 0.619036i
\(721\) 262.303 + 262.303i 0.363805 + 0.363805i
\(722\) −10.4826 28.7188i −0.0145188 0.0397767i
\(723\) 1304.22 511.026i 1.80390 0.706813i
\(724\) 438.410 + 520.538i 0.605538 + 0.718975i
\(725\) 164.549 0.226964
\(726\) 14.1569 228.130i 0.0194998 0.314229i
\(727\) −364.106 −0.500833 −0.250417 0.968138i \(-0.580568\pi\)
−0.250417 + 0.968138i \(0.580568\pi\)
\(728\) −268.855 + 85.0367i −0.369307 + 0.116809i
\(729\) −571.477 + 452.609i −0.783919 + 0.620863i
\(730\) 161.239 + 441.741i 0.220875 + 0.605125i
\(731\) −366.337 −0.501146
\(732\) 1241.38 367.747i 1.69587 0.502387i
\(733\) −857.363 857.363i −1.16966 1.16966i −0.982288 0.187375i \(-0.940002\pi\)
−0.187375 0.982288i \(-0.559998\pi\)
\(734\) 342.600 + 938.611i 0.466758 + 1.27876i
\(735\) 144.237 + 368.114i 0.196241 + 0.500836i
\(736\) −424.153 + 76.7935i −0.576295 + 0.104339i
\(737\) 740.955i 1.00537i
\(738\) −851.999 + 274.294i −1.15447 + 0.371672i
\(739\) −963.677 963.677i −1.30403 1.30403i −0.925651 0.378378i \(-0.876482\pi\)
−0.378378 0.925651i \(-0.623518\pi\)
\(740\) 19.6994 + 23.3897i 0.0266208 + 0.0316077i
\(741\) −663.522 + 292.522i −0.895442 + 0.394767i
\(742\) −221.257 + 475.623i −0.298190 + 0.641002i
\(743\) −935.304 935.304i −1.25882 1.25882i −0.951656 0.307165i \(-0.900620\pi\)
−0.307165 0.951656i \(-0.599380\pi\)
\(744\) 20.0406 134.963i 0.0269363 0.181402i
\(745\) 327.885i 0.440114i
\(746\) 623.794 227.690i 0.836185 0.305214i
\(747\) 43.4976 1128.71i 0.0582297 1.51100i
\(748\) −24.6467 + 287.782i −0.0329502 + 0.384736i
\(749\) −179.073 179.073i −0.239082 0.239082i
\(750\) 502.547 + 569.046i 0.670063 + 0.758728i
\(751\) 1140.94 1.51923 0.759613 0.650376i \(-0.225389\pi\)
0.759613 + 0.650376i \(0.225389\pi\)
\(752\) −599.334 849.301i −0.796987 1.12939i
\(753\) −158.231 + 362.116i −0.210134 + 0.480898i
\(754\) 108.996 + 263.833i 0.144557 + 0.349911i
\(755\) 426.294 0.564628
\(756\) 72.3012 + 283.762i 0.0956365 + 0.375347i
\(757\) −383.846 −0.507062 −0.253531 0.967327i \(-0.581592\pi\)
−0.253531 + 0.967327i \(0.581592\pi\)
\(758\) −558.701 + 1201.01i −0.737073 + 1.58444i
\(759\) −134.236 342.590i −0.176858 0.451370i
\(760\) 408.265 + 234.219i 0.537191 + 0.308183i
\(761\) −4.79917 4.79917i −0.00630639 0.00630639i 0.703947 0.710253i \(-0.251419\pi\)
−0.710253 + 0.703947i \(0.751419\pi\)
\(762\) 561.478 + 34.8432i 0.736847 + 0.0457259i
\(763\) 377.578i 0.494860i
\(764\) 1114.35 938.534i 1.45857 1.22845i
\(765\) −225.682 8.69718i −0.295009 0.0113689i
\(766\) −259.385 120.664i −0.338623 0.157525i
\(767\) −247.574 + 269.181i −0.322782 + 0.350953i
\(768\) −559.997 525.574i −0.729163 0.684341i
\(769\) 7.46155 + 7.46155i 0.00970292 + 0.00970292i 0.711942 0.702239i \(-0.247816\pi\)
−0.702239 + 0.711942i \(0.747816\pi\)
\(770\) −65.8994 + 141.660i −0.0855836 + 0.183974i
\(771\) 398.821 + 174.269i 0.517277 + 0.226030i
\(772\) 13.3083 155.391i 0.0172387 0.201284i
\(773\) −566.815 + 566.815i −0.733267 + 0.733267i −0.971266 0.237999i \(-0.923509\pi\)
0.237999 + 0.971266i \(0.423509\pi\)
\(774\) 739.837 + 379.482i 0.955862 + 0.490287i
\(775\) −60.2487 60.2487i −0.0777402 0.0777402i
\(776\) 464.047 125.708i 0.597999 0.161995i
\(777\) 18.0081 + 7.86886i 0.0231765 + 0.0101272i
\(778\) −857.217 + 312.891i −1.10182 + 0.402173i
\(779\) 924.570i 1.18687i
\(780\) −217.200 + 443.277i −0.278461 + 0.568304i
\(781\) −198.196 −0.253772
\(782\) −73.2570 200.700i −0.0936790 0.256650i
\(783\) 279.969 97.4385i 0.357559 0.124442i
\(784\) −656.671 113.311i −0.837590 0.144529i
\(785\) 390.437 390.437i 0.497372 0.497372i
\(786\) 338.249 + 20.9905i 0.430342 + 0.0267054i
\(787\) −322.116 322.116i −0.409296 0.409296i 0.472197 0.881493i \(-0.343461\pi\)
−0.881493 + 0.472197i \(0.843461\pi\)
\(788\) −84.4095 + 985.590i −0.107119 + 1.25075i
\(789\) 202.189 + 88.3488i 0.256260 + 0.111976i
\(790\) −264.960 123.258i −0.335392 0.156022i
\(791\) 164.361 164.361i 0.207789 0.207789i
\(792\) 347.883 555.660i 0.439246 0.701591i
\(793\) 1401.37 58.5964i 1.76718 0.0738920i
\(794\) −359.041 + 771.810i −0.452192 + 0.972052i
\(795\) 335.012 + 855.001i 0.421398 + 1.07547i
\(796\) −664.886 + 559.984i −0.835284 + 0.703498i
\(797\) 1338.55 1.67949 0.839746 0.542980i \(-0.182704\pi\)
0.839746 + 0.542980i \(0.182704\pi\)
\(798\) 301.901 + 18.7348i 0.378322 + 0.0234772i
\(799\) 364.318 364.318i 0.455967 0.455967i
\(800\) −471.920 + 85.4417i −0.589900 + 0.106802i
\(801\) −47.1773 + 1224.20i −0.0588980 + 1.52834i
\(802\) 647.041 + 300.999i 0.806785 + 0.375311i
\(803\) 676.567i 0.842550i
\(804\) 465.934 858.196i 0.579520 1.06741i
\(805\) 115.569i 0.143564i
\(806\) 56.6925 136.509i 0.0703381 0.169366i
\(807\) −395.730 + 905.640i −0.490371 + 1.12223i
\(808\) −329.242 + 573.899i −0.407478 + 0.710271i
\(809\) 615.167i 0.760404i 0.924903 + 0.380202i \(0.124146\pi\)
−0.924903 + 0.380202i \(0.875854\pi\)
\(810\) 446.767 + 251.344i 0.551564 + 0.310301i
\(811\) 322.284 322.284i 0.397391 0.397391i −0.479921 0.877312i \(-0.659335\pi\)
0.877312 + 0.479921i \(0.159335\pi\)
\(812\) 10.1609 118.641i 0.0125134 0.146110i
\(813\) 253.795 + 647.725i 0.312171 + 0.796710i
\(814\) −15.0857 41.3299i −0.0185328 0.0507738i
\(815\) −913.822 −1.12125
\(816\) 209.513 317.819i 0.256756 0.389485i
\(817\) 607.330 607.330i 0.743366 0.743366i
\(818\) 193.757 + 90.1346i 0.236867 + 0.110189i
\(819\) 1.03766 + 317.229i 0.00126698 + 0.387337i
\(820\) 405.445 + 481.397i 0.494445 + 0.587070i
\(821\) −353.910 + 353.910i −0.431072 + 0.431072i −0.888993 0.457921i \(-0.848594\pi\)
0.457921 + 0.888993i \(0.348594\pi\)
\(822\) −55.8127 63.1980i −0.0678987 0.0768833i
\(823\) −155.082 −0.188435 −0.0942176 0.995552i \(-0.530035\pi\)
−0.0942176 + 0.995552i \(0.530035\pi\)
\(824\) −544.649 + 949.373i −0.660982 + 1.15215i
\(825\) −149.353 381.171i −0.181034 0.462026i
\(826\) 143.306 52.3079i 0.173494 0.0633268i
\(827\) −453.337 + 453.337i −0.548170 + 0.548170i −0.925911 0.377741i \(-0.876701\pi\)
0.377741 + 0.925911i \(0.376701\pi\)
\(828\) −59.9549 + 481.209i −0.0724093 + 0.581171i
\(829\) 277.026i 0.334169i 0.985943 + 0.167084i \(0.0534352\pi\)
−0.985943 + 0.167084i \(0.946565\pi\)
\(830\) −746.124 + 272.341i −0.898945 + 0.328122i
\(831\) 199.335 456.184i 0.239874 0.548958i
\(832\) −449.591 700.065i −0.540374 0.841425i
\(833\) 330.293i 0.396510i
\(834\) 58.5075 942.814i 0.0701528 1.13047i
\(835\) 328.124i 0.392962i
\(836\) −436.237 517.958i −0.521815 0.619567i
\(837\) −138.185 66.8324i −0.165096 0.0798476i
\(838\) 666.686 243.345i 0.795568 0.290388i
\(839\) −548.135 + 548.135i −0.653319 + 0.653319i −0.953791 0.300471i \(-0.902856\pi\)
0.300471 + 0.953791i \(0.402856\pi\)
\(840\) 165.407 122.636i 0.196913 0.145995i
\(841\) 720.456 0.856666
\(842\) 380.382 + 176.951i 0.451760 + 0.210156i
\(843\) 21.2735 + 54.2932i 0.0252354 + 0.0644047i
\(844\) −41.5591 49.3444i −0.0492406 0.0584649i
\(845\) −345.249 + 408.384i −0.408579 + 0.483294i
\(846\) −1113.15 + 358.368i −1.31578 + 0.423603i
\(847\) −73.0366 + 73.0366i −0.0862297 + 0.0862297i
\(848\) −1525.22 263.181i −1.79861 0.310355i
\(849\) −908.722 397.076i −1.07034 0.467699i
\(850\) −81.5069 223.302i −0.0958905 0.262708i
\(851\) 23.0125 + 23.0125i 0.0270417 + 0.0270417i
\(852\) 229.556 + 124.631i 0.269432 + 0.146281i
\(853\) 671.485 671.485i 0.787204 0.787204i −0.193831 0.981035i \(-0.562091\pi\)
0.981035 + 0.193831i \(0.0620913\pi\)
\(854\) −530.481 246.776i −0.621172 0.288965i
\(855\) 388.564 359.727i 0.454461 0.420733i
\(856\) 371.828 648.130i 0.434378 0.757161i
\(857\) −465.906 −0.543647 −0.271824 0.962347i \(-0.587627\pi\)
−0.271824 + 0.962347i \(0.587627\pi\)
\(858\) 512.228 491.953i 0.597002 0.573372i
\(859\) 646.398i 0.752500i −0.926518 0.376250i \(-0.877213\pi\)
0.926518 0.376250i \(-0.122787\pi\)
\(860\) 49.8915 582.547i 0.0580133 0.677380i
\(861\) 370.636 + 161.954i 0.430472 + 0.188100i
\(862\) −332.750 154.793i −0.386021 0.179574i
\(863\) 80.0865 + 80.0865i 0.0928001 + 0.0928001i 0.751983 0.659183i \(-0.229098\pi\)
−0.659183 + 0.751983i \(0.729098\pi\)
\(864\) −752.344 + 424.823i −0.870769 + 0.491693i
\(865\) 106.461 106.461i 0.123076 0.123076i
\(866\) 190.044 + 520.658i 0.219450 + 0.601222i
\(867\) −621.573 271.603i −0.716923 0.313268i
\(868\) −47.1602 + 39.7195i −0.0543320 + 0.0457598i
\(869\) 297.296 + 297.296i 0.342112 + 0.342112i
\(870\) −137.984 156.242i −0.158602 0.179589i
\(871\) 716.143 778.646i 0.822208 0.893967i
\(872\) 1075.30 291.294i 1.23314 0.334053i
\(873\) 20.8282 540.468i 0.0238582 0.619093i
\(874\) 454.178 + 211.280i 0.519654 + 0.241740i
\(875\) 343.074i 0.392084i
\(876\) −425.446 + 783.621i −0.485668 + 0.894544i
\(877\) 492.434 + 492.434i 0.561498 + 0.561498i 0.929733 0.368235i \(-0.120038\pi\)
−0.368235 + 0.929733i \(0.620038\pi\)
\(878\) 1548.81 565.329i 1.76403 0.643883i
\(879\) 32.2765 + 82.3747i 0.0367196 + 0.0937141i
\(880\) −454.273 78.3861i −0.516219 0.0890751i
\(881\) −582.104 −0.660730 −0.330365 0.943853i \(-0.607172\pi\)
−0.330365 + 0.943853i \(0.607172\pi\)
\(882\) −342.144 + 667.043i −0.387918 + 0.756284i
\(883\) 751.578 0.851164 0.425582 0.904920i \(-0.360069\pi\)
0.425582 + 0.904920i \(0.360069\pi\)
\(884\) 304.046 278.600i 0.343943 0.315158i
\(885\) 106.931 244.714i 0.120826 0.276513i
\(886\) 557.096 203.344i 0.628777 0.229508i
\(887\) 227.550 0.256539 0.128270 0.991739i \(-0.459058\pi\)
0.128270 + 0.991739i \(0.459058\pi\)
\(888\) −8.51671 + 57.3558i −0.00959089 + 0.0645899i
\(889\) −179.759 179.759i −0.202203 0.202203i
\(890\) 809.243 295.380i 0.909262 0.331887i
\(891\) −479.826 560.097i −0.538525 0.628616i
\(892\) 104.693 1222.43i 0.117369 1.37043i
\(893\) 1207.96i 1.35270i
\(894\) −466.009 + 411.551i −0.521263 + 0.460348i
\(895\) −779.813 779.813i −0.871300 0.871300i
\(896\) 32.4633 + 345.534i 0.0362313 + 0.385641i
\(897\) −190.054 + 489.757i −0.211877 + 0.545995i
\(898\) 261.715 + 121.748i 0.291442 + 0.135577i
\(899\) 44.1366 + 44.1366i 0.0490952 + 0.0490952i
\(900\) −66.7068 + 535.401i −0.0741187 + 0.594890i
\(901\) 767.154i 0.851448i
\(902\) −310.488 850.635i −0.344222 0.943054i
\(903\) −137.079 349.847i −0.151804 0.387427i
\(904\) 594.883 + 341.281i 0.658057 + 0.377523i
\(905\) −380.687 380.687i −0.420649 0.420649i
\(906\) 535.071 + 605.873i 0.590586 + 0.668734i
\(907\) −83.6189 −0.0921929 −0.0460964 0.998937i \(-0.514678\pi\)
−0.0460964 + 0.998937i \(0.514678\pi\)
\(908\) −958.457 82.0858i −1.05557 0.0904028i
\(909\) 505.669 + 546.205i 0.556291 + 0.600886i
\(910\) 206.168 85.1735i 0.226558 0.0935973i
\(911\) 141.993 0.155865 0.0779323 0.996959i \(-0.475168\pi\)
0.0779323 + 0.996959i \(0.475168\pi\)
\(912\) 179.556 + 874.234i 0.196881 + 0.958590i
\(913\) 1142.76 1.25165
\(914\) −762.684 354.796i −0.834447 0.388179i
\(915\) −953.615 + 373.651i −1.04220 + 0.408362i
\(916\) −13.8670 + 161.916i −0.0151387 + 0.176764i
\(917\) −108.292 108.292i −0.118093 0.118093i
\(918\) −270.908 331.668i −0.295107 0.361295i
\(919\) 31.4087i 0.0341771i −0.999854 0.0170885i \(-0.994560\pi\)
0.999854 0.0170885i \(-0.00543972\pi\)
\(920\) 329.128 89.1594i 0.357748 0.0969124i
\(921\) −510.828 1303.71i −0.554645 1.41554i
\(922\) 362.708 779.693i 0.393393 0.845654i
\(923\) 208.278 + 191.559i 0.225653 + 0.207539i
\(924\) −284.050 + 84.1474i −0.307414 + 0.0910686i
\(925\) 25.6041 + 25.6041i 0.0276801 + 0.0276801i
\(926\) −361.688 168.255i −0.390592 0.181701i
\(927\) 836.503 + 903.560i 0.902376 + 0.974714i
\(928\) 345.716 62.5923i 0.372539 0.0674487i
\(929\) −1062.36 + 1062.36i −1.14355 + 1.14355i −0.155755 + 0.987796i \(0.549781\pi\)
−0.987796 + 0.155755i \(0.950219\pi\)
\(930\) −6.68527 + 107.729i −0.00718846 + 0.115838i
\(931\) 547.573 + 547.573i 0.588156 + 0.588156i
\(932\) −389.802 + 328.301i −0.418243 + 0.352254i
\(933\) 349.844 800.629i 0.374967 0.858123i
\(934\) 374.791 + 1026.80i 0.401275 + 1.09936i
\(935\) 228.490i 0.244375i
\(936\) −902.632 + 247.691i −0.964351 + 0.264627i
\(937\) −1441.85 −1.53879 −0.769395 0.638773i \(-0.779442\pi\)
−0.769395 + 0.638773i \(0.779442\pi\)
\(938\) −414.535 + 151.308i −0.441935 + 0.161310i
\(939\) 941.552 + 411.422i 1.00272 + 0.438149i
\(940\) 529.719 + 628.951i 0.563531 + 0.669097i
\(941\) 203.881 203.881i 0.216664 0.216664i −0.590427 0.807091i \(-0.701041\pi\)
0.807091 + 0.590427i \(0.201041\pi\)
\(942\) 1044.97 + 64.8471i 1.10931 + 0.0688398i
\(943\) 473.634 + 473.634i 0.502263 + 0.502263i
\(944\) 259.525 + 367.766i 0.274921 + 0.389583i
\(945\) −76.1418 218.777i −0.0805734 0.231510i
\(946\) −354.811 + 762.716i −0.375064 + 0.806254i
\(947\) 280.005 280.005i 0.295676 0.295676i −0.543641 0.839318i \(-0.682955\pi\)
0.839318 + 0.543641i \(0.182955\pi\)
\(948\) −157.389 531.285i −0.166022 0.560427i
\(949\) −653.912 + 710.983i −0.689054 + 0.749192i
\(950\) 505.326 + 235.074i 0.531922 + 0.247446i
\(951\) −1576.18 + 617.590i −1.65740 + 0.649411i
\(952\) −166.036 + 44.9784i −0.174407 + 0.0472462i
\(953\) 1500.26 1.57425 0.787123 0.616796i \(-0.211570\pi\)
0.787123 + 0.616796i \(0.211570\pi\)
\(954\) −794.680 + 1549.31i −0.832998 + 1.62401i
\(955\) −814.964 + 814.964i −0.853365 + 0.853365i
\(956\) −53.0817 4.54611i −0.0555248 0.00475534i
\(957\) 109.412 + 279.236i 0.114328 + 0.291783i
\(958\) −133.481 + 286.937i −0.139333 + 0.299517i
\(959\) 38.1017i 0.0397306i
\(960\) 476.861 + 376.449i 0.496730 + 0.392134i
\(961\) 928.679i 0.966368i
\(962\) −24.0928 + 58.0128i −0.0250445 + 0.0603044i
\(963\) −571.074 616.854i −0.593016 0.640554i
\(964\) 159.371 1860.87i 0.165323 1.93036i
\(965\) 123.376i 0.127851i
\(966\) 164.254 145.059i 0.170035 0.150164i
\(967\) −302.480 + 302.480i −0.312803 + 0.312803i −0.845994 0.533192i \(-0.820992\pi\)
0.533192 + 0.845994i \(0.320992\pi\)
\(968\) −264.346 151.654i −0.273085 0.156667i
\(969\) −411.875 + 161.383i −0.425052 + 0.166546i
\(970\) −357.271 + 130.406i −0.368320 + 0.134440i
\(971\) 1484.57 1.52891 0.764453 0.644679i \(-0.223009\pi\)
0.764453 + 0.644679i \(0.223009\pi\)
\(972\) 203.543 + 950.449i 0.209407 + 0.977829i
\(973\) −301.845 + 301.845i −0.310221 + 0.310221i
\(974\) 177.795 382.197i 0.182541 0.392399i
\(975\) −211.457 + 544.912i −0.216879 + 0.558884i
\(976\) 293.535 1701.13i 0.300753 1.74296i
\(977\) 680.203 680.203i 0.696216 0.696216i −0.267376 0.963592i \(-0.586157\pi\)
0.963592 + 0.267376i \(0.0861567\pi\)
\(978\) −1147.00 1298.78i −1.17280 1.32799i
\(979\) −1239.43 −1.26602
\(980\) 525.229 + 44.9825i 0.535948 + 0.0459005i
\(981\) 48.2636 1252.39i 0.0491983 1.27664i
\(982\) −296.154 811.363i −0.301582 0.826236i
\(983\) −178.438 + 178.438i −0.181524 + 0.181524i −0.792019 0.610496i \(-0.790970\pi\)
0.610496 + 0.792019i \(0.290970\pi\)
\(984\) −175.288 + 1180.47i −0.178138 + 1.19967i
\(985\) 782.528i 0.794444i
\(986\) 59.7099 + 163.585i 0.0605577 + 0.165908i
\(987\) 484.241 + 211.595i 0.490619 + 0.214382i
\(988\) −42.1859 + 965.935i −0.0426983 + 0.977667i
\(989\) 622.240i 0.629160i
\(990\) −236.688 + 461.448i −0.239079 + 0.466109i
\(991\) 1209.46i 1.22045i 0.792230 + 0.610223i \(0.208920\pi\)
−0.792230 + 0.610223i \(0.791080\pi\)
\(992\) −149.500 103.664i −0.150705 0.104500i
\(993\) 1527.61 598.556i 1.53838 0.602775i
\(994\) −40.4730 110.883i −0.0407173 0.111552i
\(995\) 486.255 486.255i 0.488698 0.488698i
\(996\) −1323.58 718.600i −1.32889 0.721486i
\(997\) −901.595 −0.904308 −0.452154 0.891940i \(-0.649344\pi\)
−0.452154 + 0.891940i \(0.649344\pi\)
\(998\) 297.936 640.455i 0.298533 0.641739i
\(999\) 58.7252 + 28.4020i 0.0587839 + 0.0284304i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.3.l.c.47.6 96
3.2 odd 2 inner 156.3.l.c.47.43 yes 96
4.3 odd 2 inner 156.3.l.c.47.19 yes 96
12.11 even 2 inner 156.3.l.c.47.30 yes 96
13.5 odd 4 inner 156.3.l.c.83.30 yes 96
39.5 even 4 inner 156.3.l.c.83.19 yes 96
52.31 even 4 inner 156.3.l.c.83.43 yes 96
156.83 odd 4 inner 156.3.l.c.83.6 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.3.l.c.47.6 96 1.1 even 1 trivial
156.3.l.c.47.19 yes 96 4.3 odd 2 inner
156.3.l.c.47.30 yes 96 12.11 even 2 inner
156.3.l.c.47.43 yes 96 3.2 odd 2 inner
156.3.l.c.83.6 yes 96 156.83 odd 4 inner
156.3.l.c.83.19 yes 96 39.5 even 4 inner
156.3.l.c.83.30 yes 96 13.5 odd 4 inner
156.3.l.c.83.43 yes 96 52.31 even 4 inner