Properties

Label 156.3.l.c.47.19
Level $156$
Weight $3$
Character 156.47
Analytic conductor $4.251$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [156,3,Mod(47,156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("156.47"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(156, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 156.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,-36,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.25069212402\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.19
Character \(\chi\) \(=\) 156.47
Dual form 156.3.l.c.83.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.685761 + 1.87876i) q^{2} +(-2.74902 - 1.20121i) q^{3} +(-3.05946 - 2.57676i) q^{4} +(-2.23749 + 2.23749i) q^{5} +(4.14196 - 4.34099i) q^{6} +(-1.91723 - 1.91723i) q^{7} +(6.93916 - 3.98095i) q^{8} +(6.11417 + 6.60431i) q^{9} +(-2.66932 - 5.73809i) q^{10} +(6.43837 - 6.43837i) q^{11} +(5.31528 + 10.7586i) q^{12} +(12.9887 - 0.543102i) q^{13} +(4.91678 - 2.28725i) q^{14} +(8.83861 - 3.46320i) q^{15} +(2.72064 + 15.7670i) q^{16} +7.93049 q^{17} +(-16.6008 + 6.95808i) q^{18} +(13.1475 - 13.1475i) q^{19} +(12.6110 - 1.08005i) q^{20} +(2.96749 + 7.57350i) q^{21} +(7.68096 + 16.5113i) q^{22} -13.4703i q^{23} +(-23.8578 + 2.60829i) q^{24} +14.9872i q^{25} +(-7.88675 + 24.7750i) q^{26} +(-8.87477 - 25.4998i) q^{27} +(0.925460 + 10.8059i) q^{28} -10.9793i q^{29} +(0.445336 + 18.9805i) q^{30} +(4.01999 - 4.01999i) q^{31} +(-31.4881 - 5.70096i) q^{32} +(-25.4330 + 9.96532i) q^{33} +(-5.43842 + 14.8995i) q^{34} +8.57958 q^{35} +(-1.68839 - 35.9604i) q^{36} +(1.70839 - 1.70839i) q^{37} +(15.6849 + 33.7170i) q^{38} +(-36.3584 - 14.1091i) q^{39} +(-6.61898 + 24.4337i) q^{40} +(35.1614 - 35.1614i) q^{41} +(-16.2638 + 0.381593i) q^{42} +46.1935 q^{43} +(-36.2881 + 3.10784i) q^{44} +(-28.4575 - 1.09668i) q^{45} +(25.3074 + 9.23738i) q^{46} +(-45.9388 + 45.9388i) q^{47} +(11.4604 - 46.6118i) q^{48} -41.6485i q^{49} +(-28.1574 - 10.2777i) q^{50} +(-21.8010 - 9.52621i) q^{51} +(-41.1378 - 31.8070i) q^{52} -96.7348i q^{53} +(53.9939 + 0.813197i) q^{54} +28.8116i q^{55} +(-20.9364 - 5.67157i) q^{56} +(-51.9357 + 20.3497i) q^{57} +(20.6274 + 7.52915i) q^{58} +(19.8925 - 19.8925i) q^{59} +(-35.9652 - 12.1794i) q^{60} +107.892 q^{61} +(4.79584 + 10.3094i) q^{62} +(0.939704 - 24.3843i) q^{63} +(32.3040 - 55.2490i) q^{64} +(-27.8468 + 30.2772i) q^{65} +(-1.28145 - 54.6163i) q^{66} +(-57.5421 + 57.5421i) q^{67} +(-24.2631 - 20.4350i) q^{68} +(-16.1807 + 37.0300i) q^{69} +(-5.88354 + 16.1190i) q^{70} +(-15.3918 - 15.3918i) q^{71} +(68.7187 + 21.4881i) q^{72} +(-52.5418 + 52.5418i) q^{73} +(2.03811 + 4.38120i) q^{74} +(18.0029 - 41.2002i) q^{75} +(-74.1023 + 6.34639i) q^{76} -24.6877 q^{77} +(51.4408 - 58.6331i) q^{78} +46.1756i q^{79} +(-41.3660 - 29.1911i) q^{80} +(-6.23379 + 80.7598i) q^{81} +(41.9475 + 90.1721i) q^{82} +(88.7459 + 88.7459i) q^{83} +(10.4361 - 30.8174i) q^{84} +(-17.7444 + 17.7444i) q^{85} +(-31.6777 + 86.7865i) q^{86} +(-13.1884 + 30.1822i) q^{87} +(19.0461 - 70.3077i) q^{88} +(96.2535 + 96.2535i) q^{89} +(21.5754 - 52.7127i) q^{90} +(-25.9435 - 23.8610i) q^{91} +(-34.7096 + 41.2118i) q^{92} +(-15.8799 + 6.22216i) q^{93} +(-54.8049 - 117.811i) q^{94} +58.8349i q^{95} +(79.7131 + 53.4959i) q^{96} +(-42.4947 - 42.4947i) q^{97} +(78.2474 + 28.5609i) q^{98} +(81.8863 + 3.15568i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 36 q^{6} - 64 q^{9} - 8 q^{13} + 80 q^{16} + 48 q^{18} + 8 q^{21} + 124 q^{24} - 8 q^{28} + 24 q^{33} + 64 q^{34} - 128 q^{37} - 136 q^{40} - 140 q^{42} - 160 q^{45} + 88 q^{46} - 108 q^{48} - 320 q^{52}+ \cdots + 336 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.685761 + 1.87876i −0.342880 + 0.939379i
\(3\) −2.74902 1.20121i −0.916339 0.400404i
\(4\) −3.05946 2.57676i −0.764866 0.644189i
\(5\) −2.23749 + 2.23749i −0.447499 + 0.447499i −0.894522 0.447024i \(-0.852484\pi\)
0.447024 + 0.894522i \(0.352484\pi\)
\(6\) 4.14196 4.34099i 0.690326 0.723498i
\(7\) −1.91723 1.91723i −0.273890 0.273890i 0.556774 0.830664i \(-0.312039\pi\)
−0.830664 + 0.556774i \(0.812039\pi\)
\(8\) 6.93916 3.98095i 0.867396 0.497619i
\(9\) 6.11417 + 6.60431i 0.679353 + 0.733812i
\(10\) −2.66932 5.73809i −0.266932 0.573809i
\(11\) 6.43837 6.43837i 0.585306 0.585306i −0.351050 0.936357i \(-0.614175\pi\)
0.936357 + 0.351050i \(0.114175\pi\)
\(12\) 5.31528 + 10.7586i 0.442940 + 0.896551i
\(13\) 12.9887 0.543102i 0.999127 0.0417771i
\(14\) 4.91678 2.28725i 0.351198 0.163375i
\(15\) 8.83861 3.46320i 0.589241 0.230880i
\(16\) 2.72064 + 15.7670i 0.170040 + 0.985437i
\(17\) 7.93049 0.466499 0.233250 0.972417i \(-0.425064\pi\)
0.233250 + 0.972417i \(0.425064\pi\)
\(18\) −16.6008 + 6.95808i −0.922264 + 0.386560i
\(19\) 13.1475 13.1475i 0.691974 0.691974i −0.270692 0.962666i \(-0.587252\pi\)
0.962666 + 0.270692i \(0.0872525\pi\)
\(20\) 12.6110 1.08005i 0.630550 0.0540026i
\(21\) 2.96749 + 7.57350i 0.141309 + 0.360643i
\(22\) 7.68096 + 16.5113i 0.349134 + 0.750514i
\(23\) 13.4703i 0.585664i −0.956164 0.292832i \(-0.905402\pi\)
0.956164 0.292832i \(-0.0945977\pi\)
\(24\) −23.8578 + 2.60829i −0.994077 + 0.108679i
\(25\) 14.9872i 0.599490i
\(26\) −7.88675 + 24.7750i −0.303337 + 0.952883i
\(27\) −8.87477 25.4998i −0.328695 0.944436i
\(28\) 0.925460 + 10.8059i 0.0330521 + 0.385926i
\(29\) 10.9793i 0.378595i −0.981920 0.189298i \(-0.939379\pi\)
0.981920 0.189298i \(-0.0606211\pi\)
\(30\) 0.445336 + 18.9805i 0.0148445 + 0.632685i
\(31\) 4.01999 4.01999i 0.129677 0.129677i −0.639289 0.768966i \(-0.720771\pi\)
0.768966 + 0.639289i \(0.220771\pi\)
\(32\) −31.4881 5.70096i −0.984002 0.178155i
\(33\) −25.4330 + 9.96532i −0.770698 + 0.301979i
\(34\) −5.43842 + 14.8995i −0.159954 + 0.438220i
\(35\) 8.57958 0.245131
\(36\) −1.68839 35.9604i −0.0468997 0.998900i
\(37\) 1.70839 1.70839i 0.0461727 0.0461727i −0.683643 0.729816i \(-0.739606\pi\)
0.729816 + 0.683643i \(0.239606\pi\)
\(38\) 15.6849 + 33.7170i 0.412762 + 0.887290i
\(39\) −36.3584 14.1091i −0.932266 0.361773i
\(40\) −6.61898 + 24.4337i −0.165474 + 0.610842i
\(41\) 35.1614 35.1614i 0.857595 0.857595i −0.133459 0.991054i \(-0.542608\pi\)
0.991054 + 0.133459i \(0.0426084\pi\)
\(42\) −16.2638 + 0.381593i −0.387233 + 0.00908555i
\(43\) 46.1935 1.07427 0.537134 0.843497i \(-0.319507\pi\)
0.537134 + 0.843497i \(0.319507\pi\)
\(44\) −36.2881 + 3.10784i −0.824729 + 0.0706328i
\(45\) −28.4575 1.09668i −0.632389 0.0243706i
\(46\) 25.3074 + 9.23738i 0.550160 + 0.200813i
\(47\) −45.9388 + 45.9388i −0.977422 + 0.977422i −0.999751 0.0223285i \(-0.992892\pi\)
0.0223285 + 0.999751i \(0.492892\pi\)
\(48\) 11.4604 46.6118i 0.238759 0.971079i
\(49\) 41.6485i 0.849968i
\(50\) −28.1574 10.2777i −0.563148 0.205553i
\(51\) −21.8010 9.52621i −0.427471 0.186788i
\(52\) −41.1378 31.8070i −0.791111 0.611673i
\(53\) 96.7348i 1.82518i −0.408870 0.912592i \(-0.634077\pi\)
0.408870 0.912592i \(-0.365923\pi\)
\(54\) 53.9939 + 0.813197i 0.999887 + 0.0150592i
\(55\) 28.8116i 0.523847i
\(56\) −20.9364 5.67157i −0.373864 0.101278i
\(57\) −51.9357 + 20.3497i −0.911152 + 0.357013i
\(58\) 20.6274 + 7.52915i 0.355645 + 0.129813i
\(59\) 19.8925 19.8925i 0.337162 0.337162i −0.518136 0.855298i \(-0.673374\pi\)
0.855298 + 0.518136i \(0.173374\pi\)
\(60\) −35.9652 12.1794i −0.599420 0.202990i
\(61\) 107.892 1.76872 0.884360 0.466805i \(-0.154595\pi\)
0.884360 + 0.466805i \(0.154595\pi\)
\(62\) 4.79584 + 10.3094i 0.0773523 + 0.166280i
\(63\) 0.939704 24.3843i 0.0149159 0.387052i
\(64\) 32.3040 55.2490i 0.504750 0.863265i
\(65\) −27.8468 + 30.2772i −0.428413 + 0.465803i
\(66\) −1.28145 54.6163i −0.0194159 0.827520i
\(67\) −57.5421 + 57.5421i −0.858838 + 0.858838i −0.991201 0.132364i \(-0.957743\pi\)
0.132364 + 0.991201i \(0.457743\pi\)
\(68\) −24.2631 20.4350i −0.356810 0.300514i
\(69\) −16.1807 + 37.0300i −0.234502 + 0.536666i
\(70\) −5.88354 + 16.1190i −0.0840506 + 0.230271i
\(71\) −15.3918 15.3918i −0.216785 0.216785i 0.590357 0.807142i \(-0.298987\pi\)
−0.807142 + 0.590357i \(0.798987\pi\)
\(72\) 68.7187 + 21.4881i 0.954426 + 0.298446i
\(73\) −52.5418 + 52.5418i −0.719751 + 0.719751i −0.968554 0.248803i \(-0.919963\pi\)
0.248803 + 0.968554i \(0.419963\pi\)
\(74\) 2.03811 + 4.38120i 0.0275420 + 0.0592054i
\(75\) 18.0029 41.2002i 0.240038 0.549336i
\(76\) −74.1023 + 6.34639i −0.975030 + 0.0835051i
\(77\) −24.6877 −0.320619
\(78\) 51.4408 58.6331i 0.659498 0.751707i
\(79\) 46.1756i 0.584501i 0.956342 + 0.292251i \(0.0944042\pi\)
−0.956342 + 0.292251i \(0.905596\pi\)
\(80\) −41.3660 29.1911i −0.517074 0.364889i
\(81\) −6.23379 + 80.7598i −0.0769603 + 0.997034i
\(82\) 41.9475 + 90.1721i 0.511555 + 1.09966i
\(83\) 88.7459 + 88.7459i 1.06923 + 1.06923i 0.997418 + 0.0718100i \(0.0228775\pi\)
0.0718100 + 0.997418i \(0.477122\pi\)
\(84\) 10.4361 30.8174i 0.124240 0.366873i
\(85\) −17.7444 + 17.7444i −0.208758 + 0.208758i
\(86\) −31.6777 + 86.7865i −0.368346 + 1.00915i
\(87\) −13.1884 + 30.1822i −0.151591 + 0.346922i
\(88\) 19.0461 70.3077i 0.216432 0.798952i
\(89\) 96.2535 + 96.2535i 1.08150 + 1.08150i 0.996370 + 0.0851298i \(0.0271305\pi\)
0.0851298 + 0.996370i \(0.472869\pi\)
\(90\) 21.5754 52.7127i 0.239727 0.585697i
\(91\) −25.9435 23.8610i −0.285093 0.262209i
\(92\) −34.7096 + 41.2118i −0.377279 + 0.447954i
\(93\) −15.8799 + 6.22216i −0.170752 + 0.0669049i
\(94\) −54.8049 117.811i −0.583031 1.25331i
\(95\) 58.8349i 0.619315i
\(96\) 79.7131 + 53.4959i 0.830345 + 0.557249i
\(97\) −42.4947 42.4947i −0.438090 0.438090i 0.453279 0.891369i \(-0.350254\pi\)
−0.891369 + 0.453279i \(0.850254\pi\)
\(98\) 78.2474 + 28.5609i 0.798442 + 0.291438i
\(99\) 81.8863 + 3.15568i 0.827134 + 0.0318755i
\(100\) 38.6185 45.8529i 0.386185 0.458529i
\(101\) 82.7044 0.818855 0.409428 0.912343i \(-0.365728\pi\)
0.409428 + 0.912343i \(0.365728\pi\)
\(102\) 32.8477 34.4262i 0.322037 0.337512i
\(103\) −136.814 −1.32829 −0.664144 0.747605i \(-0.731204\pi\)
−0.664144 + 0.747605i \(0.731204\pi\)
\(104\) 87.9683 55.4759i 0.845849 0.533422i
\(105\) −23.5854 10.3059i −0.224623 0.0981515i
\(106\) 181.741 + 66.3369i 1.71454 + 0.625820i
\(107\) 93.4017 0.872913 0.436457 0.899725i \(-0.356233\pi\)
0.436457 + 0.899725i \(0.356233\pi\)
\(108\) −38.5547 + 100.884i −0.356988 + 0.934109i
\(109\) −98.4697 98.4697i −0.903392 0.903392i 0.0923359 0.995728i \(-0.470567\pi\)
−0.995728 + 0.0923359i \(0.970567\pi\)
\(110\) −54.1300 19.7579i −0.492091 0.179617i
\(111\) −6.74854 + 2.64425i −0.0607976 + 0.0238221i
\(112\) 25.0129 35.4451i 0.223329 0.316474i
\(113\) 85.7284i 0.758658i −0.925262 0.379329i \(-0.876155\pi\)
0.925262 0.379329i \(-0.123845\pi\)
\(114\) −2.61679 111.530i −0.0229543 0.978330i
\(115\) 30.1396 + 30.1396i 0.262084 + 0.262084i
\(116\) −28.2909 + 33.5907i −0.243887 + 0.289575i
\(117\) 83.0017 + 82.4604i 0.709416 + 0.704790i
\(118\) 23.7317 + 51.0148i 0.201116 + 0.432329i
\(119\) −15.2046 15.2046i −0.127770 0.127770i
\(120\) 47.5457 59.2178i 0.396215 0.493482i
\(121\) 38.0948i 0.314833i
\(122\) −73.9881 + 202.703i −0.606460 + 1.66150i
\(123\) −138.896 + 54.4229i −1.12923 + 0.442463i
\(124\) −22.6576 + 1.94048i −0.182722 + 0.0156490i
\(125\) −89.4712 89.4712i −0.715770 0.715770i
\(126\) 45.1677 + 18.4873i 0.358474 + 0.146724i
\(127\) 93.7596 0.738265 0.369132 0.929377i \(-0.379655\pi\)
0.369132 + 0.929377i \(0.379655\pi\)
\(128\) 81.6467 + 98.5790i 0.637864 + 0.770149i
\(129\) −126.987 55.4883i −0.984394 0.430142i
\(130\) −37.7873 73.0804i −0.290671 0.562157i
\(131\) 56.4833 0.431170 0.215585 0.976485i \(-0.430834\pi\)
0.215585 + 0.976485i \(0.430834\pi\)
\(132\) 103.490 + 35.0462i 0.784013 + 0.265502i
\(133\) −50.4136 −0.379050
\(134\) −68.6476 147.568i −0.512295 1.10125i
\(135\) 76.9128 + 37.1983i 0.569725 + 0.275543i
\(136\) 55.0310 31.5709i 0.404640 0.232139i
\(137\) 9.93664 + 9.93664i 0.0725302 + 0.0725302i 0.742441 0.669911i \(-0.233668\pi\)
−0.669911 + 0.742441i \(0.733668\pi\)
\(138\) −58.4743 55.7933i −0.423727 0.404299i
\(139\) 157.438i 1.13265i −0.824183 0.566324i \(-0.808365\pi\)
0.824183 0.566324i \(-0.191635\pi\)
\(140\) −26.2489 22.1075i −0.187492 0.157911i
\(141\) 181.469 71.1042i 1.28701 0.504285i
\(142\) 39.4725 18.3623i 0.277975 0.129312i
\(143\) 80.1290 87.1224i 0.560343 0.609248i
\(144\) −87.4956 + 114.370i −0.607609 + 0.794237i
\(145\) 24.5660 + 24.5660i 0.169421 + 0.169421i
\(146\) −62.6823 134.745i −0.429331 0.922908i
\(147\) −50.0287 + 114.492i −0.340331 + 0.778859i
\(148\) −9.62887 + 0.824652i −0.0650599 + 0.00557197i
\(149\) 73.2706 73.2706i 0.491749 0.491749i −0.417108 0.908857i \(-0.636956\pi\)
0.908857 + 0.417108i \(0.136956\pi\)
\(150\) 65.0595 + 62.0765i 0.433730 + 0.413844i
\(151\) 95.2616 + 95.2616i 0.630871 + 0.630871i 0.948287 0.317415i \(-0.102815\pi\)
−0.317415 + 0.948287i \(0.602815\pi\)
\(152\) 38.8931 143.572i 0.255876 0.944555i
\(153\) 48.4884 + 52.3754i 0.316918 + 0.342323i
\(154\) 16.9298 46.3822i 0.109934 0.301183i
\(155\) 17.9894i 0.116061i
\(156\) 74.8813 + 136.853i 0.480008 + 0.877264i
\(157\) −174.497 −1.11145 −0.555724 0.831367i \(-0.687559\pi\)
−0.555724 + 0.831367i \(0.687559\pi\)
\(158\) −86.7528 31.6654i −0.549068 0.200414i
\(159\) −116.199 + 265.925i −0.730812 + 1.67249i
\(160\) 83.2102 57.6985i 0.520064 0.360616i
\(161\) −25.8256 + 25.8256i −0.160408 + 0.160408i
\(162\) −147.453 67.0937i −0.910205 0.414158i
\(163\) −204.207 204.207i −1.25280 1.25280i −0.954459 0.298343i \(-0.903566\pi\)
−0.298343 0.954459i \(-0.596434\pi\)
\(164\) −198.178 + 16.9726i −1.20840 + 0.103492i
\(165\) 34.6089 79.2036i 0.209751 0.480022i
\(166\) −227.591 + 105.874i −1.37103 + 0.637793i
\(167\) −73.3239 + 73.3239i −0.439066 + 0.439066i −0.891697 0.452632i \(-0.850485\pi\)
0.452632 + 0.891697i \(0.350485\pi\)
\(168\) 50.7417 + 40.7403i 0.302034 + 0.242502i
\(169\) 168.410 14.1083i 0.996509 0.0834812i
\(170\) −21.1690 45.5059i −0.124524 0.267682i
\(171\) 167.216 + 6.44407i 0.977873 + 0.0376846i
\(172\) −141.328 119.030i −0.821672 0.692032i
\(173\) −47.5804 −0.275031 −0.137516 0.990500i \(-0.543912\pi\)
−0.137516 + 0.990500i \(0.543912\pi\)
\(174\) −47.6609 45.4756i −0.273913 0.261354i
\(175\) 28.7340 28.7340i 0.164194 0.164194i
\(176\) 119.030 + 83.9972i 0.676308 + 0.477257i
\(177\) −78.5801 + 30.7897i −0.443955 + 0.173953i
\(178\) −246.844 + 114.830i −1.38676 + 0.645113i
\(179\) 348.521i 1.94704i −0.228591 0.973522i \(-0.573412\pi\)
0.228591 0.973522i \(-0.426588\pi\)
\(180\) 84.2389 + 76.6834i 0.467994 + 0.426019i
\(181\) 170.140i 0.940001i 0.882666 + 0.470000i \(0.155746\pi\)
−0.882666 + 0.470000i \(0.844254\pi\)
\(182\) 62.6201 32.3786i 0.344066 0.177905i
\(183\) −296.597 129.601i −1.62075 0.708204i
\(184\) −53.6245 93.4724i −0.291438 0.508002i
\(185\) 7.64503i 0.0413245i
\(186\) −0.800113 34.1014i −0.00430168 0.183341i
\(187\) 51.0594 51.0594i 0.273045 0.273045i
\(188\) 258.921 22.1750i 1.37724 0.117952i
\(189\) −31.8740 + 65.9039i −0.168645 + 0.348698i
\(190\) −110.537 40.3467i −0.581771 0.212351i
\(191\) −364.231 −1.90697 −0.953483 0.301445i \(-0.902531\pi\)
−0.953483 + 0.301445i \(0.902531\pi\)
\(192\) −155.170 + 113.076i −0.808177 + 0.588939i
\(193\) 27.5701 27.5701i 0.142850 0.142850i −0.632065 0.774915i \(-0.717792\pi\)
0.774915 + 0.632065i \(0.217792\pi\)
\(194\) 108.978 50.6961i 0.561745 0.261320i
\(195\) 112.921 49.7825i 0.579081 0.255295i
\(196\) −107.318 + 127.422i −0.547541 + 0.650112i
\(197\) −174.867 + 174.867i −0.887650 + 0.887650i −0.994297 0.106647i \(-0.965989\pi\)
0.106647 + 0.994297i \(0.465989\pi\)
\(198\) −62.0832 + 151.680i −0.313551 + 0.766063i
\(199\) 217.321 1.09207 0.546033 0.837764i \(-0.316137\pi\)
0.546033 + 0.837764i \(0.316137\pi\)
\(200\) 59.6635 + 103.999i 0.298318 + 0.519995i
\(201\) 227.305 89.0638i 1.13087 0.443103i
\(202\) −56.7154 + 155.382i −0.280769 + 0.769216i
\(203\) −21.0498 + 21.0498i −0.103694 + 0.103694i
\(204\) 42.1528 + 85.3211i 0.206631 + 0.418241i
\(205\) 157.347i 0.767546i
\(206\) 93.8215 257.040i 0.455444 1.24777i
\(207\) 88.9618 82.3596i 0.429767 0.397872i
\(208\) 43.9006 + 203.314i 0.211060 + 0.977473i
\(209\) 169.297i 0.810034i
\(210\) 35.5363 37.2439i 0.169220 0.177352i
\(211\) 16.1284i 0.0764381i 0.999269 + 0.0382191i \(0.0121685\pi\)
−0.999269 + 0.0382191i \(0.987832\pi\)
\(212\) −249.262 + 295.957i −1.17576 + 1.39602i
\(213\) 23.8234 + 60.8010i 0.111847 + 0.285451i
\(214\) −64.0512 + 175.479i −0.299305 + 0.819996i
\(215\) −103.358 + 103.358i −0.480734 + 0.480734i
\(216\) −163.097 141.617i −0.755078 0.655635i
\(217\) −15.4145 −0.0710346
\(218\) 252.527 117.474i 1.15838 0.538872i
\(219\) 207.552 81.3244i 0.947727 0.371344i
\(220\) 74.2405 88.1481i 0.337457 0.400673i
\(221\) 103.006 4.30707i 0.466092 0.0194890i
\(222\) −0.340027 14.4922i −0.00153165 0.0652801i
\(223\) −216.887 + 216.887i −0.972590 + 0.972590i −0.999634 0.0270445i \(-0.991390\pi\)
0.0270445 + 0.999634i \(0.491390\pi\)
\(224\) 49.4399 + 71.3000i 0.220714 + 0.318303i
\(225\) −98.9804 + 91.6346i −0.439913 + 0.407265i
\(226\) 161.063 + 58.7891i 0.712667 + 0.260129i
\(227\) 170.053 + 170.053i 0.749133 + 0.749133i 0.974316 0.225184i \(-0.0722982\pi\)
−0.225184 + 0.974316i \(0.572298\pi\)
\(228\) 211.332 + 71.5663i 0.926893 + 0.313887i
\(229\) −28.7277 + 28.7277i −0.125448 + 0.125448i −0.767044 0.641595i \(-0.778273\pi\)
0.641595 + 0.767044i \(0.278273\pi\)
\(230\) −77.2937 + 35.9565i −0.336059 + 0.156333i
\(231\) 67.8668 + 29.6552i 0.293796 + 0.128377i
\(232\) −43.7079 76.1869i −0.188396 0.328392i
\(233\) −127.409 −0.546818 −0.273409 0.961898i \(-0.588151\pi\)
−0.273409 + 0.961898i \(0.588151\pi\)
\(234\) −211.843 + 99.3919i −0.905310 + 0.424752i
\(235\) 205.576i 0.874790i
\(236\) −112.119 + 9.60226i −0.475080 + 0.0406875i
\(237\) 55.4668 126.937i 0.234037 0.535601i
\(238\) 38.9924 18.1390i 0.163834 0.0762144i
\(239\) 9.41795 + 9.41795i 0.0394057 + 0.0394057i 0.726535 0.687129i \(-0.241129\pi\)
−0.687129 + 0.726535i \(0.741129\pi\)
\(240\) 78.6509 + 129.936i 0.327712 + 0.541401i
\(241\) 330.162 330.162i 1.36997 1.36997i 0.509492 0.860475i \(-0.329833\pi\)
0.860475 0.509492i \(-0.170167\pi\)
\(242\) −71.5709 26.1239i −0.295748 0.107950i
\(243\) 114.146 214.522i 0.469739 0.882806i
\(244\) −330.092 278.011i −1.35283 1.13939i
\(245\) 93.1881 + 93.1881i 0.380360 + 0.380360i
\(246\) −6.99830 298.272i −0.0284484 1.21249i
\(247\) 163.628 177.909i 0.662461 0.720279i
\(248\) 11.8920 43.8988i 0.0479516 0.177011i
\(249\) −137.361 350.567i −0.551651 1.40790i
\(250\) 229.451 106.739i 0.917802 0.426956i
\(251\) 131.726i 0.524804i −0.964959 0.262402i \(-0.915485\pi\)
0.964959 0.262402i \(-0.0845147\pi\)
\(252\) −65.7073 + 72.1814i −0.260743 + 0.286434i
\(253\) −86.7266 86.7266i −0.342793 0.342793i
\(254\) −64.2967 + 176.152i −0.253137 + 0.693510i
\(255\) 70.0945 27.4648i 0.274880 0.107705i
\(256\) −241.196 + 85.7927i −0.942173 + 0.335128i
\(257\) 145.078 0.564505 0.282252 0.959340i \(-0.408918\pi\)
0.282252 + 0.959340i \(0.408918\pi\)
\(258\) 191.332 200.526i 0.741596 0.777232i
\(259\) −6.55076 −0.0252925
\(260\) 163.213 20.8775i 0.627744 0.0802980i
\(261\) 72.5105 67.1291i 0.277818 0.257200i
\(262\) −38.7340 + 106.118i −0.147840 + 0.405032i
\(263\) −73.5496 −0.279656 −0.139828 0.990176i \(-0.544655\pi\)
−0.139828 + 0.990176i \(0.544655\pi\)
\(264\) −136.813 + 170.399i −0.518229 + 0.645450i
\(265\) 216.443 + 216.443i 0.816768 + 0.816768i
\(266\) 34.5717 94.7150i 0.129969 0.356071i
\(267\) −148.981 380.223i −0.557982 1.42406i
\(268\) 324.320 27.7760i 1.21015 0.103642i
\(269\) 329.441i 1.22469i 0.790591 + 0.612345i \(0.209774\pi\)
−0.790591 + 0.612345i \(0.790226\pi\)
\(270\) −122.630 + 118.991i −0.454187 + 0.440709i
\(271\) −163.971 163.971i −0.605061 0.605061i 0.336590 0.941651i \(-0.390726\pi\)
−0.941651 + 0.336590i \(0.890726\pi\)
\(272\) 21.5760 + 125.040i 0.0793236 + 0.459706i
\(273\) 42.6569 + 96.7579i 0.156252 + 0.354425i
\(274\) −25.4827 + 11.8544i −0.0930026 + 0.0432642i
\(275\) 96.4934 + 96.4934i 0.350885 + 0.350885i
\(276\) 144.921 71.5982i 0.525078 0.259414i
\(277\) 165.945i 0.599078i −0.954084 0.299539i \(-0.903167\pi\)
0.954084 0.299539i \(-0.0968329\pi\)
\(278\) 295.788 + 107.965i 1.06399 + 0.388363i
\(279\) 51.1282 + 1.97034i 0.183255 + 0.00706217i
\(280\) 59.5351 34.1549i 0.212625 0.121982i
\(281\) 13.7443 + 13.7443i 0.0489121 + 0.0489121i 0.731140 0.682228i \(-0.238989\pi\)
−0.682228 + 0.731140i \(0.738989\pi\)
\(282\) 9.14337 + 389.697i 0.0324233 + 1.38190i
\(283\) 330.563 1.16807 0.584033 0.811730i \(-0.301474\pi\)
0.584033 + 0.811730i \(0.301474\pi\)
\(284\) 7.42971 + 86.7514i 0.0261609 + 0.305463i
\(285\) 70.6733 161.738i 0.247976 0.567502i
\(286\) 108.733 + 210.288i 0.380184 + 0.735273i
\(287\) −134.825 −0.469774
\(288\) −154.873 242.814i −0.537752 0.843103i
\(289\) −226.107 −0.782378
\(290\) −63.0001 + 29.3072i −0.217242 + 0.101059i
\(291\) 65.7734 + 167.864i 0.226025 + 0.576851i
\(292\) 296.137 25.3623i 1.01417 0.0868572i
\(293\) 20.8531 + 20.8531i 0.0711711 + 0.0711711i 0.741796 0.670625i \(-0.233974\pi\)
−0.670625 + 0.741796i \(0.733974\pi\)
\(294\) −180.796 172.506i −0.614951 0.586755i
\(295\) 89.0188i 0.301759i
\(296\) 5.05378 18.6558i 0.0170736 0.0630265i
\(297\) −221.316 107.038i −0.745172 0.360397i
\(298\) 87.4117 + 187.904i 0.293328 + 0.630550i
\(299\) −7.31573 174.961i −0.0244673 0.585153i
\(300\) −161.242 + 79.6614i −0.537473 + 0.265538i
\(301\) −88.5637 88.5637i −0.294232 0.294232i
\(302\) −244.300 + 113.647i −0.808941 + 0.376314i
\(303\) −227.356 99.3456i −0.750349 0.327873i
\(304\) 243.066 + 171.527i 0.799560 + 0.564234i
\(305\) −241.408 + 241.408i −0.791500 + 0.791500i
\(306\) −131.652 + 55.1809i −0.430236 + 0.180330i
\(307\) 330.034 + 330.034i 1.07503 + 1.07503i 0.996947 + 0.0780834i \(0.0248800\pi\)
0.0780834 + 0.996947i \(0.475120\pi\)
\(308\) 75.5311 + 63.6142i 0.245231 + 0.206539i
\(309\) 376.103 + 164.342i 1.21716 + 0.531853i
\(310\) −33.7978 12.3364i −0.109025 0.0397950i
\(311\) 291.242i 0.936470i 0.883604 + 0.468235i \(0.155110\pi\)
−0.883604 + 0.468235i \(0.844890\pi\)
\(312\) −308.465 + 46.8354i −0.988669 + 0.150113i
\(313\) 342.505 1.09427 0.547133 0.837046i \(-0.315719\pi\)
0.547133 + 0.837046i \(0.315719\pi\)
\(314\) 119.663 327.838i 0.381094 1.04407i
\(315\) 52.4570 + 56.6622i 0.166530 + 0.179880i
\(316\) 118.983 141.273i 0.376530 0.447065i
\(317\) −399.011 + 399.011i −1.25871 + 1.25871i −0.306999 + 0.951710i \(0.599325\pi\)
−0.951710 + 0.306999i \(0.900675\pi\)
\(318\) −419.925 400.671i −1.32052 1.25997i
\(319\) −70.6886 70.6886i −0.221594 0.221594i
\(320\) 51.3392 + 195.899i 0.160435 + 0.612185i
\(321\) −256.763 112.195i −0.799884 0.349518i
\(322\) −30.8099 66.2303i −0.0956829 0.205684i
\(323\) 104.266 104.266i 0.322806 0.322806i
\(324\) 227.170 231.019i 0.701143 0.713021i
\(325\) 8.13961 + 194.664i 0.0250449 + 0.598967i
\(326\) 523.692 243.618i 1.60642 0.747295i
\(327\) 152.412 + 388.978i 0.466091 + 1.18954i
\(328\) 104.015 383.967i 0.317119 1.17063i
\(329\) 176.151 0.535413
\(330\) 125.071 + 119.336i 0.379003 + 0.361626i
\(331\) −386.713 + 386.713i −1.16832 + 1.16832i −0.185715 + 0.982604i \(0.559460\pi\)
−0.982604 + 0.185715i \(0.940540\pi\)
\(332\) −42.8383 500.192i −0.129031 1.50660i
\(333\) 21.7281 + 0.837344i 0.0652497 + 0.00251455i
\(334\) −87.4753 188.041i −0.261902 0.562996i
\(335\) 257.500i 0.768657i
\(336\) −111.338 + 67.3932i −0.331363 + 0.200575i
\(337\) 61.3087i 0.181925i −0.995854 0.0909625i \(-0.971006\pi\)
0.995854 0.0909625i \(-0.0289944\pi\)
\(338\) −88.9829 + 326.077i −0.263263 + 0.964724i
\(339\) −102.978 + 235.669i −0.303770 + 0.695188i
\(340\) 100.011 8.56535i 0.294151 0.0251922i
\(341\) 51.7644i 0.151802i
\(342\) −126.777 + 309.740i −0.370694 + 0.905672i
\(343\) −173.794 + 173.794i −0.506688 + 0.506688i
\(344\) 320.545 183.894i 0.931816 0.534577i
\(345\) −46.6502 119.058i −0.135218 0.345097i
\(346\) 32.6288 89.3921i 0.0943028 0.258359i
\(347\) 27.4780 0.0791872 0.0395936 0.999216i \(-0.487394\pi\)
0.0395936 + 0.999216i \(0.487394\pi\)
\(348\) 118.122 58.3579i 0.339430 0.167695i
\(349\) −241.315 + 241.315i −0.691447 + 0.691447i −0.962550 0.271103i \(-0.912612\pi\)
0.271103 + 0.962550i \(0.412612\pi\)
\(350\) 34.2796 + 73.6889i 0.0979417 + 0.210540i
\(351\) −129.120 326.388i −0.367864 0.929880i
\(352\) −239.437 + 166.027i −0.680218 + 0.471668i
\(353\) −268.532 + 268.532i −0.760715 + 0.760715i −0.976452 0.215737i \(-0.930785\pi\)
0.215737 + 0.976452i \(0.430785\pi\)
\(354\) −3.95928 168.747i −0.0111844 0.476687i
\(355\) 68.8779 0.194022
\(356\) −46.4622 542.506i −0.130512 1.52389i
\(357\) 23.5337 + 60.0616i 0.0659207 + 0.168240i
\(358\) 654.787 + 239.002i 1.82901 + 0.667604i
\(359\) −43.0730 + 43.0730i −0.119981 + 0.119981i −0.764548 0.644567i \(-0.777038\pi\)
0.644567 + 0.764548i \(0.277038\pi\)
\(360\) −201.837 + 105.678i −0.560659 + 0.293550i
\(361\) 15.2861i 0.0423437i
\(362\) −319.652 116.675i −0.883017 0.322308i
\(363\) 45.7600 104.723i 0.126061 0.288494i
\(364\) 17.8892 + 139.852i 0.0491462 + 0.384209i
\(365\) 235.124i 0.644175i
\(366\) 446.884 468.358i 1.22099 1.27967i
\(367\) 499.591i 1.36128i 0.732616 + 0.680642i \(0.238299\pi\)
−0.732616 + 0.680642i \(0.761701\pi\)
\(368\) 212.386 36.6478i 0.577135 0.0995864i
\(369\) 447.200 + 17.2339i 1.21192 + 0.0467043i
\(370\) −14.3632 5.24266i −0.0388193 0.0141694i
\(371\) −185.463 + 185.463i −0.499900 + 0.499900i
\(372\) 64.6170 + 21.8822i 0.173702 + 0.0588231i
\(373\) −332.025 −0.890147 −0.445073 0.895494i \(-0.646822\pi\)
−0.445073 + 0.895494i \(0.646822\pi\)
\(374\) 60.9138 + 130.943i 0.162871 + 0.350115i
\(375\) 138.484 + 353.432i 0.369290 + 0.942485i
\(376\) −135.897 + 501.658i −0.361428 + 1.33420i
\(377\) −5.96286 142.606i −0.0158166 0.378265i
\(378\) −101.960 105.078i −0.269735 0.277984i
\(379\) −468.317 + 468.317i −1.23567 + 1.23567i −0.273911 + 0.961755i \(0.588317\pi\)
−0.961755 + 0.273911i \(0.911683\pi\)
\(380\) 151.603 180.003i 0.398956 0.473693i
\(381\) −257.747 112.625i −0.676500 0.295605i
\(382\) 249.775 684.301i 0.653862 1.79136i
\(383\) −101.144 101.144i −0.264083 0.264083i 0.562627 0.826711i \(-0.309791\pi\)
−0.826711 + 0.562627i \(0.809791\pi\)
\(384\) −106.033 369.070i −0.276129 0.961121i
\(385\) 55.2385 55.2385i 0.143477 0.143477i
\(386\) 32.8911 + 70.7041i 0.0852100 + 0.183171i
\(387\) 282.435 + 305.076i 0.729807 + 0.788311i
\(388\) 20.5125 + 239.509i 0.0528672 + 0.617293i
\(389\) 456.268 1.17293 0.586463 0.809976i \(-0.300520\pi\)
0.586463 + 0.809976i \(0.300520\pi\)
\(390\) 16.0927 + 246.290i 0.0412633 + 0.631512i
\(391\) 106.826i 0.273212i
\(392\) −165.801 289.005i −0.422961 0.737259i
\(393\) −155.273 67.8485i −0.395098 0.172642i
\(394\) −208.616 448.450i −0.529482 1.13820i
\(395\) −103.318 103.318i −0.261564 0.261564i
\(396\) −242.397 220.656i −0.612113 0.557211i
\(397\) 300.957 300.957i 0.758078 0.758078i −0.217895 0.975972i \(-0.569919\pi\)
0.975972 + 0.217895i \(0.0699189\pi\)
\(398\) −149.030 + 408.294i −0.374448 + 1.02586i
\(399\) 138.588 + 60.5575i 0.347338 + 0.151773i
\(400\) −236.304 + 40.7749i −0.590760 + 0.101937i
\(401\) −252.305 252.305i −0.629190 0.629190i 0.318674 0.947864i \(-0.396762\pi\)
−0.947864 + 0.318674i \(0.896762\pi\)
\(402\) 11.4528 + 488.127i 0.0284896 + 1.21425i
\(403\) 50.0310 54.3976i 0.124146 0.134982i
\(404\) −253.031 213.109i −0.626315 0.527498i
\(405\) −166.751 194.647i −0.411732 0.480611i
\(406\) −25.1123 53.9826i −0.0618531 0.132962i
\(407\) 21.9985i 0.0540504i
\(408\) −189.204 + 20.6850i −0.463736 + 0.0506985i
\(409\) −75.5531 75.5531i −0.184726 0.184726i 0.608685 0.793412i \(-0.291697\pi\)
−0.793412 + 0.608685i \(0.791697\pi\)
\(410\) −295.617 107.902i −0.721016 0.263176i
\(411\) −15.3800 39.2520i −0.0374208 0.0955036i
\(412\) 418.577 + 352.536i 1.01596 + 0.855669i
\(413\) −76.2772 −0.184691
\(414\) 93.7272 + 223.617i 0.226394 + 0.540137i
\(415\) −397.137 −0.956956
\(416\) −412.084 56.9465i −0.990586 0.136891i
\(417\) −189.117 + 432.799i −0.453517 + 1.03789i
\(418\) 318.068 + 116.097i 0.760929 + 0.277745i
\(419\) 354.855 0.846909 0.423454 0.905917i \(-0.360817\pi\)
0.423454 + 0.905917i \(0.360817\pi\)
\(420\) 45.6029 + 92.3044i 0.108578 + 0.219772i
\(421\) −148.325 148.325i −0.352315 0.352315i 0.508655 0.860970i \(-0.330143\pi\)
−0.860970 + 0.508655i \(0.830143\pi\)
\(422\) −30.3014 11.0603i −0.0718044 0.0262091i
\(423\) −584.272 22.5163i −1.38126 0.0532300i
\(424\) −385.097 671.259i −0.908247 1.58316i
\(425\) 118.856i 0.279662i
\(426\) −130.568 + 3.06348i −0.306496 + 0.00719126i
\(427\) −206.854 206.854i −0.484435 0.484435i
\(428\) −285.759 240.674i −0.667662 0.562321i
\(429\) −324.929 + 143.249i −0.757409 + 0.333913i
\(430\) −123.306 265.063i −0.286757 0.616425i
\(431\) −129.751 129.751i −0.301047 0.301047i 0.540376 0.841424i \(-0.318282\pi\)
−0.841424 + 0.540376i \(0.818282\pi\)
\(432\) 377.910 209.304i 0.874791 0.484500i
\(433\) 277.129i 0.640020i −0.947414 0.320010i \(-0.896314\pi\)
0.947414 0.320010i \(-0.103686\pi\)
\(434\) 10.5707 28.9601i 0.0243564 0.0667285i
\(435\) −38.0234 97.0414i −0.0874100 0.223084i
\(436\) 47.5320 + 554.997i 0.109018 + 1.27293i
\(437\) −177.101 177.101i −0.405264 0.405264i
\(438\) 10.4576 + 445.710i 0.0238758 + 1.01760i
\(439\) 824.382 1.87786 0.938932 0.344104i \(-0.111817\pi\)
0.938932 + 0.344104i \(0.111817\pi\)
\(440\) 114.698 + 199.929i 0.260677 + 0.454383i
\(441\) 275.059 254.646i 0.623717 0.577428i
\(442\) −62.5458 + 196.478i −0.141506 + 0.444520i
\(443\) 296.524 0.669354 0.334677 0.942333i \(-0.391373\pi\)
0.334677 + 0.942333i \(0.391373\pi\)
\(444\) 27.4605 + 9.29935i 0.0618480 + 0.0209445i
\(445\) −430.733 −0.967939
\(446\) −258.746 556.212i −0.580148 1.24711i
\(447\) −289.436 + 113.408i −0.647507 + 0.253710i
\(448\) −167.859 + 43.9908i −0.374686 + 0.0981938i
\(449\) −102.052 102.052i −0.227288 0.227288i 0.584271 0.811559i \(-0.301381\pi\)
−0.811559 + 0.584271i \(0.801381\pi\)
\(450\) −104.282 248.800i −0.231739 0.552888i
\(451\) 452.764i 1.00391i
\(452\) −220.901 + 262.283i −0.488719 + 0.580272i
\(453\) −147.446 376.305i −0.325488 0.830695i
\(454\) −436.104 + 202.873i −0.960583 + 0.446857i
\(455\) 111.437 4.65959i 0.244917 0.0102409i
\(456\) −279.379 + 347.964i −0.612673 + 0.763078i
\(457\) 297.399 + 297.399i 0.650763 + 0.650763i 0.953177 0.302414i \(-0.0977925\pi\)
−0.302414 + 0.953177i \(0.597792\pi\)
\(458\) −34.2721 73.6727i −0.0748298 0.160857i
\(459\) −70.3813 202.226i −0.153336 0.440579i
\(460\) −14.5486 169.874i −0.0316274 0.369291i
\(461\) −304.031 + 304.031i −0.659503 + 0.659503i −0.955262 0.295759i \(-0.904427\pi\)
0.295759 + 0.955262i \(0.404427\pi\)
\(462\) −102.255 + 107.169i −0.221332 + 0.231967i
\(463\) −141.035 141.035i −0.304612 0.304612i 0.538203 0.842815i \(-0.319103\pi\)
−0.842815 + 0.538203i \(0.819103\pi\)
\(464\) 173.110 29.8706i 0.373082 0.0643764i
\(465\) 21.6091 49.4532i 0.0464713 0.106351i
\(466\) 87.3718 239.370i 0.187493 0.513669i
\(467\) 546.532i 1.17030i 0.810923 + 0.585152i \(0.198965\pi\)
−0.810923 + 0.585152i \(0.801035\pi\)
\(468\) −41.4601 466.160i −0.0885899 0.996068i
\(469\) 220.643 0.470454
\(470\) 386.227 + 140.976i 0.821760 + 0.299948i
\(471\) 479.696 + 209.609i 1.01846 + 0.445029i
\(472\) 58.8463 217.229i 0.124674 0.460231i
\(473\) 297.411 297.411i 0.628776 0.628776i
\(474\) 200.448 + 191.257i 0.422886 + 0.403497i
\(475\) 197.045 + 197.045i 0.414832 + 0.414832i
\(476\) 7.33935 + 85.6964i 0.0154188 + 0.180034i
\(477\) 638.866 591.453i 1.33934 1.23994i
\(478\) −24.1525 + 11.2356i −0.0505283 + 0.0235054i
\(479\) −111.887 + 111.887i −0.233585 + 0.233585i −0.814187 0.580602i \(-0.802817\pi\)
0.580602 + 0.814187i \(0.302817\pi\)
\(480\) −298.054 + 58.6608i −0.620947 + 0.122210i
\(481\) 21.2619 23.1175i 0.0442035 0.0480614i
\(482\) 393.883 + 846.707i 0.817184 + 1.75665i
\(483\) 102.017 39.9730i 0.211216 0.0827597i
\(484\) 98.1611 116.550i 0.202812 0.240805i
\(485\) 190.163 0.392089
\(486\) 324.757 + 361.564i 0.668225 + 0.743959i
\(487\) 149.033 149.033i 0.306022 0.306022i −0.537343 0.843364i \(-0.680572\pi\)
0.843364 + 0.537343i \(0.180572\pi\)
\(488\) 748.680 429.513i 1.53418 0.880149i
\(489\) 316.072 + 806.663i 0.646363 + 1.64962i
\(490\) −238.983 + 111.173i −0.487720 + 0.226884i
\(491\) 431.862i 0.879555i −0.898107 0.439778i \(-0.855057\pi\)
0.898107 0.439778i \(-0.144943\pi\)
\(492\) 565.181 + 191.395i 1.14874 + 0.389015i
\(493\) 87.0710i 0.176615i
\(494\) 222.038 + 429.420i 0.449470 + 0.869272i
\(495\) −190.281 + 176.159i −0.384406 + 0.355877i
\(496\) 74.3202 + 52.4463i 0.149839 + 0.105738i
\(497\) 59.0191i 0.118751i
\(498\) 752.827 17.6634i 1.51170 0.0354687i
\(499\) 249.737 249.737i 0.500475 0.500475i −0.411111 0.911586i \(-0.634859\pi\)
0.911586 + 0.411111i \(0.134859\pi\)
\(500\) 43.1883 + 504.279i 0.0863767 + 1.00856i
\(501\) 289.646 113.491i 0.578136 0.226529i
\(502\) 247.481 + 90.3324i 0.492990 + 0.179945i
\(503\) 19.5125 0.0387923 0.0193961 0.999812i \(-0.493826\pi\)
0.0193961 + 0.999812i \(0.493826\pi\)
\(504\) −90.5519 172.947i −0.179666 0.343150i
\(505\) −185.051 + 185.051i −0.366437 + 0.366437i
\(506\) 222.412 103.465i 0.439549 0.204475i
\(507\) −479.909 163.512i −0.946566 0.322510i
\(508\) −286.854 241.596i −0.564674 0.475582i
\(509\) 291.110 291.110i 0.571926 0.571926i −0.360740 0.932666i \(-0.617476\pi\)
0.932666 + 0.360740i \(0.117476\pi\)
\(510\) 3.53173 + 150.525i 0.00692497 + 0.295147i
\(511\) 201.470 0.394265
\(512\) 4.21922 511.983i 0.00824067 0.999966i
\(513\) −451.940 218.577i −0.880974 0.426077i
\(514\) −99.4886 + 272.566i −0.193558 + 0.530284i
\(515\) 306.120 306.120i 0.594407 0.594407i
\(516\) 245.532 + 496.979i 0.475836 + 0.963137i
\(517\) 591.542i 1.14418i
\(518\) 4.49225 12.3073i 0.00867231 0.0237593i
\(519\) 130.799 + 57.1542i 0.252022 + 0.110124i
\(520\) −72.7016 + 320.955i −0.139811 + 0.617222i
\(521\) 554.046i 1.06343i 0.846924 + 0.531714i \(0.178452\pi\)
−0.846924 + 0.531714i \(0.821548\pi\)
\(522\) 76.3946 + 182.264i 0.146350 + 0.349165i
\(523\) 565.353i 1.08098i −0.841350 0.540491i \(-0.818239\pi\)
0.841350 0.540491i \(-0.181761\pi\)
\(524\) −172.809 145.544i −0.329787 0.277755i
\(525\) −113.506 + 44.4746i −0.216202 + 0.0847135i
\(526\) 50.4374 138.182i 0.0958887 0.262703i
\(527\) 31.8805 31.8805i 0.0604944 0.0604944i
\(528\) −226.317 373.890i −0.428631 0.708126i
\(529\) 347.552 0.656998
\(530\) −555.073 + 258.216i −1.04731 + 0.487201i
\(531\) 253.003 + 9.75005i 0.476465 + 0.0183617i
\(532\) 154.239 + 129.904i 0.289922 + 0.244180i
\(533\) 437.603 475.796i 0.821019 0.892675i
\(534\) 816.513 19.1577i 1.52905 0.0358758i
\(535\) −208.986 + 208.986i −0.390627 + 0.390627i
\(536\) −170.222 + 628.367i −0.317578 + 1.17233i
\(537\) −418.648 + 958.090i −0.779606 + 1.78415i
\(538\) −618.941 225.918i −1.15045 0.419922i
\(539\) −268.148 268.148i −0.497492 0.497492i
\(540\) −139.461 311.993i −0.258261 0.577764i
\(541\) −173.050 + 173.050i −0.319870 + 0.319870i −0.848717 0.528847i \(-0.822624\pi\)
0.528847 + 0.848717i \(0.322624\pi\)
\(542\) 420.508 195.618i 0.775845 0.360918i
\(543\) 204.375 467.718i 0.376380 0.861359i
\(544\) −249.716 45.2114i −0.459037 0.0831092i
\(545\) 440.651 0.808533
\(546\) −211.037 + 13.7893i −0.386515 + 0.0252551i
\(547\) 745.007i 1.36199i −0.732289 0.680994i \(-0.761548\pi\)
0.732289 0.680994i \(-0.238452\pi\)
\(548\) −4.79648 56.0051i −0.00875270 0.102199i
\(549\) 659.670 + 712.552i 1.20158 + 1.29791i
\(550\) −247.459 + 115.116i −0.449926 + 0.209303i
\(551\) −144.350 144.350i −0.261978 0.261978i
\(552\) 35.1343 + 321.372i 0.0636491 + 0.582195i
\(553\) 88.5293 88.5293i 0.160089 0.160089i
\(554\) 311.770 + 113.798i 0.562761 + 0.205412i
\(555\) 9.18331 21.0163i 0.0165465 0.0378672i
\(556\) −405.679 + 481.676i −0.729639 + 0.866323i
\(557\) 343.993 + 343.993i 0.617582 + 0.617582i 0.944911 0.327328i \(-0.106148\pi\)
−0.327328 + 0.944911i \(0.606148\pi\)
\(558\) −38.7635 + 94.7064i −0.0694687 + 0.169725i
\(559\) 599.992 25.0878i 1.07333 0.0448798i
\(560\) 23.3420 + 135.274i 0.0416821 + 0.241561i
\(561\) −201.696 + 79.0299i −0.359530 + 0.140873i
\(562\) −35.2475 + 16.3969i −0.0627180 + 0.0291760i
\(563\) 904.253i 1.60613i 0.595890 + 0.803066i \(0.296800\pi\)
−0.595890 + 0.803066i \(0.703200\pi\)
\(564\) −738.416 250.061i −1.30925 0.443370i
\(565\) 191.817 + 191.817i 0.339498 + 0.339498i
\(566\) −226.687 + 621.047i −0.400507 + 1.09726i
\(567\) 166.787 142.884i 0.294157 0.251999i
\(568\) −168.080 45.5321i −0.295915 0.0801621i
\(569\) −938.529 −1.64944 −0.824718 0.565545i \(-0.808666\pi\)
−0.824718 + 0.565545i \(0.808666\pi\)
\(570\) 255.402 + 243.692i 0.448073 + 0.427529i
\(571\) −472.192 −0.826956 −0.413478 0.910514i \(-0.635686\pi\)
−0.413478 + 0.910514i \(0.635686\pi\)
\(572\) −469.645 + 60.0748i −0.821058 + 0.105026i
\(573\) 1001.28 + 437.519i 1.74743 + 0.763558i
\(574\) 92.4578 253.304i 0.161076 0.441296i
\(575\) 201.882 0.351100
\(576\) 562.394 124.456i 0.976378 0.216070i
\(577\) 27.8631 + 27.8631i 0.0482896 + 0.0482896i 0.730839 0.682550i \(-0.239129\pi\)
−0.682550 + 0.730839i \(0.739129\pi\)
\(578\) 155.056 424.801i 0.268262 0.734950i
\(579\) −108.908 + 42.6731i −0.188097 + 0.0737013i
\(580\) −11.8582 138.460i −0.0204451 0.238723i
\(581\) 340.293i 0.585702i
\(582\) −360.480 + 8.45786i −0.619382 + 0.0145324i
\(583\) −622.814 622.814i −1.06829 1.06829i
\(584\) −155.430 + 573.763i −0.266147 + 0.982471i
\(585\) −370.220 + 1.21099i −0.632855 + 0.00207007i
\(586\) −53.4783 + 24.8777i −0.0912598 + 0.0424535i
\(587\) −478.108 478.108i −0.814494 0.814494i 0.170810 0.985304i \(-0.445362\pi\)
−0.985304 + 0.170810i \(0.945362\pi\)
\(588\) 448.080 221.373i 0.762040 0.376485i
\(589\) 105.706i 0.179467i
\(590\) −167.245 61.0456i −0.283466 0.103467i
\(591\) 690.765 270.660i 1.16881 0.457969i
\(592\) 31.5841 + 22.2883i 0.0533515 + 0.0376491i
\(593\) 80.9828 + 80.9828i 0.136565 + 0.136565i 0.772084 0.635520i \(-0.219214\pi\)
−0.635520 + 0.772084i \(0.719214\pi\)
\(594\) 352.868 342.397i 0.594054 0.576426i
\(595\) 68.0403 0.114353
\(596\) −412.970 + 35.3682i −0.692902 + 0.0593427i
\(597\) −597.419 261.049i −1.00070 0.437268i
\(598\) 333.726 + 106.237i 0.558070 + 0.177653i
\(599\) 686.856 1.14667 0.573336 0.819321i \(-0.305649\pi\)
0.573336 + 0.819321i \(0.305649\pi\)
\(600\) −39.0910 357.563i −0.0651517 0.595939i
\(601\) −294.571 −0.490135 −0.245067 0.969506i \(-0.578810\pi\)
−0.245067 + 0.969506i \(0.578810\pi\)
\(602\) 227.123 105.656i 0.377281 0.175509i
\(603\) −731.848 28.2035i −1.21368 0.0467719i
\(604\) −45.9834 536.915i −0.0761314 0.888933i
\(605\) −85.2369 85.2369i −0.140887 0.140887i
\(606\) 342.558 359.019i 0.565277 0.592440i
\(607\) 834.152i 1.37422i −0.726553 0.687110i \(-0.758879\pi\)
0.726553 0.687110i \(-0.241121\pi\)
\(608\) −488.943 + 339.036i −0.804183 + 0.557626i
\(609\) 83.1515 32.5809i 0.136538 0.0534990i
\(610\) −287.999 619.094i −0.472129 1.01491i
\(611\) −571.734 + 621.633i −0.935735 + 1.01740i
\(612\) −13.3898 285.183i −0.0218787 0.465986i
\(613\) 71.3441 + 71.3441i 0.116385 + 0.116385i 0.762901 0.646516i \(-0.223774\pi\)
−0.646516 + 0.762901i \(0.723774\pi\)
\(614\) −846.379 + 393.730i −1.37847 + 0.641254i
\(615\) 189.007 432.549i 0.307329 0.703332i
\(616\) −171.312 + 98.2805i −0.278104 + 0.159546i
\(617\) 222.842 222.842i 0.361169 0.361169i −0.503074 0.864243i \(-0.667798\pi\)
0.864243 + 0.503074i \(0.167798\pi\)
\(618\) −566.676 + 593.907i −0.916952 + 0.961014i
\(619\) 534.752 + 534.752i 0.863896 + 0.863896i 0.991788 0.127892i \(-0.0408212\pi\)
−0.127892 + 0.991788i \(0.540821\pi\)
\(620\) 46.3544 55.0380i 0.0747651 0.0887709i
\(621\) −343.489 + 119.546i −0.553122 + 0.192505i
\(622\) −547.173 199.722i −0.879700 0.321097i
\(623\) 369.080i 0.592424i
\(624\) 123.541 611.648i 0.197982 0.980206i
\(625\) 25.7012 0.0411219
\(626\) −234.877 + 643.484i −0.375202 + 1.02793i
\(627\) −203.362 + 465.400i −0.324341 + 0.742265i
\(628\) 533.869 + 449.638i 0.850109 + 0.715983i
\(629\) 13.5484 13.5484i 0.0215396 0.0215396i
\(630\) −142.428 + 59.6974i −0.226076 + 0.0947577i
\(631\) 35.0852 + 35.0852i 0.0556025 + 0.0556025i 0.734361 0.678759i \(-0.237482\pi\)
−0.678759 + 0.734361i \(0.737482\pi\)
\(632\) 183.823 + 320.420i 0.290859 + 0.506994i
\(633\) 19.3737 44.3373i 0.0306062 0.0700432i
\(634\) −476.019 1023.27i −0.750818 1.61399i
\(635\) −209.787 + 209.787i −0.330372 + 0.330372i
\(636\) 1040.73 514.172i 1.63637 0.808447i
\(637\) −22.6194 540.957i −0.0355092 0.849226i
\(638\) 181.282 84.3313i 0.284141 0.132181i
\(639\) 7.54406 195.760i 0.0118060 0.306353i
\(640\) −403.254 37.8861i −0.630084 0.0591970i
\(641\) 918.436 1.43282 0.716409 0.697680i \(-0.245784\pi\)
0.716409 + 0.697680i \(0.245784\pi\)
\(642\) 386.866 405.456i 0.602595 0.631551i
\(643\) −174.939 + 174.939i −0.272066 + 0.272066i −0.829932 0.557865i \(-0.811621\pi\)
0.557865 + 0.829932i \(0.311621\pi\)
\(644\) 145.559 12.4662i 0.226023 0.0193575i
\(645\) 408.287 159.977i 0.633003 0.248027i
\(646\) 124.389 + 267.393i 0.192553 + 0.413920i
\(647\) 1087.32i 1.68056i 0.542151 + 0.840281i \(0.317610\pi\)
−0.542151 + 0.840281i \(0.682390\pi\)
\(648\) 278.244 + 585.222i 0.429388 + 0.903120i
\(649\) 256.151i 0.394686i
\(650\) −371.309 118.201i −0.571244 0.181847i
\(651\) 42.3747 + 18.5161i 0.0650918 + 0.0284426i
\(652\) 98.5719 + 1150.95i 0.151184 + 1.76527i
\(653\) 915.597i 1.40214i −0.713093 0.701070i \(-0.752706\pi\)
0.713093 0.701070i \(-0.247294\pi\)
\(654\) −835.313 + 19.5988i −1.27724 + 0.0299675i
\(655\) −126.381 + 126.381i −0.192948 + 0.192948i
\(656\) 650.051 + 458.728i 0.990932 + 0.699281i
\(657\) −668.252 25.7526i −1.01713 0.0391973i
\(658\) −120.797 + 330.945i −0.183582 + 0.502955i
\(659\) −330.590 −0.501653 −0.250827 0.968032i \(-0.580702\pi\)
−0.250827 + 0.968032i \(0.580702\pi\)
\(660\) −309.973 + 153.142i −0.469656 + 0.232033i
\(661\) −388.081 + 388.081i −0.587112 + 0.587112i −0.936848 0.349736i \(-0.886271\pi\)
0.349736 + 0.936848i \(0.386271\pi\)
\(662\) −461.348 991.734i −0.696900 1.49809i
\(663\) −288.340 111.892i −0.434902 0.168767i
\(664\) 969.116 + 262.529i 1.45951 + 0.395375i
\(665\) 112.800 112.800i 0.169624 0.169624i
\(666\) −16.4735 + 40.2477i −0.0247349 + 0.0604320i
\(667\) −147.894 −0.221730
\(668\) 413.270 35.3940i 0.618668 0.0529850i
\(669\) 856.755 335.699i 1.28065 0.501792i
\(670\) 483.781 + 176.584i 0.722061 + 0.263558i
\(671\) 694.648 694.648i 1.03524 1.03524i
\(672\) −50.2645 255.393i −0.0747983 0.380048i
\(673\) 186.978i 0.277827i −0.990304 0.138914i \(-0.955639\pi\)
0.990304 0.138914i \(-0.0443611\pi\)
\(674\) 115.184 + 42.0431i 0.170897 + 0.0623785i
\(675\) 382.171 133.008i 0.566180 0.197049i
\(676\) −551.598 390.788i −0.815974 0.578089i
\(677\) 368.883i 0.544879i −0.962173 0.272440i \(-0.912170\pi\)
0.962173 0.272440i \(-0.0878305\pi\)
\(678\) −372.146 355.083i −0.548888 0.523721i
\(679\) 162.944i 0.239977i
\(680\) −52.4917 + 193.771i −0.0771937 + 0.284958i
\(681\) −263.209 671.749i −0.386503 0.986415i
\(682\) 97.2528 + 35.4980i 0.142599 + 0.0520499i
\(683\) −455.745 + 455.745i −0.667269 + 0.667269i −0.957083 0.289814i \(-0.906407\pi\)
0.289814 + 0.957083i \(0.406407\pi\)
\(684\) −494.988 450.591i −0.723666 0.658759i
\(685\) −44.4663 −0.0649143
\(686\) −207.336 445.698i −0.302239 0.649706i
\(687\) 113.481 44.4648i 0.165183 0.0647231i
\(688\) 125.676 + 728.333i 0.182669 + 1.05862i
\(689\) −52.5369 1256.45i −0.0762509 1.82359i
\(690\) 255.673 5.99880i 0.370541 0.00869391i
\(691\) −252.600 + 252.600i −0.365557 + 0.365557i −0.865854 0.500297i \(-0.833224\pi\)
0.500297 + 0.865854i \(0.333224\pi\)
\(692\) 145.571 + 122.603i 0.210362 + 0.177172i
\(693\) −150.945 163.045i −0.217813 0.235274i
\(694\) −18.8433 + 51.6244i −0.0271517 + 0.0743868i
\(695\) 352.266 + 352.266i 0.506858 + 0.506858i
\(696\) 28.6371 + 261.942i 0.0411452 + 0.376353i
\(697\) 278.847 278.847i 0.400068 0.400068i
\(698\) −287.888 618.857i −0.412447 0.886615i
\(699\) 350.248 + 153.045i 0.501070 + 0.218948i
\(700\) −161.951 + 13.8701i −0.231359 + 0.0198144i
\(701\) −684.290 −0.976162 −0.488081 0.872798i \(-0.662303\pi\)
−0.488081 + 0.872798i \(0.662303\pi\)
\(702\) 701.749 18.7618i 0.999643 0.0267263i
\(703\) 44.9222i 0.0639007i
\(704\) −147.728 563.699i −0.209841 0.800708i
\(705\) −246.940 + 565.131i −0.350270 + 0.801604i
\(706\) −320.358 688.656i −0.453765 0.975434i
\(707\) −158.563 158.563i −0.224276 0.224276i
\(708\) 319.751 + 108.282i 0.451625 + 0.152940i
\(709\) −801.423 + 801.423i −1.13036 + 1.13036i −0.140240 + 0.990118i \(0.544787\pi\)
−0.990118 + 0.140240i \(0.955213\pi\)
\(710\) −47.2338 + 129.405i −0.0665265 + 0.182261i
\(711\) −304.958 + 282.326i −0.428914 + 0.397083i
\(712\) 1051.10 + 284.738i 1.47626 + 0.399913i
\(713\) −54.1504 54.1504i −0.0759473 0.0759473i
\(714\) −128.980 + 3.02622i −0.180644 + 0.00423840i
\(715\) 15.6476 + 374.224i 0.0218848 + 0.523390i
\(716\) −898.054 + 1066.29i −1.25427 + 1.48923i
\(717\) −14.5771 37.2031i −0.0203307 0.0518871i
\(718\) −51.3860 110.462i −0.0715683 0.153846i
\(719\) 931.573i 1.29565i −0.761789 0.647825i \(-0.775679\pi\)
0.761789 0.647825i \(-0.224321\pi\)
\(720\) −60.1314 451.673i −0.0835159 0.627324i
\(721\) 262.303 + 262.303i 0.363805 + 0.363805i
\(722\) −28.7188 10.4826i −0.0397767 0.0145188i
\(723\) −1304.22 + 511.026i −1.80390 + 0.706813i
\(724\) 438.410 520.538i 0.605538 0.718975i
\(725\) 164.549 0.226964
\(726\) 165.369 + 157.787i 0.227781 + 0.217338i
\(727\) 364.106 0.500833 0.250417 0.968138i \(-0.419432\pi\)
0.250417 + 0.968138i \(0.419432\pi\)
\(728\) −275.016 62.2955i −0.377769 0.0855707i
\(729\) −571.477 + 452.609i −0.783919 + 0.620863i
\(730\) 441.741 + 161.239i 0.605125 + 0.220875i
\(731\) 366.337 0.501146
\(732\) 573.476 + 1160.77i 0.783437 + 1.58575i
\(733\) −857.363 857.363i −1.16966 1.16966i −0.982288 0.187375i \(-0.940002\pi\)
−0.187375 0.982288i \(-0.559998\pi\)
\(734\) −938.611 342.600i −1.27876 0.466758i
\(735\) −144.237 368.114i −0.196241 0.500836i
\(736\) −76.7935 + 424.153i −0.104339 + 0.576295i
\(737\) 740.955i 1.00537i
\(738\) −339.050 + 828.362i −0.459418 + 1.12244i
\(739\) 963.677 + 963.677i 1.30403 + 1.30403i 0.925651 + 0.378378i \(0.123518\pi\)
0.378378 + 0.925651i \(0.376482\pi\)
\(740\) 19.6994 23.3897i 0.0266208 0.0316077i
\(741\) −663.522 + 292.522i −0.895442 + 0.394767i
\(742\) −221.257 475.623i −0.298190 0.641002i
\(743\) 935.304 + 935.304i 1.25882 + 1.25882i 0.951656 + 0.307165i \(0.0993803\pi\)
0.307165 + 0.951656i \(0.400620\pi\)
\(744\) −85.4231 + 106.394i −0.114816 + 0.143002i
\(745\) 327.885i 0.440114i
\(746\) 227.690 623.794i 0.305214 0.836185i
\(747\) −43.4976 + 1128.71i −0.0582297 + 1.51100i
\(748\) −287.782 + 24.6467i −0.384736 + 0.0329502i
\(749\) −179.073 179.073i −0.239082 0.239082i
\(750\) −758.979 + 17.8078i −1.01197 + 0.0237437i
\(751\) −1140.94 −1.51923 −0.759613 0.650376i \(-0.774611\pi\)
−0.759613 + 0.650376i \(0.774611\pi\)
\(752\) −849.301 599.334i −1.12939 0.796987i
\(753\) −158.231 + 362.116i −0.210134 + 0.480898i
\(754\) 272.011 + 86.5907i 0.360757 + 0.114842i
\(755\) −426.294 −0.564628
\(756\) 267.336 119.499i 0.353619 0.158068i
\(757\) −383.846 −0.507062 −0.253531 0.967327i \(-0.581592\pi\)
−0.253531 + 0.967327i \(0.581592\pi\)
\(758\) −558.701 1201.01i −0.737073 1.58444i
\(759\) 134.236 + 342.590i 0.176858 + 0.451370i
\(760\) 234.219 + 408.265i 0.308183 + 0.537191i
\(761\) −4.79917 4.79917i −0.00630639 0.00630639i 0.703947 0.710253i \(-0.251419\pi\)
−0.710253 + 0.703947i \(0.751419\pi\)
\(762\) 388.348 407.010i 0.509643 0.534133i
\(763\) 377.578i 0.494860i
\(764\) 1114.35 + 938.534i 1.45857 + 1.22845i
\(765\) −225.682 8.69718i −0.295009 0.0113689i
\(766\) 259.385 120.664i 0.338623 0.157525i
\(767\) 247.574 269.181i 0.322782 0.350953i
\(768\) 766.107 + 53.8827i 0.997536 + 0.0701598i
\(769\) 7.46155 + 7.46155i 0.00970292 + 0.00970292i 0.711942 0.702239i \(-0.247816\pi\)
−0.702239 + 0.711942i \(0.747816\pi\)
\(770\) 65.8994 + 141.660i 0.0855836 + 0.183974i
\(771\) −398.821 174.269i −0.517277 0.226030i
\(772\) −155.391 + 13.3083i −0.201284 + 0.0172387i
\(773\) −566.815 + 566.815i −0.733267 + 0.733267i −0.971266 0.237999i \(-0.923509\pi\)
0.237999 + 0.971266i \(0.423509\pi\)
\(774\) −766.848 + 321.418i −0.990760 + 0.415269i
\(775\) 60.2487 + 60.2487i 0.0777402 + 0.0777402i
\(776\) −464.047 125.708i −0.597999 0.161995i
\(777\) 18.0081 + 7.86886i 0.0231765 + 0.0101272i
\(778\) −312.891 + 857.217i −0.402173 + 1.10182i
\(779\) 924.570i 1.18687i
\(780\) −473.754 138.662i −0.607378 0.177771i
\(781\) −198.196 −0.253772
\(782\) 200.700 + 73.2570i 0.256650 + 0.0936790i
\(783\) −279.969 + 97.4385i −0.357559 + 0.124442i
\(784\) 656.671 113.311i 0.837590 0.144529i
\(785\) 390.437 390.437i 0.497372 0.497372i
\(786\) 233.951 245.193i 0.297648 0.311951i
\(787\) 322.116 + 322.116i 0.409296 + 0.409296i 0.881493 0.472197i \(-0.156539\pi\)
−0.472197 + 0.881493i \(0.656539\pi\)
\(788\) 985.590 84.4095i 1.25075 0.107119i
\(789\) 202.189 + 88.3488i 0.256260 + 0.111976i
\(790\) 264.960 123.258i 0.335392 0.156022i
\(791\) −164.361 + 164.361i −0.207789 + 0.207789i
\(792\) 580.785 304.088i 0.733314 0.383949i
\(793\) 1401.37 58.5964i 1.76718 0.0738920i
\(794\) 359.041 + 771.810i 0.452192 + 0.972052i
\(795\) −335.012 855.001i −0.421398 1.07547i
\(796\) −664.886 559.984i −0.835284 0.703498i
\(797\) 1338.55 1.67949 0.839746 0.542980i \(-0.182704\pi\)
0.839746 + 0.542980i \(0.182704\pi\)
\(798\) −208.811 + 218.845i −0.261668 + 0.274242i
\(799\) −364.318 + 364.318i −0.455967 + 0.455967i
\(800\) 85.4417 471.920i 0.106802 0.589900i
\(801\) −47.1773 + 1224.20i −0.0588980 + 1.52834i
\(802\) 647.041 300.999i 0.806785 0.375311i
\(803\) 676.567i 0.842550i
\(804\) −924.926 313.221i −1.15041 0.389578i
\(805\) 115.569i 0.143564i
\(806\) 67.8906 + 131.300i 0.0842315 + 0.162903i
\(807\) 395.730 905.640i 0.490371 1.12223i
\(808\) 573.899 329.242i 0.710271 0.407478i
\(809\) 615.167i 0.760404i 0.924903 + 0.380202i \(0.124146\pi\)
−0.924903 + 0.380202i \(0.875854\pi\)
\(810\) 480.047 179.804i 0.592651 0.221980i
\(811\) −322.284 + 322.284i −0.397391 + 0.397391i −0.877312 0.479921i \(-0.840665\pi\)
0.479921 + 0.877312i \(0.340665\pi\)
\(812\) 118.641 10.1609i 0.146110 0.0125134i
\(813\) 253.795 + 647.725i 0.312171 + 0.796710i
\(814\) 41.3299 + 15.0857i 0.0507738 + 0.0185328i
\(815\) 913.822 1.12125
\(816\) 90.8869 369.654i 0.111381 0.453008i
\(817\) 607.330 607.330i 0.743366 0.743366i
\(818\) 193.757 90.1346i 0.236867 0.110189i
\(819\) −1.03766 317.229i −0.00126698 0.387337i
\(820\) 405.445 481.397i 0.494445 0.587070i
\(821\) −353.910 + 353.910i −0.431072 + 0.431072i −0.888993 0.457921i \(-0.848594\pi\)
0.457921 + 0.888993i \(0.348594\pi\)
\(822\) 84.2920 1.97772i 0.102545 0.00240599i
\(823\) 155.082 0.188435 0.0942176 0.995552i \(-0.469965\pi\)
0.0942176 + 0.995552i \(0.469965\pi\)
\(824\) −949.373 + 544.649i −1.15215 + 0.660982i
\(825\) −149.353 381.171i −0.181034 0.462026i
\(826\) 52.3079 143.306i 0.0633268 0.173494i
\(827\) 453.337 453.337i 0.548170 0.548170i −0.377741 0.925911i \(-0.623299\pi\)
0.925911 + 0.377741i \(0.123299\pi\)
\(828\) −484.396 + 22.7431i −0.585020 + 0.0274675i
\(829\) 277.026i 0.334169i 0.985943 + 0.167084i \(0.0534352\pi\)
−0.985943 + 0.167084i \(0.946565\pi\)
\(830\) 272.341 746.124i 0.328122 0.898945i
\(831\) −199.335 + 456.184i −0.239874 + 0.548958i
\(832\) 389.580 735.154i 0.468245 0.883599i
\(833\) 330.293i 0.396510i
\(834\) −683.437 652.101i −0.819468 0.781896i
\(835\) 328.124i 0.392962i
\(836\) −436.237 + 517.958i −0.521815 + 0.619567i
\(837\) −138.185 66.8324i −0.165096 0.0798476i
\(838\) −243.345 + 666.686i −0.290388 + 0.795568i
\(839\) 548.135 548.135i 0.653319 0.653319i −0.300471 0.953791i \(-0.597144\pi\)
0.953791 + 0.300471i \(0.0971440\pi\)
\(840\) −204.690 + 22.3780i −0.243679 + 0.0266405i
\(841\) 720.456 0.856666
\(842\) 380.382 176.951i 0.451760 0.210156i
\(843\) −21.2735 54.2932i −0.0252354 0.0644047i
\(844\) 41.5591 49.3444i 0.0492406 0.0584649i
\(845\) −345.249 + 408.384i −0.408579 + 0.483294i
\(846\) 442.974 1082.27i 0.523610 1.27927i
\(847\) 73.0366 73.0366i 0.0862297 0.0862297i
\(848\) 1525.22 263.181i 1.79861 0.310355i
\(849\) −908.722 397.076i −1.07034 0.467699i
\(850\) −223.302 81.5069i −0.262708 0.0958905i
\(851\) −23.0125 23.0125i −0.0270417 0.0270417i
\(852\) 83.7825 247.406i 0.0983363 0.290382i
\(853\) 671.485 671.485i 0.787204 0.787204i −0.193831 0.981035i \(-0.562091\pi\)
0.981035 + 0.193831i \(0.0620913\pi\)
\(854\) 530.481 246.776i 0.621172 0.288965i
\(855\) −388.564 + 359.727i −0.454461 + 0.420733i
\(856\) 648.130 371.828i 0.757161 0.434378i
\(857\) −465.906 −0.543647 −0.271824 0.962347i \(-0.587627\pi\)
−0.271824 + 0.962347i \(0.587627\pi\)
\(858\) −46.3066 708.697i −0.0539704 0.825987i
\(859\) 646.398i 0.752500i 0.926518 + 0.376250i \(0.122787\pi\)
−0.926518 + 0.376250i \(0.877213\pi\)
\(860\) 582.547 49.8915i 0.677380 0.0580133i
\(861\) 370.636 + 161.954i 0.430472 + 0.188100i
\(862\) 332.750 154.793i 0.386021 0.179574i
\(863\) −80.0865 80.0865i −0.0928001 0.0928001i 0.659183 0.751983i \(-0.270902\pi\)
−0.751983 + 0.659183i \(0.770902\pi\)
\(864\) 134.076 + 853.534i 0.155181 + 0.987886i
\(865\) 106.461 106.461i 0.123076 0.123076i
\(866\) 520.658 + 190.044i 0.601222 + 0.219450i
\(867\) 621.573 + 271.603i 0.716923 + 0.313268i
\(868\) 47.1602 + 39.7195i 0.0543320 + 0.0457598i
\(869\) 297.296 + 297.296i 0.342112 + 0.342112i
\(870\) 208.392 4.88946i 0.239531 0.00562007i
\(871\) −716.143 + 778.646i −0.822208 + 0.893967i
\(872\) −1075.30 291.294i −1.23314 0.334053i
\(873\) 20.8282 540.468i 0.0238582 0.619093i
\(874\) 454.178 211.280i 0.519654 0.241740i
\(875\) 343.074i 0.392084i
\(876\) −844.552 286.003i −0.964100 0.326487i
\(877\) 492.434 + 492.434i 0.561498 + 0.561498i 0.929733 0.368235i \(-0.120038\pi\)
−0.368235 + 0.929733i \(0.620038\pi\)
\(878\) −565.329 + 1548.81i −0.643883 + 1.76403i
\(879\) −32.2765 82.3747i −0.0367196 0.0937141i
\(880\) −454.273 + 78.3861i −0.516219 + 0.0890751i
\(881\) −582.104 −0.660730 −0.330365 0.943853i \(-0.607172\pi\)
−0.330365 + 0.943853i \(0.607172\pi\)
\(882\) 289.793 + 691.396i 0.328564 + 0.783896i
\(883\) −751.578 −0.851164 −0.425582 0.904920i \(-0.639931\pi\)
−0.425582 + 0.904920i \(0.639931\pi\)
\(884\) −326.243 252.245i −0.369053 0.285345i
\(885\) 106.931 244.714i 0.120826 0.276513i
\(886\) −203.344 + 557.096i −0.229508 + 0.628777i
\(887\) −227.550 −0.256539 −0.128270 0.991739i \(-0.540942\pi\)
−0.128270 + 0.991739i \(0.540942\pi\)
\(888\) −36.3026 + 45.2145i −0.0408813 + 0.0509172i
\(889\) −179.759 179.759i −0.202203 0.202203i
\(890\) 295.380 809.243i 0.331887 0.909262i
\(891\) 479.826 + 560.097i 0.538525 + 0.628616i
\(892\) 1222.43 104.693i 1.37043 0.117369i
\(893\) 1207.96i 1.35270i
\(894\) −14.5833 621.551i −0.0163124 0.695247i
\(895\) 779.813 + 779.813i 0.871300 + 0.871300i
\(896\) 32.4633 345.534i 0.0362313 0.385641i
\(897\) −190.054 + 489.757i −0.211877 + 0.545995i
\(898\) 261.715 121.748i 0.291442 0.135577i
\(899\) −44.1366 44.1366i −0.0490952 0.0490952i
\(900\) 538.947 25.3043i 0.598830 0.0281159i
\(901\) 767.154i 0.851448i
\(902\) 850.635 + 310.488i 0.943054 + 0.344222i
\(903\) 137.079 + 349.847i 0.151804 + 0.387427i
\(904\) −341.281 594.883i −0.377523 0.658057i
\(905\) −380.687 380.687i −0.420649 0.420649i
\(906\) 808.099 18.9602i 0.891941 0.0209274i
\(907\) 83.6189 0.0921929 0.0460964 0.998937i \(-0.485322\pi\)
0.0460964 + 0.998937i \(0.485322\pi\)
\(908\) −82.0858 958.457i −0.0904028 1.05557i
\(909\) 505.669 + 546.205i 0.556291 + 0.600886i
\(910\) −67.6650 + 212.559i −0.0743572 + 0.233581i
\(911\) −141.993 −0.155865 −0.0779323 0.996959i \(-0.524832\pi\)
−0.0779323 + 0.996959i \(0.524832\pi\)
\(912\) −462.153 763.505i −0.506746 0.837177i
\(913\) 1142.76 1.25165
\(914\) −762.684 + 354.796i −0.834447 + 0.388179i
\(915\) 953.615 373.651i 1.04220 0.408362i
\(916\) 161.916 13.8670i 0.176764 0.0151387i
\(917\) −108.292 108.292i −0.118093 0.118093i
\(918\) 428.198 + 6.44905i 0.466447 + 0.00702511i
\(919\) 31.4087i 0.0341771i 0.999854 + 0.0170885i \(0.00543972\pi\)
−0.999854 + 0.0170885i \(0.994560\pi\)
\(920\) 329.128 + 89.1594i 0.357748 + 0.0969124i
\(921\) −510.828 1303.71i −0.554645 1.41554i
\(922\) −362.708 779.693i −0.393393 0.845654i
\(923\) −208.278 191.559i −0.225653 0.207539i
\(924\) −131.222 265.605i −0.142015 0.287452i
\(925\) 25.6041 + 25.6041i 0.0276801 + 0.0276801i
\(926\) 361.688 168.255i 0.390592 0.181701i
\(927\) −836.503 903.560i −0.902376 0.974714i
\(928\) −62.5923 + 345.716i −0.0674487 + 0.372539i
\(929\) −1062.36 + 1062.36i −1.14355 + 1.14355i −0.155755 + 0.987796i \(0.549781\pi\)
−0.987796 + 0.155755i \(0.950219\pi\)
\(930\) 78.0919 + 74.5114i 0.0839698 + 0.0801198i
\(931\) −547.573 547.573i −0.588156 0.588156i
\(932\) 389.802 + 328.301i 0.418243 + 0.352254i
\(933\) 349.844 800.629i 0.374967 0.858123i
\(934\) −1026.80 374.791i −1.09936 0.401275i
\(935\) 228.490i 0.244375i
\(936\) 904.233 + 241.781i 0.966061 + 0.258313i
\(937\) −1441.85 −1.53879 −0.769395 0.638773i \(-0.779442\pi\)
−0.769395 + 0.638773i \(0.779442\pi\)
\(938\) −151.308 + 414.535i −0.161310 + 0.441935i
\(939\) −941.552 411.422i −1.00272 0.438149i
\(940\) −529.719 + 628.951i −0.563531 + 0.669097i
\(941\) 203.881 203.881i 0.216664 0.216664i −0.590427 0.807091i \(-0.701041\pi\)
0.807091 + 0.590427i \(0.201041\pi\)
\(942\) −722.761 + 757.492i −0.767262 + 0.804131i
\(943\) −473.634 473.634i −0.502263 0.502263i
\(944\) 367.766 + 259.525i 0.389583 + 0.274921i
\(945\) −76.1418 218.777i −0.0805734 0.231510i
\(946\) 354.811 + 762.716i 0.375064 + 0.806254i
\(947\) −280.005 + 280.005i −0.295676 + 0.295676i −0.839318 0.543641i \(-0.817045\pi\)
0.543641 + 0.839318i \(0.317045\pi\)
\(948\) −496.786 + 245.436i −0.524036 + 0.258899i
\(949\) −653.912 + 710.983i −0.689054 + 0.749192i
\(950\) −505.326 + 235.074i −0.531922 + 0.247446i
\(951\) 1576.18 617.590i 1.65740 0.649411i
\(952\) −166.036 44.9784i −0.174407 0.0472462i
\(953\) 1500.26 1.57425 0.787123 0.616796i \(-0.211570\pi\)
0.787123 + 0.616796i \(0.211570\pi\)
\(954\) 673.088 + 1605.87i 0.705543 + 1.68330i
\(955\) 814.964 814.964i 0.853365 0.853365i
\(956\) −4.54611 53.0817i −0.00475534 0.0555248i
\(957\) 109.412 + 279.236i 0.114328 + 0.291783i
\(958\) −133.481 286.937i −0.139333 0.299517i
\(959\) 38.1017i 0.0397306i
\(960\) 94.1845 600.199i 0.0981088 0.625208i
\(961\) 928.679i 0.966368i
\(962\) 28.8517 + 55.7990i 0.0299914 + 0.0580031i
\(963\) 571.074 + 616.854i 0.593016 + 0.640554i
\(964\) −1860.87 + 159.371i −1.93036 + 0.165323i
\(965\) 123.376i 0.127851i
\(966\) 5.14016 + 219.077i 0.00532108 + 0.226788i
\(967\) 302.480 302.480i 0.312803 0.312803i −0.533192 0.845994i \(-0.679008\pi\)
0.845994 + 0.533192i \(0.179008\pi\)
\(968\) 151.654 + 264.346i 0.156667 + 0.273085i
\(969\) −411.875 + 161.383i −0.425052 + 0.166546i
\(970\) −130.406 + 357.271i −0.134440 + 0.368320i
\(971\) −1484.57 −1.52891 −0.764453 0.644679i \(-0.776991\pi\)
−0.764453 + 0.644679i \(0.776991\pi\)
\(972\) −901.998 + 362.194i −0.927981 + 0.372627i
\(973\) −301.845 + 301.845i −0.310221 + 0.310221i
\(974\) 177.795 + 382.197i 0.182541 + 0.392399i
\(975\) 211.457 544.912i 0.216879 0.558884i
\(976\) 293.535 + 1701.13i 0.300753 + 1.74296i
\(977\) 680.203 680.203i 0.696216 0.696216i −0.267376 0.963592i \(-0.586157\pi\)
0.963592 + 0.267376i \(0.0861567\pi\)
\(978\) −1732.27 + 40.6440i −1.77124 + 0.0415582i
\(979\) 1239.43 1.26602
\(980\) −44.9825 525.229i −0.0459005 0.535948i
\(981\) 48.2636 1252.39i 0.0491983 1.27664i
\(982\) 811.363 + 296.154i 0.826236 + 0.301582i
\(983\) 178.438 178.438i 0.181524 0.181524i −0.610496 0.792019i \(-0.709030\pi\)
0.792019 + 0.610496i \(0.209030\pi\)
\(984\) −747.165 + 930.587i −0.759314 + 0.945718i
\(985\) 782.528i 0.794444i
\(986\) 163.585 + 59.7099i 0.165908 + 0.0605577i
\(987\) −484.241 211.595i −0.490619 0.214382i
\(988\) −959.042 + 122.676i −0.970690 + 0.124166i
\(989\) 622.240i 0.629160i
\(990\) −200.473 478.295i −0.202498 0.483126i
\(991\) 1209.46i 1.22045i −0.792230 0.610223i \(-0.791080\pi\)
0.792230 0.610223i \(-0.208920\pi\)
\(992\) −149.500 + 103.664i −0.150705 + 0.104500i
\(993\) 1527.61 598.556i 1.53838 0.602775i
\(994\) −110.883 40.4730i −0.111552 0.0407173i
\(995\) −486.255 + 486.255i −0.488698 + 0.488698i
\(996\) −483.074 + 1426.49i −0.485014 + 1.43222i
\(997\) −901.595 −0.904308 −0.452154 0.891940i \(-0.649344\pi\)
−0.452154 + 0.891940i \(0.649344\pi\)
\(998\) 297.936 + 640.455i 0.298533 + 0.641739i
\(999\) −58.7252 28.4020i −0.0587839 0.0284304i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.3.l.c.47.19 yes 96
3.2 odd 2 inner 156.3.l.c.47.30 yes 96
4.3 odd 2 inner 156.3.l.c.47.6 96
12.11 even 2 inner 156.3.l.c.47.43 yes 96
13.5 odd 4 inner 156.3.l.c.83.43 yes 96
39.5 even 4 inner 156.3.l.c.83.6 yes 96
52.31 even 4 inner 156.3.l.c.83.30 yes 96
156.83 odd 4 inner 156.3.l.c.83.19 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.3.l.c.47.6 96 4.3 odd 2 inner
156.3.l.c.47.19 yes 96 1.1 even 1 trivial
156.3.l.c.47.30 yes 96 3.2 odd 2 inner
156.3.l.c.47.43 yes 96 12.11 even 2 inner
156.3.l.c.83.6 yes 96 39.5 even 4 inner
156.3.l.c.83.19 yes 96 156.83 odd 4 inner
156.3.l.c.83.30 yes 96 52.31 even 4 inner
156.3.l.c.83.43 yes 96 13.5 odd 4 inner