Properties

Label 156.3.l.c.47.43
Level $156$
Weight $3$
Character 156.47
Analytic conductor $4.251$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [156,3,Mod(47,156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("156.47"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(156, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 156.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,-36,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.25069212402\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.43
Character \(\chi\) \(=\) 156.47
Dual form 156.3.l.c.83.43

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.87876 - 0.685761i) q^{2} +(-2.74902 + 1.20121i) q^{3} +(3.05946 - 2.57676i) q^{4} +(2.23749 - 2.23749i) q^{5} +(-4.34099 + 4.14196i) q^{6} +(1.91723 + 1.91723i) q^{7} +(3.98095 - 6.93916i) q^{8} +(6.11417 - 6.60431i) q^{9} +(2.66932 - 5.73809i) q^{10} +(6.43837 - 6.43837i) q^{11} +(-5.31528 + 10.7586i) q^{12} +(12.9887 - 0.543102i) q^{13} +(4.91678 + 2.28725i) q^{14} +(-3.46320 + 8.83861i) q^{15} +(2.72064 - 15.7670i) q^{16} -7.93049 q^{17} +(6.95808 - 16.6008i) q^{18} +(-13.1475 + 13.1475i) q^{19} +(1.08005 - 12.6110i) q^{20} +(-7.57350 - 2.96749i) q^{21} +(7.68096 - 16.5113i) q^{22} -13.4703i q^{23} +(-2.60829 + 23.8578i) q^{24} +14.9872i q^{25} +(24.0301 - 9.92747i) q^{26} +(-8.87477 + 25.4998i) q^{27} +(10.8059 + 0.925460i) q^{28} +10.9793i q^{29} +(-0.445336 + 18.9805i) q^{30} +(-4.01999 + 4.01999i) q^{31} +(-5.70096 - 31.4881i) q^{32} +(-9.96532 + 25.4330i) q^{33} +(-14.8995 + 5.43842i) q^{34} +8.57958 q^{35} +(1.68839 - 35.9604i) q^{36} +(1.70839 - 1.70839i) q^{37} +(-15.6849 + 33.7170i) q^{38} +(-35.0536 + 17.0951i) q^{39} +(-6.61898 - 24.4337i) q^{40} +(-35.1614 + 35.1614i) q^{41} +(-16.2638 - 0.381593i) q^{42} -46.1935 q^{43} +(3.10784 - 36.2881i) q^{44} +(-1.09668 - 28.4575i) q^{45} +(-9.23738 - 25.3074i) q^{46} +(-45.9388 + 45.9388i) q^{47} +(11.4604 + 46.6118i) q^{48} -41.6485i q^{49} +(10.2777 + 28.1574i) q^{50} +(21.8010 - 9.52621i) q^{51} +(38.3389 - 35.1302i) q^{52} +96.7348i q^{53} +(0.813197 + 53.9939i) q^{54} -28.8116i q^{55} +(20.9364 - 5.67157i) q^{56} +(20.3497 - 51.9357i) q^{57} +(7.52915 + 20.6274i) q^{58} +(19.8925 - 19.8925i) q^{59} +(12.1794 + 35.9652i) q^{60} +107.892 q^{61} +(-4.79584 + 10.3094i) q^{62} +(24.3843 - 0.939704i) q^{63} +(-32.3040 - 55.2490i) q^{64} +(27.8468 - 30.2772i) q^{65} +(-1.28145 + 54.6163i) q^{66} +(57.5421 - 57.5421i) q^{67} +(-24.2631 + 20.4350i) q^{68} +(16.1807 + 37.0300i) q^{69} +(16.1190 - 5.88354i) q^{70} +(-15.3918 - 15.3918i) q^{71} +(-21.4881 - 68.7187i) q^{72} +(-52.5418 + 52.5418i) q^{73} +(2.03811 - 4.38120i) q^{74} +(-18.0029 - 41.2002i) q^{75} +(-6.34639 + 74.1023i) q^{76} +24.6877 q^{77} +(-54.1341 + 56.1560i) q^{78} -46.1756i q^{79} +(-29.1911 - 41.3660i) q^{80} +(-6.23379 - 80.7598i) q^{81} +(-41.9475 + 90.1721i) q^{82} +(88.7459 + 88.7459i) q^{83} +(-30.8174 + 10.4361i) q^{84} +(-17.7444 + 17.7444i) q^{85} +(-86.7865 + 31.6777i) q^{86} +(-13.1884 - 30.1822i) q^{87} +(-19.0461 - 70.3077i) q^{88} +(-96.2535 - 96.2535i) q^{89} +(-21.5754 - 52.7127i) q^{90} +(25.9435 + 23.8610i) q^{91} +(-34.7096 - 41.2118i) q^{92} +(6.22216 - 15.8799i) q^{93} +(-54.8049 + 117.811i) q^{94} +58.8349i q^{95} +(53.4959 + 79.7131i) q^{96} +(-42.4947 - 42.4947i) q^{97} +(-28.5609 - 78.2474i) q^{98} +(-3.15568 - 81.8863i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 36 q^{6} - 64 q^{9} - 8 q^{13} + 80 q^{16} + 48 q^{18} + 8 q^{21} + 124 q^{24} - 8 q^{28} + 24 q^{33} + 64 q^{34} - 128 q^{37} - 136 q^{40} - 140 q^{42} - 160 q^{45} + 88 q^{46} - 108 q^{48} - 320 q^{52}+ \cdots + 336 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.87876 0.685761i 0.939379 0.342880i
\(3\) −2.74902 + 1.20121i −0.916339 + 0.400404i
\(4\) 3.05946 2.57676i 0.764866 0.644189i
\(5\) 2.23749 2.23749i 0.447499 0.447499i −0.447024 0.894522i \(-0.647516\pi\)
0.894522 + 0.447024i \(0.147516\pi\)
\(6\) −4.34099 + 4.14196i −0.723498 + 0.690326i
\(7\) 1.91723 + 1.91723i 0.273890 + 0.273890i 0.830664 0.556774i \(-0.187961\pi\)
−0.556774 + 0.830664i \(0.687961\pi\)
\(8\) 3.98095 6.93916i 0.497619 0.867396i
\(9\) 6.11417 6.60431i 0.679353 0.733812i
\(10\) 2.66932 5.73809i 0.266932 0.573809i
\(11\) 6.43837 6.43837i 0.585306 0.585306i −0.351050 0.936357i \(-0.614175\pi\)
0.936357 + 0.351050i \(0.114175\pi\)
\(12\) −5.31528 + 10.7586i −0.442940 + 0.896551i
\(13\) 12.9887 0.543102i 0.999127 0.0417771i
\(14\) 4.91678 + 2.28725i 0.351198 + 0.163375i
\(15\) −3.46320 + 8.83861i −0.230880 + 0.589241i
\(16\) 2.72064 15.7670i 0.170040 0.985437i
\(17\) −7.93049 −0.466499 −0.233250 0.972417i \(-0.574936\pi\)
−0.233250 + 0.972417i \(0.574936\pi\)
\(18\) 6.95808 16.6008i 0.386560 0.922264i
\(19\) −13.1475 + 13.1475i −0.691974 + 0.691974i −0.962666 0.270692i \(-0.912748\pi\)
0.270692 + 0.962666i \(0.412748\pi\)
\(20\) 1.08005 12.6110i 0.0540026 0.630550i
\(21\) −7.57350 2.96749i −0.360643 0.141309i
\(22\) 7.68096 16.5113i 0.349134 0.750514i
\(23\) 13.4703i 0.585664i −0.956164 0.292832i \(-0.905402\pi\)
0.956164 0.292832i \(-0.0945977\pi\)
\(24\) −2.60829 + 23.8578i −0.108679 + 0.994077i
\(25\) 14.9872i 0.599490i
\(26\) 24.0301 9.92747i 0.924234 0.381826i
\(27\) −8.87477 + 25.4998i −0.328695 + 0.944436i
\(28\) 10.8059 + 0.925460i 0.385926 + 0.0330521i
\(29\) 10.9793i 0.378595i 0.981920 + 0.189298i \(0.0606211\pi\)
−0.981920 + 0.189298i \(0.939379\pi\)
\(30\) −0.445336 + 18.9805i −0.0148445 + 0.632685i
\(31\) −4.01999 + 4.01999i −0.129677 + 0.129677i −0.768966 0.639289i \(-0.779229\pi\)
0.639289 + 0.768966i \(0.279229\pi\)
\(32\) −5.70096 31.4881i −0.178155 0.984002i
\(33\) −9.96532 + 25.4330i −0.301979 + 0.770698i
\(34\) −14.8995 + 5.43842i −0.438220 + 0.159954i
\(35\) 8.57958 0.245131
\(36\) 1.68839 35.9604i 0.0468997 0.998900i
\(37\) 1.70839 1.70839i 0.0461727 0.0461727i −0.683643 0.729816i \(-0.739606\pi\)
0.729816 + 0.683643i \(0.239606\pi\)
\(38\) −15.6849 + 33.7170i −0.412762 + 0.887290i
\(39\) −35.0536 + 17.0951i −0.898811 + 0.438337i
\(40\) −6.61898 24.4337i −0.165474 0.610842i
\(41\) −35.1614 + 35.1614i −0.857595 + 0.857595i −0.991054 0.133459i \(-0.957392\pi\)
0.133459 + 0.991054i \(0.457392\pi\)
\(42\) −16.2638 0.381593i −0.387233 0.00908555i
\(43\) −46.1935 −1.07427 −0.537134 0.843497i \(-0.680493\pi\)
−0.537134 + 0.843497i \(0.680493\pi\)
\(44\) 3.10784 36.2881i 0.0706328 0.824729i
\(45\) −1.09668 28.4575i −0.0243706 0.632389i
\(46\) −9.23738 25.3074i −0.200813 0.550160i
\(47\) −45.9388 + 45.9388i −0.977422 + 0.977422i −0.999751 0.0223285i \(-0.992892\pi\)
0.0223285 + 0.999751i \(0.492892\pi\)
\(48\) 11.4604 + 46.6118i 0.238759 + 0.971079i
\(49\) 41.6485i 0.849968i
\(50\) 10.2777 + 28.1574i 0.205553 + 0.563148i
\(51\) 21.8010 9.52621i 0.427471 0.186788i
\(52\) 38.3389 35.1302i 0.737286 0.675581i
\(53\) 96.7348i 1.82518i 0.408870 + 0.912592i \(0.365923\pi\)
−0.408870 + 0.912592i \(0.634077\pi\)
\(54\) 0.813197 + 53.9939i 0.0150592 + 0.999887i
\(55\) 28.8116i 0.523847i
\(56\) 20.9364 5.67157i 0.373864 0.101278i
\(57\) 20.3497 51.9357i 0.357013 0.911152i
\(58\) 7.52915 + 20.6274i 0.129813 + 0.355645i
\(59\) 19.8925 19.8925i 0.337162 0.337162i −0.518136 0.855298i \(-0.673374\pi\)
0.855298 + 0.518136i \(0.173374\pi\)
\(60\) 12.1794 + 35.9652i 0.202990 + 0.599420i
\(61\) 107.892 1.76872 0.884360 0.466805i \(-0.154595\pi\)
0.884360 + 0.466805i \(0.154595\pi\)
\(62\) −4.79584 + 10.3094i −0.0773523 + 0.166280i
\(63\) 24.3843 0.939704i 0.387052 0.0149159i
\(64\) −32.3040 55.2490i −0.504750 0.863265i
\(65\) 27.8468 30.2772i 0.428413 0.465803i
\(66\) −1.28145 + 54.6163i −0.0194159 + 0.827520i
\(67\) 57.5421 57.5421i 0.858838 0.858838i −0.132364 0.991201i \(-0.542257\pi\)
0.991201 + 0.132364i \(0.0422567\pi\)
\(68\) −24.2631 + 20.4350i −0.356810 + 0.300514i
\(69\) 16.1807 + 37.0300i 0.234502 + 0.536666i
\(70\) 16.1190 5.88354i 0.230271 0.0840506i
\(71\) −15.3918 15.3918i −0.216785 0.216785i 0.590357 0.807142i \(-0.298987\pi\)
−0.807142 + 0.590357i \(0.798987\pi\)
\(72\) −21.4881 68.7187i −0.298446 0.954426i
\(73\) −52.5418 + 52.5418i −0.719751 + 0.719751i −0.968554 0.248803i \(-0.919963\pi\)
0.248803 + 0.968554i \(0.419963\pi\)
\(74\) 2.03811 4.38120i 0.0275420 0.0592054i
\(75\) −18.0029 41.2002i −0.240038 0.549336i
\(76\) −6.34639 + 74.1023i −0.0835051 + 0.975030i
\(77\) 24.6877 0.320619
\(78\) −54.1341 + 56.1560i −0.694027 + 0.719949i
\(79\) 46.1756i 0.584501i −0.956342 0.292251i \(-0.905596\pi\)
0.956342 0.292251i \(-0.0944042\pi\)
\(80\) −29.1911 41.3660i −0.364889 0.517074i
\(81\) −6.23379 80.7598i −0.0769603 0.997034i
\(82\) −41.9475 + 90.1721i −0.511555 + 1.09966i
\(83\) 88.7459 + 88.7459i 1.06923 + 1.06923i 0.997418 + 0.0718100i \(0.0228775\pi\)
0.0718100 + 0.997418i \(0.477122\pi\)
\(84\) −30.8174 + 10.4361i −0.366873 + 0.124240i
\(85\) −17.7444 + 17.7444i −0.208758 + 0.208758i
\(86\) −86.7865 + 31.6777i −1.00915 + 0.368346i
\(87\) −13.1884 30.1822i −0.151591 0.346922i
\(88\) −19.0461 70.3077i −0.216432 0.798952i
\(89\) −96.2535 96.2535i −1.08150 1.08150i −0.996370 0.0851298i \(-0.972869\pi\)
−0.0851298 0.996370i \(-0.527131\pi\)
\(90\) −21.5754 52.7127i −0.239727 0.585697i
\(91\) 25.9435 + 23.8610i 0.285093 + 0.262209i
\(92\) −34.7096 41.2118i −0.377279 0.447954i
\(93\) 6.22216 15.8799i 0.0669049 0.170752i
\(94\) −54.8049 + 117.811i −0.583031 + 1.25331i
\(95\) 58.8349i 0.619315i
\(96\) 53.4959 + 79.7131i 0.557249 + 0.830345i
\(97\) −42.4947 42.4947i −0.438090 0.438090i 0.453279 0.891369i \(-0.350254\pi\)
−0.891369 + 0.453279i \(0.850254\pi\)
\(98\) −28.5609 78.2474i −0.291438 0.798442i
\(99\) −3.15568 81.8863i −0.0318755 0.827134i
\(100\) 38.6185 + 45.8529i 0.386185 + 0.458529i
\(101\) −82.7044 −0.818855 −0.409428 0.912343i \(-0.634272\pi\)
−0.409428 + 0.912343i \(0.634272\pi\)
\(102\) 34.4262 32.8477i 0.337512 0.322037i
\(103\) 136.814 1.32829 0.664144 0.747605i \(-0.268796\pi\)
0.664144 + 0.747605i \(0.268796\pi\)
\(104\) 47.9385 92.2924i 0.460948 0.887427i
\(105\) −23.5854 + 10.3059i −0.224623 + 0.0981515i
\(106\) 66.3369 + 181.741i 0.625820 + 1.71454i
\(107\) 93.4017 0.872913 0.436457 0.899725i \(-0.356233\pi\)
0.436457 + 0.899725i \(0.356233\pi\)
\(108\) 38.5547 + 100.884i 0.356988 + 0.934109i
\(109\) −98.4697 98.4697i −0.903392 0.903392i 0.0923359 0.995728i \(-0.470567\pi\)
−0.995728 + 0.0923359i \(0.970567\pi\)
\(110\) −19.7579 54.1300i −0.179617 0.492091i
\(111\) −2.64425 + 6.74854i −0.0238221 + 0.0607976i
\(112\) 35.4451 25.0129i 0.316474 0.223329i
\(113\) 85.7284i 0.758658i 0.925262 + 0.379329i \(0.123845\pi\)
−0.925262 + 0.379329i \(0.876155\pi\)
\(114\) 2.61679 111.530i 0.0229543 0.978330i
\(115\) −30.1396 30.1396i −0.262084 0.262084i
\(116\) 28.2909 + 33.5907i 0.243887 + 0.289575i
\(117\) 75.8280 89.1017i 0.648103 0.761553i
\(118\) 23.7317 51.0148i 0.201116 0.432329i
\(119\) −15.2046 15.2046i −0.127770 0.127770i
\(120\) 47.5457 + 59.2178i 0.396215 + 0.493482i
\(121\) 38.0948i 0.314833i
\(122\) 202.703 73.9881i 1.66150 0.606460i
\(123\) 54.4229 138.896i 0.442463 1.12923i
\(124\) −1.94048 + 22.6576i −0.0156490 + 0.182722i
\(125\) 89.4712 + 89.4712i 0.715770 + 0.715770i
\(126\) 45.1677 18.4873i 0.358474 0.146724i
\(127\) −93.7596 −0.738265 −0.369132 0.929377i \(-0.620345\pi\)
−0.369132 + 0.929377i \(0.620345\pi\)
\(128\) −98.5790 81.6467i −0.770149 0.637864i
\(129\) 126.987 55.4883i 0.984394 0.430142i
\(130\) 31.5545 75.9798i 0.242727 0.584460i
\(131\) 56.4833 0.431170 0.215585 0.976485i \(-0.430834\pi\)
0.215585 + 0.976485i \(0.430834\pi\)
\(132\) 35.0462 + 103.490i 0.265502 + 0.784013i
\(133\) −50.4136 −0.379050
\(134\) 68.6476 147.568i 0.512295 1.10125i
\(135\) 37.1983 + 76.9128i 0.275543 + 0.569725i
\(136\) −31.5709 + 55.0310i −0.232139 + 0.404640i
\(137\) −9.93664 9.93664i −0.0725302 0.0725302i 0.669911 0.742441i \(-0.266332\pi\)
−0.742441 + 0.669911i \(0.766332\pi\)
\(138\) 55.7933 + 58.4743i 0.404299 + 0.423727i
\(139\) 157.438i 1.13265i 0.824183 + 0.566324i \(0.191635\pi\)
−0.824183 + 0.566324i \(0.808365\pi\)
\(140\) 26.2489 22.1075i 0.187492 0.157911i
\(141\) 71.1042 181.469i 0.504285 1.28701i
\(142\) −39.4725 18.3623i −0.277975 0.129312i
\(143\) 80.1290 87.1224i 0.560343 0.609248i
\(144\) −87.4956 114.370i −0.607609 0.794237i
\(145\) 24.5660 + 24.5660i 0.169421 + 0.169421i
\(146\) −62.6823 + 134.745i −0.429331 + 0.922908i
\(147\) 50.0287 + 114.492i 0.340331 + 0.778859i
\(148\) 0.824652 9.62887i 0.00557197 0.0650599i
\(149\) −73.2706 + 73.2706i −0.491749 + 0.491749i −0.908857 0.417108i \(-0.863044\pi\)
0.417108 + 0.908857i \(0.363044\pi\)
\(150\) −62.0765 65.0595i −0.413844 0.433730i
\(151\) −95.2616 95.2616i −0.630871 0.630871i 0.317415 0.948287i \(-0.397185\pi\)
−0.948287 + 0.317415i \(0.897185\pi\)
\(152\) 38.8931 + 143.572i 0.255876 + 0.944555i
\(153\) −48.4884 + 52.3754i −0.316918 + 0.342323i
\(154\) 46.3822 16.9298i 0.301183 0.109934i
\(155\) 17.9894i 0.116061i
\(156\) −63.1953 + 142.627i −0.405098 + 0.914273i
\(157\) −174.497 −1.11145 −0.555724 0.831367i \(-0.687559\pi\)
−0.555724 + 0.831367i \(0.687559\pi\)
\(158\) −31.6654 86.7528i −0.200414 0.549068i
\(159\) −116.199 265.925i −0.730812 1.67249i
\(160\) −83.2102 57.6985i −0.520064 0.360616i
\(161\) 25.8256 25.8256i 0.160408 0.160408i
\(162\) −67.0937 147.453i −0.414158 0.910205i
\(163\) 204.207 + 204.207i 1.25280 + 1.25280i 0.954459 + 0.298343i \(0.0964340\pi\)
0.298343 + 0.954459i \(0.403566\pi\)
\(164\) −16.9726 + 198.178i −0.103492 + 1.20840i
\(165\) 34.6089 + 79.2036i 0.209751 + 0.480022i
\(166\) 227.591 + 105.874i 1.37103 + 0.637793i
\(167\) −73.3239 + 73.3239i −0.439066 + 0.439066i −0.891697 0.452632i \(-0.850485\pi\)
0.452632 + 0.891697i \(0.350485\pi\)
\(168\) −50.7417 + 40.7403i −0.302034 + 0.242502i
\(169\) 168.410 14.1083i 0.996509 0.0834812i
\(170\) −21.1690 + 45.5059i −0.124524 + 0.267682i
\(171\) 6.44407 + 167.216i 0.0376846 + 0.977873i
\(172\) −141.328 + 119.030i −0.821672 + 0.692032i
\(173\) 47.5804 0.275031 0.137516 0.990500i \(-0.456088\pi\)
0.137516 + 0.990500i \(0.456088\pi\)
\(174\) −45.4756 47.6609i −0.261354 0.273913i
\(175\) −28.7340 + 28.7340i −0.164194 + 0.164194i
\(176\) −83.9972 119.030i −0.477257 0.676308i
\(177\) −30.7897 + 78.5801i −0.173953 + 0.443955i
\(178\) −246.844 114.830i −1.38676 0.645113i
\(179\) 348.521i 1.94704i −0.228591 0.973522i \(-0.573412\pi\)
0.228591 0.973522i \(-0.426588\pi\)
\(180\) −76.6834 84.2389i −0.426019 0.467994i
\(181\) 170.140i 0.940001i 0.882666 + 0.470000i \(0.155746\pi\)
−0.882666 + 0.470000i \(0.844254\pi\)
\(182\) 65.1045 + 27.0380i 0.357717 + 0.148560i
\(183\) −296.597 + 129.601i −1.62075 + 0.708204i
\(184\) −93.4724 53.6245i −0.508002 0.291438i
\(185\) 7.64503i 0.0413245i
\(186\) 0.800113 34.1014i 0.00430168 0.183341i
\(187\) −51.0594 + 51.0594i −0.273045 + 0.273045i
\(188\) −22.1750 + 258.921i −0.117952 + 1.37724i
\(189\) −65.9039 + 31.8740i −0.348698 + 0.168645i
\(190\) 40.3467 + 110.537i 0.212351 + 0.581771i
\(191\) −364.231 −1.90697 −0.953483 0.301445i \(-0.902531\pi\)
−0.953483 + 0.301445i \(0.902531\pi\)
\(192\) 155.170 + 113.076i 0.808177 + 0.588939i
\(193\) 27.5701 27.5701i 0.142850 0.142850i −0.632065 0.774915i \(-0.717792\pi\)
0.774915 + 0.632065i \(0.217792\pi\)
\(194\) −108.978 50.6961i −0.561745 0.261320i
\(195\) −40.1820 + 116.682i −0.206061 + 0.598372i
\(196\) −107.318 127.422i −0.547541 0.650112i
\(197\) 174.867 174.867i 0.887650 0.887650i −0.106647 0.994297i \(-0.534011\pi\)
0.994297 + 0.106647i \(0.0340114\pi\)
\(198\) −62.0832 151.680i −0.313551 0.766063i
\(199\) −217.321 −1.09207 −0.546033 0.837764i \(-0.683863\pi\)
−0.546033 + 0.837764i \(0.683863\pi\)
\(200\) 103.999 + 59.6635i 0.519995 + 0.298318i
\(201\) −89.0638 + 227.305i −0.443103 + 1.13087i
\(202\) −155.382 + 56.7154i −0.769216 + 0.280769i
\(203\) −21.0498 + 21.0498i −0.103694 + 0.103694i
\(204\) 42.1528 85.3211i 0.206631 0.418241i
\(205\) 157.347i 0.767546i
\(206\) 257.040 93.8215i 1.24777 0.455444i
\(207\) −88.9618 82.3596i −0.429767 0.397872i
\(208\) 26.7744 206.270i 0.128723 0.991681i
\(209\) 169.297i 0.810034i
\(210\) −37.2439 + 35.5363i −0.177352 + 0.169220i
\(211\) 16.1284i 0.0764381i −0.999269 0.0382191i \(-0.987832\pi\)
0.999269 0.0382191i \(-0.0121685\pi\)
\(212\) 249.262 + 295.957i 1.17576 + 1.39602i
\(213\) 60.8010 + 23.8234i 0.285451 + 0.111847i
\(214\) 175.479 64.0512i 0.819996 0.299305i
\(215\) −103.358 + 103.358i −0.480734 + 0.480734i
\(216\) 141.617 + 163.097i 0.655635 + 0.755078i
\(217\) −15.4145 −0.0710346
\(218\) −252.527 117.474i −1.15838 0.538872i
\(219\) 81.3244 207.552i 0.371344 0.947727i
\(220\) −74.2405 88.1481i −0.337457 0.400673i
\(221\) −103.006 + 4.30707i −0.466092 + 0.0194890i
\(222\) −0.340027 + 14.4922i −0.00153165 + 0.0652801i
\(223\) 216.887 216.887i 0.972590 0.972590i −0.0270445 0.999634i \(-0.508610\pi\)
0.999634 + 0.0270445i \(0.00860960\pi\)
\(224\) 49.4399 71.3000i 0.220714 0.318303i
\(225\) 98.9804 + 91.6346i 0.439913 + 0.407265i
\(226\) 58.7891 + 161.063i 0.260129 + 0.712667i
\(227\) 170.053 + 170.053i 0.749133 + 0.749133i 0.974316 0.225184i \(-0.0722982\pi\)
−0.225184 + 0.974316i \(0.572298\pi\)
\(228\) −71.5663 211.332i −0.313887 0.926893i
\(229\) −28.7277 + 28.7277i −0.125448 + 0.125448i −0.767044 0.641595i \(-0.778273\pi\)
0.641595 + 0.767044i \(0.278273\pi\)
\(230\) −77.2937 35.9565i −0.336059 0.156333i
\(231\) −67.8668 + 29.6552i −0.293796 + 0.128377i
\(232\) 76.1869 + 43.7079i 0.328392 + 0.188396i
\(233\) 127.409 0.546818 0.273409 0.961898i \(-0.411849\pi\)
0.273409 + 0.961898i \(0.411849\pi\)
\(234\) 81.3601 219.400i 0.347693 0.937609i
\(235\) 205.576i 0.874790i
\(236\) 9.60226 112.119i 0.0406875 0.475080i
\(237\) 55.4668 + 126.937i 0.234037 + 0.535601i
\(238\) −38.9924 18.1390i −0.163834 0.0762144i
\(239\) 9.41795 + 9.41795i 0.0394057 + 0.0394057i 0.726535 0.687129i \(-0.241129\pi\)
−0.687129 + 0.726535i \(0.741129\pi\)
\(240\) 129.936 + 78.6509i 0.541401 + 0.327712i
\(241\) 330.162 330.162i 1.36997 1.36997i 0.509492 0.860475i \(-0.329833\pi\)
0.860475 0.509492i \(-0.170167\pi\)
\(242\) 26.1239 + 71.5709i 0.107950 + 0.295748i
\(243\) 114.146 + 214.522i 0.469739 + 0.882806i
\(244\) 330.092 278.011i 1.35283 1.13939i
\(245\) −93.1881 93.1881i −0.380360 0.380360i
\(246\) 6.99830 298.272i 0.0284484 1.21249i
\(247\) −163.628 + 177.909i −0.662461 + 0.720279i
\(248\) 11.8920 + 43.8988i 0.0479516 + 0.177011i
\(249\) −350.567 137.361i −1.40790 0.551651i
\(250\) 229.451 + 106.739i 0.917802 + 0.426956i
\(251\) 131.726i 0.524804i −0.964959 0.262402i \(-0.915485\pi\)
0.964959 0.262402i \(-0.0845147\pi\)
\(252\) 72.1814 65.7073i 0.286434 0.260743i
\(253\) −86.7266 86.7266i −0.342793 0.342793i
\(254\) −176.152 + 64.2967i −0.693510 + 0.253137i
\(255\) 27.4648 70.0945i 0.107705 0.274880i
\(256\) −241.196 85.7927i −0.942173 0.335128i
\(257\) −145.078 −0.564505 −0.282252 0.959340i \(-0.591082\pi\)
−0.282252 + 0.959340i \(0.591082\pi\)
\(258\) 200.526 191.332i 0.777232 0.741596i
\(259\) 6.55076 0.0252925
\(260\) 7.17936 164.387i 0.0276129 0.632256i
\(261\) 72.5105 + 67.1291i 0.277818 + 0.257200i
\(262\) 106.118 38.7340i 0.405032 0.147840i
\(263\) −73.5496 −0.279656 −0.139828 0.990176i \(-0.544655\pi\)
−0.139828 + 0.990176i \(0.544655\pi\)
\(264\) 136.813 + 170.399i 0.518229 + 0.645450i
\(265\) 216.443 + 216.443i 0.816768 + 0.816768i
\(266\) −94.7150 + 34.5717i −0.356071 + 0.129969i
\(267\) 380.223 + 148.981i 1.42406 + 0.557982i
\(268\) 27.7760 324.320i 0.103642 1.21015i
\(269\) 329.441i 1.22469i −0.790591 0.612345i \(-0.790226\pi\)
0.790591 0.612345i \(-0.209774\pi\)
\(270\) 122.630 + 118.991i 0.454187 + 0.440709i
\(271\) 163.971 + 163.971i 0.605061 + 0.605061i 0.941651 0.336590i \(-0.109274\pi\)
−0.336590 + 0.941651i \(0.609274\pi\)
\(272\) −21.5760 + 125.040i −0.0793236 + 0.459706i
\(273\) −99.9812 34.4306i −0.366232 0.126119i
\(274\) −25.4827 11.8544i −0.0930026 0.0432642i
\(275\) 96.4934 + 96.4934i 0.350885 + 0.350885i
\(276\) 144.921 + 71.5982i 0.525078 + 0.259414i
\(277\) 165.945i 0.599078i −0.954084 0.299539i \(-0.903167\pi\)
0.954084 0.299539i \(-0.0968329\pi\)
\(278\) 107.965 + 295.788i 0.388363 + 1.06399i
\(279\) 1.97034 + 51.1282i 0.00706217 + 0.183255i
\(280\) 34.1549 59.5351i 0.121982 0.212625i
\(281\) −13.7443 13.7443i −0.0489121 0.0489121i 0.682228 0.731140i \(-0.261011\pi\)
−0.731140 + 0.682228i \(0.761011\pi\)
\(282\) 9.14337 389.697i 0.0324233 1.38190i
\(283\) −330.563 −1.16807 −0.584033 0.811730i \(-0.698526\pi\)
−0.584033 + 0.811730i \(0.698526\pi\)
\(284\) −86.7514 7.42971i −0.305463 0.0261609i
\(285\) −70.6733 161.738i −0.247976 0.567502i
\(286\) 90.7979 218.631i 0.317475 0.764445i
\(287\) −134.825 −0.469774
\(288\) −242.814 154.873i −0.843103 0.537752i
\(289\) −226.107 −0.782378
\(290\) 63.0001 + 29.3072i 0.217242 + 0.101059i
\(291\) 167.864 + 65.7734i 0.576851 + 0.226025i
\(292\) −25.3623 + 296.137i −0.0868572 + 1.01417i
\(293\) −20.8531 20.8531i −0.0711711 0.0711711i 0.670625 0.741796i \(-0.266026\pi\)
−0.741796 + 0.670625i \(0.766026\pi\)
\(294\) 172.506 + 180.796i 0.586755 + 0.614951i
\(295\) 89.0188i 0.301759i
\(296\) −5.05378 18.6558i −0.0170736 0.0630265i
\(297\) 107.038 + 221.316i 0.360397 + 0.745172i
\(298\) −87.4117 + 187.904i −0.293328 + 0.630550i
\(299\) −7.31573 174.961i −0.0244673 0.585153i
\(300\) −161.242 79.6614i −0.537473 0.265538i
\(301\) −88.5637 88.5637i −0.294232 0.294232i
\(302\) −244.300 113.647i −0.808941 0.376314i
\(303\) 227.356 99.3456i 0.750349 0.327873i
\(304\) 171.527 + 243.066i 0.564234 + 0.799560i
\(305\) 241.408 241.408i 0.791500 0.791500i
\(306\) −55.1809 + 131.652i −0.180330 + 0.430236i
\(307\) −330.034 330.034i −1.07503 1.07503i −0.996947 0.0780834i \(-0.975120\pi\)
−0.0780834 0.996947i \(-0.524880\pi\)
\(308\) 75.5311 63.6142i 0.245231 0.206539i
\(309\) −376.103 + 164.342i −1.21716 + 0.531853i
\(310\) 12.3364 + 33.7978i 0.0397950 + 0.109025i
\(311\) 291.242i 0.936470i 0.883604 + 0.468235i \(0.155110\pi\)
−0.883604 + 0.468235i \(0.844890\pi\)
\(312\) −20.9209 + 311.298i −0.0670541 + 0.997749i
\(313\) 342.505 1.09427 0.547133 0.837046i \(-0.315719\pi\)
0.547133 + 0.837046i \(0.315719\pi\)
\(314\) −327.838 + 119.663i −1.04407 + 0.381094i
\(315\) 52.4570 56.6622i 0.166530 0.179880i
\(316\) −118.983 141.273i −0.376530 0.447065i
\(317\) 399.011 399.011i 1.25871 1.25871i 0.306999 0.951710i \(-0.400675\pi\)
0.951710 0.306999i \(-0.0993249\pi\)
\(318\) −400.671 419.925i −1.25997 1.32052i
\(319\) 70.6886 + 70.6886i 0.221594 + 0.221594i
\(320\) −195.899 51.3392i −0.612185 0.160435i
\(321\) −256.763 + 112.195i −0.799884 + 0.349518i
\(322\) 30.8099 66.2303i 0.0956829 0.205684i
\(323\) 104.266 104.266i 0.322806 0.322806i
\(324\) −227.170 231.019i −0.701143 0.713021i
\(325\) 8.13961 + 194.664i 0.0250449 + 0.598967i
\(326\) 523.692 + 243.618i 1.60642 + 0.747295i
\(327\) 388.978 + 152.412i 1.18954 + 0.466091i
\(328\) 104.015 + 383.967i 0.317119 + 1.17063i
\(329\) −176.151 −0.535413
\(330\) 119.336 + 125.071i 0.361626 + 0.379003i
\(331\) 386.713 386.713i 1.16832 1.16832i 0.185715 0.982604i \(-0.440540\pi\)
0.982604 0.185715i \(-0.0594601\pi\)
\(332\) 500.192 + 42.8383i 1.50660 + 0.129031i
\(333\) −0.837344 21.7281i −0.00251455 0.0652497i
\(334\) −87.4753 + 188.041i −0.261902 + 0.562996i
\(335\) 257.500i 0.768657i
\(336\) −67.3932 + 111.338i −0.200575 + 0.331363i
\(337\) 61.3087i 0.181925i −0.995854 0.0909625i \(-0.971006\pi\)
0.995854 0.0909625i \(-0.0289944\pi\)
\(338\) 306.727 141.995i 0.907476 0.420104i
\(339\) −102.978 235.669i −0.303770 0.695188i
\(340\) −8.56535 + 100.011i −0.0251922 + 0.294151i
\(341\) 51.7644i 0.151802i
\(342\) 126.777 + 309.740i 0.370694 + 0.905672i
\(343\) 173.794 173.794i 0.506688 0.506688i
\(344\) −183.894 + 320.545i −0.534577 + 0.931816i
\(345\) 119.058 + 46.6502i 0.345097 + 0.135218i
\(346\) 89.3921 32.6288i 0.258359 0.0943028i
\(347\) 27.4780 0.0791872 0.0395936 0.999216i \(-0.487394\pi\)
0.0395936 + 0.999216i \(0.487394\pi\)
\(348\) −118.122 58.3579i −0.339430 0.167695i
\(349\) −241.315 + 241.315i −0.691447 + 0.691447i −0.962550 0.271103i \(-0.912612\pi\)
0.271103 + 0.962550i \(0.412612\pi\)
\(350\) −34.2796 + 73.6889i −0.0979417 + 0.210540i
\(351\) −101.422 + 336.028i −0.288952 + 0.957343i
\(352\) −239.437 166.027i −0.680218 0.471668i
\(353\) 268.532 268.532i 0.760715 0.760715i −0.215737 0.976452i \(-0.569215\pi\)
0.976452 + 0.215737i \(0.0692153\pi\)
\(354\) −3.95928 + 168.747i −0.0111844 + 0.476687i
\(355\) −68.8779 −0.194022
\(356\) −542.506 46.4622i −1.52389 0.130512i
\(357\) 60.0616 + 23.5337i 0.168240 + 0.0659207i
\(358\) −239.002 654.787i −0.667604 1.82901i
\(359\) −43.0730 + 43.0730i −0.119981 + 0.119981i −0.764548 0.644567i \(-0.777038\pi\)
0.644567 + 0.764548i \(0.277038\pi\)
\(360\) −201.837 105.678i −0.560659 0.293550i
\(361\) 15.2861i 0.0423437i
\(362\) 116.675 + 319.652i 0.322308 + 0.883017i
\(363\) −45.7600 104.723i −0.126061 0.288494i
\(364\) 140.857 + 6.15175i 0.386970 + 0.0169004i
\(365\) 235.124i 0.644175i
\(366\) −468.358 + 446.884i −1.27967 + 1.22099i
\(367\) 499.591i 1.36128i −0.732616 0.680642i \(-0.761701\pi\)
0.732616 0.680642i \(-0.238299\pi\)
\(368\) −212.386 36.6478i −0.577135 0.0995864i
\(369\) 17.2339 + 447.200i 0.0467043 + 1.21192i
\(370\) −5.24266 14.3632i −0.0141694 0.0388193i
\(371\) −185.463 + 185.463i −0.499900 + 0.499900i
\(372\) −21.8822 64.6170i −0.0588231 0.173702i
\(373\) −332.025 −0.890147 −0.445073 0.895494i \(-0.646822\pi\)
−0.445073 + 0.895494i \(0.646822\pi\)
\(374\) −60.9138 + 130.943i −0.162871 + 0.350115i
\(375\) −353.432 138.484i −0.942485 0.369290i
\(376\) 135.897 + 501.658i 0.361428 + 1.33420i
\(377\) 5.96286 + 142.606i 0.0158166 + 0.378265i
\(378\) −101.960 + 105.078i −0.269735 + 0.277984i
\(379\) 468.317 468.317i 1.23567 1.23567i 0.273911 0.961755i \(-0.411683\pi\)
0.961755 0.273911i \(-0.0883173\pi\)
\(380\) 151.603 + 180.003i 0.398956 + 0.473693i
\(381\) 257.747 112.625i 0.676500 0.295605i
\(382\) −684.301 + 249.775i −1.79136 + 0.653862i
\(383\) −101.144 101.144i −0.264083 0.264083i 0.562627 0.826711i \(-0.309791\pi\)
−0.826711 + 0.562627i \(0.809791\pi\)
\(384\) 369.070 + 106.033i 0.961121 + 0.276129i
\(385\) 55.2385 55.2385i 0.143477 0.143477i
\(386\) 32.8911 70.7041i 0.0852100 0.183171i
\(387\) −282.435 + 305.076i −0.729807 + 0.788311i
\(388\) −239.509 20.5125i −0.617293 0.0528672i
\(389\) −456.268 −1.17293 −0.586463 0.809976i \(-0.699480\pi\)
−0.586463 + 0.809976i \(0.699480\pi\)
\(390\) 4.52405 + 246.773i 0.0116001 + 0.632752i
\(391\) 106.826i 0.273212i
\(392\) −289.005 165.801i −0.737259 0.422961i
\(393\) −155.273 + 67.8485i −0.395098 + 0.172642i
\(394\) 208.616 448.450i 0.529482 1.13820i
\(395\) −103.318 103.318i −0.261564 0.261564i
\(396\) −220.656 242.397i −0.557211 0.612113i
\(397\) 300.957 300.957i 0.758078 0.758078i −0.217895 0.975972i \(-0.569919\pi\)
0.975972 + 0.217895i \(0.0699189\pi\)
\(398\) −408.294 + 149.030i −1.02586 + 0.374448i
\(399\) 138.588 60.5575i 0.347338 0.151773i
\(400\) 236.304 + 40.7749i 0.590760 + 0.101937i
\(401\) 252.305 + 252.305i 0.629190 + 0.629190i 0.947864 0.318674i \(-0.103238\pi\)
−0.318674 + 0.947864i \(0.603238\pi\)
\(402\) −11.4528 + 488.127i −0.0284896 + 1.21425i
\(403\) −50.0310 + 54.3976i −0.124146 + 0.134982i
\(404\) −253.031 + 213.109i −0.626315 + 0.527498i
\(405\) −194.647 166.751i −0.480611 0.411732i
\(406\) −25.1123 + 53.9826i −0.0618531 + 0.132962i
\(407\) 21.9985i 0.0540504i
\(408\) 20.6850 189.204i 0.0506985 0.463736i
\(409\) −75.5531 75.5531i −0.184726 0.184726i 0.608685 0.793412i \(-0.291697\pi\)
−0.793412 + 0.608685i \(0.791697\pi\)
\(410\) 107.902 + 295.617i 0.263176 + 0.721016i
\(411\) 39.2520 + 15.3800i 0.0955036 + 0.0374208i
\(412\) 418.577 352.536i 1.01596 0.855669i
\(413\) 76.2772 0.184691
\(414\) −223.617 93.7272i −0.540137 0.226394i
\(415\) 397.137 0.956956
\(416\) −91.1490 405.891i −0.219108 0.975701i
\(417\) −189.117 432.799i −0.453517 1.03789i
\(418\) 116.097 + 318.068i 0.277745 + 0.760929i
\(419\) 354.855 0.846909 0.423454 0.905917i \(-0.360817\pi\)
0.423454 + 0.905917i \(0.360817\pi\)
\(420\) −45.6029 + 92.3044i −0.108578 + 0.219772i
\(421\) −148.325 148.325i −0.352315 0.352315i 0.508655 0.860970i \(-0.330143\pi\)
−0.860970 + 0.508655i \(0.830143\pi\)
\(422\) −11.0603 30.3014i −0.0262091 0.0718044i
\(423\) 22.5163 + 584.272i 0.0532300 + 1.38126i
\(424\) 671.259 + 385.097i 1.58316 + 0.908247i
\(425\) 118.856i 0.279662i
\(426\) 130.568 + 3.06348i 0.306496 + 0.00719126i
\(427\) 206.854 + 206.854i 0.484435 + 0.484435i
\(428\) 285.759 240.674i 0.667662 0.562321i
\(429\) −115.623 + 335.753i −0.269518 + 0.782641i
\(430\) −123.306 + 265.063i −0.286757 + 0.616425i
\(431\) −129.751 129.751i −0.301047 0.301047i 0.540376 0.841424i \(-0.318282\pi\)
−0.841424 + 0.540376i \(0.818282\pi\)
\(432\) 377.910 + 209.304i 0.874791 + 0.484500i
\(433\) 277.129i 0.640020i −0.947414 0.320010i \(-0.896314\pi\)
0.947414 0.320010i \(-0.103686\pi\)
\(434\) −28.9601 + 10.5707i −0.0667285 + 0.0243564i
\(435\) −97.0414 38.0234i −0.223084 0.0874100i
\(436\) −554.997 47.5320i −1.27293 0.109018i
\(437\) 177.101 + 177.101i 0.405264 + 0.405264i
\(438\) 10.4576 445.710i 0.0238758 1.01760i
\(439\) −824.382 −1.87786 −0.938932 0.344104i \(-0.888183\pi\)
−0.938932 + 0.344104i \(0.888183\pi\)
\(440\) −199.929 114.698i −0.454383 0.260677i
\(441\) −275.059 254.646i −0.623717 0.577428i
\(442\) −190.570 + 78.7297i −0.431155 + 0.178121i
\(443\) 296.524 0.669354 0.334677 0.942333i \(-0.391373\pi\)
0.334677 + 0.942333i \(0.391373\pi\)
\(444\) 9.29935 + 27.4605i 0.0209445 + 0.0618480i
\(445\) −430.733 −0.967939
\(446\) 258.746 556.212i 0.580148 1.24711i
\(447\) 113.408 289.436i 0.253710 0.647507i
\(448\) 43.9908 167.859i 0.0981938 0.374686i
\(449\) 102.052 + 102.052i 0.227288 + 0.227288i 0.811559 0.584271i \(-0.198619\pi\)
−0.584271 + 0.811559i \(0.698619\pi\)
\(450\) 248.800 + 104.282i 0.552888 + 0.231739i
\(451\) 452.764i 1.00391i
\(452\) 220.901 + 262.283i 0.488719 + 0.580272i
\(453\) 376.305 + 147.446i 0.830695 + 0.325488i
\(454\) 436.104 + 202.873i 0.960583 + 0.446857i
\(455\) 111.437 4.65959i 0.244917 0.0102409i
\(456\) −279.379 347.964i −0.612673 0.763078i
\(457\) 297.399 + 297.399i 0.650763 + 0.650763i 0.953177 0.302414i \(-0.0977925\pi\)
−0.302414 + 0.953177i \(0.597792\pi\)
\(458\) −34.2721 + 73.6727i −0.0748298 + 0.160857i
\(459\) 70.3813 202.226i 0.153336 0.440579i
\(460\) −169.874 14.5486i −0.369291 0.0316274i
\(461\) 304.031 304.031i 0.659503 0.659503i −0.295759 0.955262i \(-0.595573\pi\)
0.955262 + 0.295759i \(0.0955727\pi\)
\(462\) −107.169 + 102.255i −0.231967 + 0.221332i
\(463\) 141.035 + 141.035i 0.304612 + 0.304612i 0.842815 0.538203i \(-0.180897\pi\)
−0.538203 + 0.842815i \(0.680897\pi\)
\(464\) 173.110 + 29.8706i 0.373082 + 0.0643764i
\(465\) −21.6091 49.4532i −0.0464713 0.106351i
\(466\) 239.370 87.3718i 0.513669 0.187493i
\(467\) 546.532i 1.17030i 0.810923 + 0.585152i \(0.198965\pi\)
−0.810923 + 0.585152i \(0.801035\pi\)
\(468\) 2.39975 467.994i 0.00512767 0.999987i
\(469\) 220.643 0.470454
\(470\) 140.976 + 386.227i 0.299948 + 0.821760i
\(471\) 479.696 209.609i 1.01846 0.445029i
\(472\) −58.8463 217.229i −0.124674 0.460231i
\(473\) −297.411 + 297.411i −0.628776 + 0.628776i
\(474\) 191.257 + 200.448i 0.403497 + 0.422886i
\(475\) −197.045 197.045i −0.414832 0.414832i
\(476\) −85.6964 7.33935i −0.180034 0.0154188i
\(477\) 638.866 + 591.453i 1.33934 + 1.23994i
\(478\) 24.1525 + 11.2356i 0.0505283 + 0.0235054i
\(479\) −111.887 + 111.887i −0.233585 + 0.233585i −0.814187 0.580602i \(-0.802817\pi\)
0.580602 + 0.814187i \(0.302817\pi\)
\(480\) 298.054 + 58.6608i 0.620947 + 0.122210i
\(481\) 21.2619 23.1175i 0.0442035 0.0480614i
\(482\) 393.883 846.707i 0.817184 1.75665i
\(483\) −39.9730 + 102.017i −0.0827597 + 0.211216i
\(484\) 98.1611 + 116.550i 0.202812 + 0.240805i
\(485\) −190.163 −0.392089
\(486\) 361.564 + 324.757i 0.743959 + 0.668225i
\(487\) −149.033 + 149.033i −0.306022 + 0.306022i −0.843364 0.537343i \(-0.819428\pi\)
0.537343 + 0.843364i \(0.319428\pi\)
\(488\) 429.513 748.680i 0.880149 1.53418i
\(489\) −806.663 316.072i −1.64962 0.646363i
\(490\) −238.983 111.173i −0.487720 0.226884i
\(491\) 431.862i 0.879555i −0.898107 0.439778i \(-0.855057\pi\)
0.898107 0.439778i \(-0.144943\pi\)
\(492\) −191.395 565.181i −0.389015 1.14874i
\(493\) 87.0710i 0.176615i
\(494\) −185.414 + 446.457i −0.375333 + 0.903760i
\(495\) −190.281 176.159i −0.384406 0.355877i
\(496\) 52.4463 + 74.3202i 0.105738 + 0.149839i
\(497\) 59.0191i 0.118751i
\(498\) −752.827 17.6634i −1.51170 0.0354687i
\(499\) −249.737 + 249.737i −0.500475 + 0.500475i −0.911586 0.411111i \(-0.865141\pi\)
0.411111 + 0.911586i \(0.365141\pi\)
\(500\) 504.279 + 43.1883i 1.00856 + 0.0863767i
\(501\) 113.491 289.646i 0.226529 0.578136i
\(502\) −90.3324 247.481i −0.179945 0.492990i
\(503\) 19.5125 0.0387923 0.0193961 0.999812i \(-0.493826\pi\)
0.0193961 + 0.999812i \(0.493826\pi\)
\(504\) 90.5519 172.947i 0.179666 0.343150i
\(505\) −185.051 + 185.051i −0.366437 + 0.366437i
\(506\) −222.412 103.465i −0.439549 0.204475i
\(507\) −446.015 + 241.080i −0.879714 + 0.475504i
\(508\) −286.854 + 241.596i −0.564674 + 0.475582i
\(509\) −291.110 + 291.110i −0.571926 + 0.571926i −0.932666 0.360740i \(-0.882524\pi\)
0.360740 + 0.932666i \(0.382524\pi\)
\(510\) 3.53173 150.525i 0.00692497 0.295147i
\(511\) −201.470 −0.394265
\(512\) −511.983 + 4.21922i −0.999966 + 0.00824067i
\(513\) −218.577 451.940i −0.426077 0.880974i
\(514\) −272.566 + 99.4886i −0.530284 + 0.193558i
\(515\) 306.120 306.120i 0.594407 0.594407i
\(516\) 245.532 496.979i 0.475836 0.963137i
\(517\) 591.542i 1.14418i
\(518\) 12.3073 4.49225i 0.0237593 0.00867231i
\(519\) −130.799 + 57.1542i −0.252022 + 0.110124i
\(520\) −99.2416 313.766i −0.190849 0.603396i
\(521\) 554.046i 1.06343i −0.846924 0.531714i \(-0.821548\pi\)
0.846924 0.531714i \(-0.178452\pi\)
\(522\) 182.264 + 76.3946i 0.349165 + 0.146350i
\(523\) 565.353i 1.08098i 0.841350 + 0.540491i \(0.181761\pi\)
−0.841350 + 0.540491i \(0.818239\pi\)
\(524\) 172.809 145.544i 0.329787 0.277755i
\(525\) 44.4746 113.506i 0.0847135 0.216202i
\(526\) −138.182 + 50.4374i −0.262703 + 0.0958887i
\(527\) 31.8805 31.8805i 0.0604944 0.0604944i
\(528\) 373.890 + 226.317i 0.708126 + 0.428631i
\(529\) 347.552 0.656998
\(530\) 555.073 + 258.216i 1.04731 + 0.487201i
\(531\) −9.75005 253.003i −0.0183617 0.476465i
\(532\) −154.239 + 129.904i −0.289922 + 0.244180i
\(533\) −437.603 + 475.796i −0.821019 + 0.892675i
\(534\) 816.513 + 19.1577i 1.52905 + 0.0358758i
\(535\) 208.986 208.986i 0.390627 0.390627i
\(536\) −170.222 628.367i −0.317578 1.17233i
\(537\) 418.648 + 958.090i 0.779606 + 1.78415i
\(538\) −225.918 618.941i −0.419922 1.15045i
\(539\) −268.148 268.148i −0.497492 0.497492i
\(540\) 311.993 + 139.461i 0.577764 + 0.258261i
\(541\) −173.050 + 173.050i −0.319870 + 0.319870i −0.848717 0.528847i \(-0.822624\pi\)
0.528847 + 0.848717i \(0.322624\pi\)
\(542\) 420.508 + 195.618i 0.775845 + 0.360918i
\(543\) −204.375 467.718i −0.376380 0.861359i
\(544\) 45.2114 + 249.716i 0.0831092 + 0.459037i
\(545\) −440.651 −0.808533
\(546\) −211.452 + 3.87651i −0.387274 + 0.00709983i
\(547\) 745.007i 1.36199i 0.732289 + 0.680994i \(0.238452\pi\)
−0.732289 + 0.680994i \(0.761548\pi\)
\(548\) −56.0051 4.79648i −0.102199 0.00875270i
\(549\) 659.670 712.552i 1.20158 1.29791i
\(550\) 247.459 + 115.116i 0.449926 + 0.209303i
\(551\) −144.350 144.350i −0.261978 0.261978i
\(552\) 321.372 + 35.1343i 0.582195 + 0.0636491i
\(553\) 88.5293 88.5293i 0.160089 0.160089i
\(554\) −113.798 311.770i −0.205412 0.562761i
\(555\) 9.18331 + 21.0163i 0.0165465 + 0.0378672i
\(556\) 405.679 + 481.676i 0.729639 + 0.866323i
\(557\) −343.993 343.993i −0.617582 0.617582i 0.327328 0.944911i \(-0.393852\pi\)
−0.944911 + 0.327328i \(0.893852\pi\)
\(558\) 38.7635 + 94.7064i 0.0694687 + 0.169725i
\(559\) −599.992 + 25.0878i −1.07333 + 0.0448798i
\(560\) 23.3420 135.274i 0.0416821 0.241561i
\(561\) 79.0299 201.696i 0.140873 0.359530i
\(562\) −35.2475 16.3969i −0.0627180 0.0291760i
\(563\) 904.253i 1.60613i 0.595890 + 0.803066i \(0.296800\pi\)
−0.595890 + 0.803066i \(0.703200\pi\)
\(564\) −250.061 738.416i −0.443370 1.30925i
\(565\) 191.817 + 191.817i 0.339498 + 0.339498i
\(566\) −621.047 + 226.687i −1.09726 + 0.400507i
\(567\) 142.884 166.787i 0.251999 0.294157i
\(568\) −168.080 + 45.5321i −0.295915 + 0.0801621i
\(569\) 938.529 1.64944 0.824718 0.565545i \(-0.191334\pi\)
0.824718 + 0.565545i \(0.191334\pi\)
\(570\) −243.692 255.402i −0.427529 0.448073i
\(571\) 472.192 0.826956 0.413478 0.910514i \(-0.364314\pi\)
0.413478 + 0.910514i \(0.364314\pi\)
\(572\) 20.6586 473.021i 0.0361164 0.826960i
\(573\) 1001.28 437.519i 1.74743 0.763558i
\(574\) −253.304 + 92.4578i −0.441296 + 0.161076i
\(575\) 201.882 0.351100
\(576\) −562.394 124.456i −0.976378 0.216070i
\(577\) 27.8631 + 27.8631i 0.0482896 + 0.0482896i 0.730839 0.682550i \(-0.239129\pi\)
−0.682550 + 0.730839i \(0.739129\pi\)
\(578\) −424.801 + 155.056i −0.734950 + 0.268262i
\(579\) −42.6731 + 108.908i −0.0737013 + 0.188097i
\(580\) 138.460 + 11.8582i 0.238723 + 0.0204451i
\(581\) 340.293i 0.585702i
\(582\) 360.480 + 8.45786i 0.619382 + 0.0145324i
\(583\) 622.814 + 622.814i 1.06829 + 1.06829i
\(584\) 155.430 + 573.763i 0.266147 + 0.982471i
\(585\) −29.6997 369.029i −0.0507687 0.630819i
\(586\) −53.4783 24.8777i −0.0912598 0.0424535i
\(587\) −478.108 478.108i −0.814494 0.814494i 0.170810 0.985304i \(-0.445362\pi\)
−0.985304 + 0.170810i \(0.945362\pi\)
\(588\) 448.080 + 221.373i 0.762040 + 0.376485i
\(589\) 105.706i 0.179467i
\(590\) −61.0456 167.245i −0.103467 0.283466i
\(591\) −270.660 + 690.765i −0.457969 + 1.16881i
\(592\) −22.2883 31.5841i −0.0376491 0.0533515i
\(593\) −80.9828 80.9828i −0.136565 0.136565i 0.635520 0.772084i \(-0.280786\pi\)
−0.772084 + 0.635520i \(0.780786\pi\)
\(594\) 352.868 + 342.397i 0.594054 + 0.576426i
\(595\) −68.0403 −0.114353
\(596\) −35.3682 + 412.970i −0.0593427 + 0.692902i
\(597\) 597.419 261.049i 1.00070 0.437268i
\(598\) −133.726 323.692i −0.223621 0.541291i
\(599\) 686.856 1.14667 0.573336 0.819321i \(-0.305649\pi\)
0.573336 + 0.819321i \(0.305649\pi\)
\(600\) −357.563 39.0910i −0.595939 0.0651517i
\(601\) −294.571 −0.490135 −0.245067 0.969506i \(-0.578810\pi\)
−0.245067 + 0.969506i \(0.578810\pi\)
\(602\) −227.123 105.656i −0.377281 0.175509i
\(603\) −28.2035 731.848i −0.0467719 1.21368i
\(604\) −536.915 45.9834i −0.888933 0.0761314i
\(605\) 85.2369 + 85.2369i 0.140887 + 0.140887i
\(606\) 359.019 342.558i 0.592440 0.565277i
\(607\) 834.152i 1.37422i 0.726553 + 0.687110i \(0.241121\pi\)
−0.726553 + 0.687110i \(0.758879\pi\)
\(608\) 488.943 + 339.036i 0.804183 + 0.557626i
\(609\) 32.5809 83.1515i 0.0534990 0.136538i
\(610\) 287.999 619.094i 0.472129 1.01491i
\(611\) −571.734 + 621.633i −0.935735 + 1.01740i
\(612\) −13.3898 + 285.183i −0.0218787 + 0.465986i
\(613\) 71.3441 + 71.3441i 0.116385 + 0.116385i 0.762901 0.646516i \(-0.223774\pi\)
−0.646516 + 0.762901i \(0.723774\pi\)
\(614\) −846.379 393.730i −1.37847 0.641254i
\(615\) −189.007 432.549i −0.307329 0.703332i
\(616\) 98.2805 171.312i 0.159546 0.278104i
\(617\) −222.842 + 222.842i −0.361169 + 0.361169i −0.864243 0.503074i \(-0.832202\pi\)
0.503074 + 0.864243i \(0.332202\pi\)
\(618\) −593.907 + 566.676i −0.961014 + 0.916952i
\(619\) −534.752 534.752i −0.863896 0.863896i 0.127892 0.991788i \(-0.459179\pi\)
−0.991788 + 0.127892i \(0.959179\pi\)
\(620\) 46.3544 + 55.0380i 0.0747651 + 0.0887709i
\(621\) 343.489 + 119.546i 0.553122 + 0.192505i
\(622\) 199.722 + 547.173i 0.321097 + 0.879700i
\(623\) 369.080i 0.592424i
\(624\) 174.171 + 599.200i 0.279120 + 0.960256i
\(625\) 25.7012 0.0411219
\(626\) 643.484 234.877i 1.02793 0.375202i
\(627\) −203.362 465.400i −0.324341 0.742265i
\(628\) −533.869 + 449.638i −0.850109 + 0.715983i
\(629\) −13.5484 + 13.5484i −0.0215396 + 0.0215396i
\(630\) 59.6974 142.428i 0.0947577 0.226076i
\(631\) −35.0852 35.0852i −0.0556025 0.0556025i 0.678759 0.734361i \(-0.262518\pi\)
−0.734361 + 0.678759i \(0.762518\pi\)
\(632\) −320.420 183.823i −0.506994 0.290859i
\(633\) 19.3737 + 44.3373i 0.0306062 + 0.0700432i
\(634\) 476.019 1023.27i 0.750818 1.61399i
\(635\) −209.787 + 209.787i −0.330372 + 0.330372i
\(636\) −1040.73 514.172i −1.63637 0.808447i
\(637\) −22.6194 540.957i −0.0355092 0.849226i
\(638\) 181.282 + 84.3313i 0.284141 + 0.132181i
\(639\) −195.760 + 7.54406i −0.306353 + 0.0118060i
\(640\) −403.254 + 37.8861i −0.630084 + 0.0591970i
\(641\) −918.436 −1.43282 −0.716409 0.697680i \(-0.754216\pi\)
−0.716409 + 0.697680i \(0.754216\pi\)
\(642\) −405.456 + 386.866i −0.631551 + 0.602595i
\(643\) 174.939 174.939i 0.272066 0.272066i −0.557865 0.829932i \(-0.688379\pi\)
0.829932 + 0.557865i \(0.188379\pi\)
\(644\) 12.4662 145.559i 0.0193575 0.226023i
\(645\) 159.977 408.287i 0.248027 0.633003i
\(646\) 124.389 267.393i 0.192553 0.413920i
\(647\) 1087.32i 1.68056i 0.542151 + 0.840281i \(0.317610\pi\)
−0.542151 + 0.840281i \(0.682390\pi\)
\(648\) −585.222 278.244i −0.903120 0.429388i
\(649\) 256.151i 0.394686i
\(650\) 148.785 + 360.145i 0.228901 + 0.554069i
\(651\) 42.3747 18.5161i 0.0650918 0.0284426i
\(652\) 1150.95 + 98.5719i 1.76527 + 0.151184i
\(653\) 915.597i 1.40214i 0.713093 + 0.701070i \(0.247294\pi\)
−0.713093 + 0.701070i \(0.752706\pi\)
\(654\) 835.313 + 19.5988i 1.27724 + 0.0299675i
\(655\) 126.381 126.381i 0.192948 0.192948i
\(656\) 458.728 + 650.051i 0.699281 + 0.990932i
\(657\) 25.7526 + 668.252i 0.0391973 + 1.01713i
\(658\) −330.945 + 120.797i −0.502955 + 0.183582i
\(659\) −330.590 −0.501653 −0.250827 0.968032i \(-0.580702\pi\)
−0.250827 + 0.968032i \(0.580702\pi\)
\(660\) 309.973 + 153.142i 0.469656 + 0.232033i
\(661\) −388.081 + 388.081i −0.587112 + 0.587112i −0.936848 0.349736i \(-0.886271\pi\)
0.349736 + 0.936848i \(0.386271\pi\)
\(662\) 461.348 991.734i 0.696900 1.49809i
\(663\) 277.992 135.573i 0.419295 0.204484i
\(664\) 969.116 262.529i 1.45951 0.395375i
\(665\) −112.800 + 112.800i −0.169624 + 0.169624i
\(666\) −16.4735 40.2477i −0.0247349 0.0604320i
\(667\) 147.894 0.221730
\(668\) −35.3940 + 413.270i −0.0529850 + 0.618668i
\(669\) −335.699 + 856.755i −0.501792 + 1.28065i
\(670\) −176.584 483.781i −0.263558 0.722061i
\(671\) 694.648 694.648i 1.03524 1.03524i
\(672\) −50.2645 + 255.393i −0.0747983 + 0.380048i
\(673\) 186.978i 0.277827i −0.990304 0.138914i \(-0.955639\pi\)
0.990304 0.138914i \(-0.0443611\pi\)
\(674\) −42.0431 115.184i −0.0623785 0.170897i
\(675\) −382.171 133.008i −0.566180 0.197049i
\(676\) 478.891 477.116i 0.708418 0.705793i
\(677\) 368.883i 0.544879i 0.962173 + 0.272440i \(0.0878305\pi\)
−0.962173 + 0.272440i \(0.912170\pi\)
\(678\) −355.083 372.146i −0.523721 0.548888i
\(679\) 162.944i 0.239977i
\(680\) 52.4917 + 193.771i 0.0771937 + 0.284958i
\(681\) −671.749 263.209i −0.986415 0.386503i
\(682\) 35.4980 + 97.2528i 0.0520499 + 0.142599i
\(683\) −455.745 + 455.745i −0.667269 + 0.667269i −0.957083 0.289814i \(-0.906407\pi\)
0.289814 + 0.957083i \(0.406407\pi\)
\(684\) 450.591 + 494.988i 0.658759 + 0.723666i
\(685\) −44.4663 −0.0649143
\(686\) 207.336 445.698i 0.302239 0.649706i
\(687\) 44.4648 113.481i 0.0647231 0.165183i
\(688\) −125.676 + 728.333i −0.182669 + 1.05862i
\(689\) 52.5369 + 1256.45i 0.0762509 + 1.82359i
\(690\) 255.673 + 5.99880i 0.370541 + 0.00869391i
\(691\) 252.600 252.600i 0.365557 0.365557i −0.500297 0.865854i \(-0.666776\pi\)
0.865854 + 0.500297i \(0.166776\pi\)
\(692\) 145.571 122.603i 0.210362 0.177172i
\(693\) 150.945 163.045i 0.217813 0.235274i
\(694\) 51.6244 18.8433i 0.0743868 0.0271517i
\(695\) 352.266 + 352.266i 0.506858 + 0.506858i
\(696\) −261.942 28.6371i −0.376353 0.0411452i
\(697\) 278.847 278.847i 0.400068 0.400068i
\(698\) −287.888 + 618.857i −0.412447 + 0.886615i
\(699\) −350.248 + 153.045i −0.501070 + 0.218948i
\(700\) −13.8701 + 161.951i −0.0198144 + 0.231359i
\(701\) 684.290 0.976162 0.488081 0.872798i \(-0.337697\pi\)
0.488081 + 0.872798i \(0.337697\pi\)
\(702\) 39.8865 + 700.866i 0.0568184 + 0.998385i
\(703\) 44.9222i 0.0639007i
\(704\) −563.699 147.728i −0.800708 0.209841i
\(705\) −246.940 565.131i −0.350270 0.801604i
\(706\) 320.358 688.656i 0.453765 0.975434i
\(707\) −158.563 158.563i −0.224276 0.224276i
\(708\) 108.282 + 319.751i 0.152940 + 0.451625i
\(709\) −801.423 + 801.423i −1.13036 + 1.13036i −0.140240 + 0.990118i \(0.544787\pi\)
−0.990118 + 0.140240i \(0.955213\pi\)
\(710\) −129.405 + 47.2338i −0.182261 + 0.0665265i
\(711\) −304.958 282.326i −0.428914 0.397083i
\(712\) −1051.10 + 284.738i −1.47626 + 0.399913i
\(713\) 54.1504 + 54.1504i 0.0759473 + 0.0759473i
\(714\) 128.980 + 3.02622i 0.180644 + 0.00423840i
\(715\) −15.6476 374.224i −0.0218848 0.523390i
\(716\) −898.054 1066.29i −1.25427 1.48923i
\(717\) −37.2031 14.5771i −0.0518871 0.0203307i
\(718\) −51.3860 + 110.462i −0.0715683 + 0.153846i
\(719\) 931.573i 1.29565i −0.761789 0.647825i \(-0.775679\pi\)
0.761789 0.647825i \(-0.224321\pi\)
\(720\) −451.673 60.1314i −0.627324 0.0835159i
\(721\) 262.303 + 262.303i 0.363805 + 0.363805i
\(722\) 10.4826 + 28.7188i 0.0145188 + 0.0397767i
\(723\) −511.026 + 1304.22i −0.706813 + 1.80390i
\(724\) 438.410 + 520.538i 0.605538 + 0.718975i
\(725\) −164.549 −0.226964
\(726\) −157.787 165.369i −0.217338 0.227781i
\(727\) −364.106 −0.500833 −0.250417 0.968138i \(-0.580568\pi\)
−0.250417 + 0.968138i \(0.580568\pi\)
\(728\) 268.855 85.0367i 0.369307 0.116809i
\(729\) −571.477 452.609i −0.783919 0.620863i
\(730\) 161.239 + 441.741i 0.220875 + 0.605125i
\(731\) 366.337 0.501146
\(732\) −573.476 + 1160.77i −0.783437 + 1.58575i
\(733\) −857.363 857.363i −1.16966 1.16966i −0.982288 0.187375i \(-0.940002\pi\)
−0.187375 0.982288i \(-0.559998\pi\)
\(734\) −342.600 938.611i −0.466758 1.27876i
\(735\) 368.114 + 144.237i 0.500836 + 0.196241i
\(736\) −424.153 + 76.7935i −0.576295 + 0.104339i
\(737\) 740.955i 1.00537i
\(738\) 339.050 + 828.362i 0.459418 + 1.12244i
\(739\) −963.677 963.677i −1.30403 1.30403i −0.925651 0.378378i \(-0.876482\pi\)
−0.378378 0.925651i \(-0.623518\pi\)
\(740\) −19.6994 23.3897i −0.0266208 0.0316077i
\(741\) 236.109 685.626i 0.318636 0.925272i
\(742\) −221.257 + 475.623i −0.298190 + 0.641002i
\(743\) 935.304 + 935.304i 1.25882 + 1.25882i 0.951656 + 0.307165i \(0.0993803\pi\)
0.307165 + 0.951656i \(0.400620\pi\)
\(744\) −85.4231 106.394i −0.114816 0.143002i
\(745\) 327.885i 0.440114i
\(746\) −623.794 + 227.690i −0.836185 + 0.305214i
\(747\) 1128.71 43.4976i 1.51100 0.0582297i
\(748\) −24.6467 + 287.782i −0.0329502 + 0.384736i
\(749\) 179.073 + 179.073i 0.239082 + 0.239082i
\(750\) −758.979 17.8078i −1.01197 0.0237437i
\(751\) 1140.94 1.51923 0.759613 0.650376i \(-0.225389\pi\)
0.759613 + 0.650376i \(0.225389\pi\)
\(752\) 599.334 + 849.301i 0.796987 + 1.12939i
\(753\) 158.231 + 362.116i 0.210134 + 0.480898i
\(754\) 108.996 + 263.833i 0.144557 + 0.349911i
\(755\) −426.294 −0.564628
\(756\) −119.499 + 267.336i −0.158068 + 0.353619i
\(757\) −383.846 −0.507062 −0.253531 0.967327i \(-0.581592\pi\)
−0.253531 + 0.967327i \(0.581592\pi\)
\(758\) 558.701 1201.01i 0.737073 1.58444i
\(759\) 342.590 + 134.236i 0.451370 + 0.176858i
\(760\) 408.265 + 234.219i 0.537191 + 0.308183i
\(761\) 4.79917 + 4.79917i 0.00630639 + 0.00630639i 0.710253 0.703947i \(-0.248581\pi\)
−0.703947 + 0.710253i \(0.748581\pi\)
\(762\) 407.010 388.348i 0.534133 0.509643i
\(763\) 377.578i 0.494860i
\(764\) −1114.35 + 938.534i −1.45857 + 1.22845i
\(765\) 8.69718 + 225.682i 0.0113689 + 0.295009i
\(766\) −259.385 120.664i −0.338623 0.157525i
\(767\) 247.574 269.181i 0.322782 0.350953i
\(768\) 766.107 53.8827i 0.997536 0.0701598i
\(769\) 7.46155 + 7.46155i 0.00970292 + 0.00970292i 0.711942 0.702239i \(-0.247816\pi\)
−0.702239 + 0.711942i \(0.747816\pi\)
\(770\) 65.8994 141.660i 0.0855836 0.183974i
\(771\) 398.821 174.269i 0.517277 0.226030i
\(772\) 13.3083 155.391i 0.0172387 0.201284i
\(773\) 566.815 566.815i 0.733267 0.733267i −0.237999 0.971266i \(-0.576491\pi\)
0.971266 + 0.237999i \(0.0764914\pi\)
\(774\) −321.418 + 766.848i −0.415269 + 0.990760i
\(775\) −60.2487 60.2487i −0.0777402 0.0777402i
\(776\) −464.047 + 125.708i −0.597999 + 0.161995i
\(777\) −18.0081 + 7.86886i −0.0231765 + 0.0101272i
\(778\) −857.217 + 312.891i −1.10182 + 0.402173i
\(779\) 924.570i 1.18687i
\(780\) 177.727 + 460.525i 0.227855 + 0.590417i
\(781\) −198.196 −0.253772
\(782\) 73.2570 + 200.700i 0.0936790 + 0.256650i
\(783\) −279.969 97.4385i −0.357559 0.124442i
\(784\) −656.671 113.311i −0.837590 0.144529i
\(785\) −390.437 + 390.437i −0.497372 + 0.497372i
\(786\) −245.193 + 233.951i −0.311951 + 0.297648i
\(787\) −322.116 322.116i −0.409296 0.409296i 0.472197 0.881493i \(-0.343461\pi\)
−0.881493 + 0.472197i \(0.843461\pi\)
\(788\) 84.4095 985.590i 0.107119 1.25075i
\(789\) 202.189 88.3488i 0.256260 0.111976i
\(790\) −264.960 123.258i −0.335392 0.156022i
\(791\) −164.361 + 164.361i −0.207789 + 0.207789i
\(792\) −580.785 304.088i −0.733314 0.383949i
\(793\) 1401.37 58.5964i 1.76718 0.0738920i
\(794\) 359.041 771.810i 0.452192 0.972052i
\(795\) −855.001 335.012i −1.07547 0.421398i
\(796\) −664.886 + 559.984i −0.835284 + 0.703498i
\(797\) −1338.55 −1.67949 −0.839746 0.542980i \(-0.817296\pi\)
−0.839746 + 0.542980i \(0.817296\pi\)
\(798\) 218.845 208.811i 0.274242 0.261668i
\(799\) 364.318 364.318i 0.455967 0.455967i
\(800\) 471.920 85.4417i 0.589900 0.106802i
\(801\) −1224.20 + 47.1773i −1.52834 + 0.0588980i
\(802\) 647.041 + 300.999i 0.806785 + 0.375311i
\(803\) 676.567i 0.842550i
\(804\) 313.221 + 924.926i 0.389578 + 1.15041i
\(805\) 115.569i 0.143564i
\(806\) −56.6925 + 136.509i −0.0703381 + 0.169366i
\(807\) 395.730 + 905.640i 0.490371 + 1.12223i
\(808\) −329.242 + 573.899i −0.407478 + 0.710271i
\(809\) 615.167i 0.760404i −0.924903 0.380202i \(-0.875854\pi\)
0.924903 0.380202i \(-0.124146\pi\)
\(810\) −480.047 179.804i −0.592651 0.221980i
\(811\) 322.284 322.284i 0.397391 0.397391i −0.479921 0.877312i \(-0.659335\pi\)
0.877312 + 0.479921i \(0.159335\pi\)
\(812\) −10.1609 + 118.641i −0.0125134 + 0.146110i
\(813\) −647.725 253.795i −0.796710 0.312171i
\(814\) −15.0857 41.3299i −0.0185328 0.0507738i
\(815\) 913.822 1.12125
\(816\) −90.8869 369.654i −0.111381 0.453008i
\(817\) 607.330 607.330i 0.743366 0.743366i
\(818\) −193.757 90.1346i −0.236867 0.110189i
\(819\) 316.208 25.4486i 0.386091 0.0310728i
\(820\) 405.445 + 481.397i 0.494445 + 0.587070i
\(821\) 353.910 353.910i 0.431072 0.431072i −0.457921 0.888993i \(-0.651406\pi\)
0.888993 + 0.457921i \(0.151406\pi\)
\(822\) 84.2920 + 1.97772i 0.102545 + 0.00240599i
\(823\) −155.082 −0.188435 −0.0942176 0.995552i \(-0.530035\pi\)
−0.0942176 + 0.995552i \(0.530035\pi\)
\(824\) 544.649 949.373i 0.660982 1.15215i
\(825\) −381.171 149.353i −0.462026 0.181034i
\(826\) 143.306 52.3079i 0.173494 0.0633268i
\(827\) 453.337 453.337i 0.548170 0.548170i −0.377741 0.925911i \(-0.623299\pi\)
0.925911 + 0.377741i \(0.123299\pi\)
\(828\) −484.396 22.7431i −0.585020 0.0274675i
\(829\) 277.026i 0.334169i 0.985943 + 0.167084i \(0.0534352\pi\)
−0.985943 + 0.167084i \(0.946565\pi\)
\(830\) 746.124 272.341i 0.898945 0.328122i
\(831\) 199.335 + 456.184i 0.239874 + 0.548958i
\(832\) −449.591 700.065i −0.540374 0.841425i
\(833\) 330.293i 0.396510i
\(834\) −652.101 683.437i −0.781896 0.819468i
\(835\) 328.124i 0.392962i
\(836\) 436.237 + 517.958i 0.521815 + 0.619567i
\(837\) −66.8324 138.185i −0.0798476 0.165096i
\(838\) 666.686 243.345i 0.795568 0.290388i
\(839\) 548.135 548.135i 0.653319 0.653319i −0.300471 0.953791i \(-0.597144\pi\)
0.953791 + 0.300471i \(0.0971440\pi\)
\(840\) −22.3780 + 204.690i −0.0266405 + 0.243679i
\(841\) 720.456 0.856666
\(842\) −380.382 176.951i −0.451760 0.210156i
\(843\) 54.2932 + 21.2735i 0.0644047 + 0.0252354i
\(844\) −41.5591 49.3444i −0.0492406 0.0584649i
\(845\) 345.249 408.384i 0.408579 0.483294i
\(846\) 442.974 + 1082.27i 0.523610 + 1.27927i
\(847\) −73.0366 + 73.0366i −0.0862297 + 0.0862297i
\(848\) 1525.22 + 263.181i 1.79861 + 0.310355i
\(849\) 908.722 397.076i 1.07034 0.467699i
\(850\) −81.5069 223.302i −0.0958905 0.262708i
\(851\) −23.0125 23.0125i −0.0270417 0.0270417i
\(852\) 247.406 83.7825i 0.290382 0.0983363i
\(853\) 671.485 671.485i 0.787204 0.787204i −0.193831 0.981035i \(-0.562091\pi\)
0.981035 + 0.193831i \(0.0620913\pi\)
\(854\) 530.481 + 246.776i 0.621172 + 0.288965i
\(855\) 388.564 + 359.727i 0.454461 + 0.420733i
\(856\) 371.828 648.130i 0.434378 0.757161i
\(857\) 465.906 0.543647 0.271824 0.962347i \(-0.412373\pi\)
0.271824 + 0.962347i \(0.412373\pi\)
\(858\) 13.0179 + 710.088i 0.0151724 + 0.827609i
\(859\) 646.398i 0.752500i −0.926518 0.376250i \(-0.877213\pi\)
0.926518 0.376250i \(-0.122787\pi\)
\(860\) −49.8915 + 582.547i −0.0580133 + 0.677380i
\(861\) 370.636 161.954i 0.430472 0.188100i
\(862\) −332.750 154.793i −0.386021 0.179574i
\(863\) −80.0865 80.0865i −0.0928001 0.0928001i 0.659183 0.751983i \(-0.270902\pi\)
−0.751983 + 0.659183i \(0.770902\pi\)
\(864\) 853.534 + 134.076i 0.987886 + 0.155181i
\(865\) 106.461 106.461i 0.123076 0.123076i
\(866\) −190.044 520.658i −0.219450 0.601222i
\(867\) 621.573 271.603i 0.716923 0.313268i
\(868\) −47.1602 + 39.7195i −0.0543320 + 0.0457598i
\(869\) −297.296 297.296i −0.342112 0.342112i
\(870\) −208.392 4.88946i −0.239531 0.00562007i
\(871\) 716.143 778.646i 0.822208 0.893967i
\(872\) −1075.30 + 291.294i −1.23314 + 0.334053i
\(873\) −540.468 + 20.8282i −0.619093 + 0.0238582i
\(874\) 454.178 + 211.280i 0.519654 + 0.241740i
\(875\) 343.074i 0.392084i
\(876\) −286.003 844.552i −0.326487 0.964100i
\(877\) 492.434 + 492.434i 0.561498 + 0.561498i 0.929733 0.368235i \(-0.120038\pi\)
−0.368235 + 0.929733i \(0.620038\pi\)
\(878\) −1548.81 + 565.329i −1.76403 + 0.643883i
\(879\) 82.3747 + 32.2765i 0.0937141 + 0.0367196i
\(880\) −454.273 78.3861i −0.516219 0.0890751i
\(881\) 582.104 0.660730 0.330365 0.943853i \(-0.392828\pi\)
0.330365 + 0.943853i \(0.392828\pi\)
\(882\) −691.396 289.793i −0.783896 0.328564i
\(883\) 751.578 0.851164 0.425582 0.904920i \(-0.360069\pi\)
0.425582 + 0.904920i \(0.360069\pi\)
\(884\) −304.046 + 278.600i −0.343943 + 0.315158i
\(885\) 106.931 + 244.714i 0.120826 + 0.276513i
\(886\) 557.096 203.344i 0.628777 0.229508i
\(887\) −227.550 −0.256539 −0.128270 0.991739i \(-0.540942\pi\)
−0.128270 + 0.991739i \(0.540942\pi\)
\(888\) 36.3026 + 45.2145i 0.0408813 + 0.0509172i
\(889\) −179.759 179.759i −0.202203 0.202203i
\(890\) −809.243 + 295.380i −0.909262 + 0.331887i
\(891\) −560.097 479.826i −0.628616 0.538525i
\(892\) 104.693 1222.43i 0.117369 1.37043i
\(893\) 1207.96i 1.35270i
\(894\) 14.5833 621.551i 0.0163124 0.695247i
\(895\) −779.813 779.813i −0.871300 0.871300i
\(896\) −32.4633 345.534i −0.0362313 0.385641i
\(897\) 230.276 + 472.182i 0.256718 + 0.526401i
\(898\) 261.715 + 121.748i 0.291442 + 0.135577i
\(899\) −44.1366 44.1366i −0.0490952 0.0490952i
\(900\) 538.947 + 25.3043i 0.598830 + 0.0281159i
\(901\) 767.154i 0.851448i
\(902\) 310.488 + 850.635i 0.344222 + 0.943054i
\(903\) 349.847 + 137.079i 0.387427 + 0.151804i
\(904\) 594.883 + 341.281i 0.658057 + 0.377523i
\(905\) 380.687 + 380.687i 0.420649 + 0.420649i
\(906\) 808.099 + 18.9602i 0.891941 + 0.0209274i
\(907\) −83.6189 −0.0921929 −0.0460964 0.998937i \(-0.514678\pi\)
−0.0460964 + 0.998937i \(0.514678\pi\)
\(908\) 958.457 + 82.0858i 1.05557 + 0.0904028i
\(909\) −505.669 + 546.205i −0.556291 + 0.600886i
\(910\) 206.168 85.1735i 0.226558 0.0935973i
\(911\) −141.993 −0.155865 −0.0779323 0.996959i \(-0.524832\pi\)
−0.0779323 + 0.996959i \(0.524832\pi\)
\(912\) −763.505 462.153i −0.837177 0.506746i
\(913\) 1142.76 1.25165
\(914\) 762.684 + 354.796i 0.834447 + 0.388179i
\(915\) −373.651 + 953.615i −0.408362 + 1.04220i
\(916\) −13.8670 + 161.916i −0.0151387 + 0.176764i
\(917\) 108.292 + 108.292i 0.118093 + 0.118093i
\(918\) −6.44905 428.198i −0.00702511 0.466447i
\(919\) 31.4087i 0.0341771i −0.999854 0.0170885i \(-0.994560\pi\)
0.999854 0.0170885i \(-0.00543972\pi\)
\(920\) −329.128 + 89.1594i −0.357748 + 0.0969124i
\(921\) 1303.71 + 510.828i 1.41554 + 0.554645i
\(922\) 362.708 779.693i 0.393393 0.845654i
\(923\) −208.278 191.559i −0.225653 0.207539i
\(924\) −131.222 + 265.605i −0.142015 + 0.287452i
\(925\) 25.6041 + 25.6041i 0.0276801 + 0.0276801i
\(926\) 361.688 + 168.255i 0.390592 + 0.181701i
\(927\) 836.503 903.560i 0.902376 0.974714i
\(928\) 345.716 62.5923i 0.372539 0.0674487i
\(929\) 1062.36 1062.36i 1.14355 1.14355i 0.155755 0.987796i \(-0.450219\pi\)
0.987796 0.155755i \(-0.0497811\pi\)
\(930\) −74.5114 78.0919i −0.0801198 0.0839698i
\(931\) 547.573 + 547.573i 0.588156 + 0.588156i
\(932\) 389.802 328.301i 0.418243 0.352254i
\(933\) −349.844 800.629i −0.374967 0.858123i
\(934\) 374.791 + 1026.80i 0.401275 + 1.09936i
\(935\) 228.490i 0.244375i
\(936\) −316.423 880.893i −0.338059 0.941125i
\(937\) −1441.85 −1.53879 −0.769395 0.638773i \(-0.779442\pi\)
−0.769395 + 0.638773i \(0.779442\pi\)
\(938\) 414.535 151.308i 0.441935 0.161310i
\(939\) −941.552 + 411.422i −1.00272 + 0.438149i
\(940\) 529.719 + 628.951i 0.563531 + 0.669097i
\(941\) −203.881 + 203.881i −0.216664 + 0.216664i −0.807091 0.590427i \(-0.798959\pi\)
0.590427 + 0.807091i \(0.298959\pi\)
\(942\) 757.492 722.761i 0.804131 0.767262i
\(943\) 473.634 + 473.634i 0.502263 + 0.502263i
\(944\) −259.525 367.766i −0.274921 0.389583i
\(945\) −76.1418 + 218.777i −0.0805734 + 0.231510i
\(946\) −354.811 + 762.716i −0.375064 + 0.806254i
\(947\) −280.005 + 280.005i −0.295676 + 0.295676i −0.839318 0.543641i \(-0.817045\pi\)
0.543641 + 0.839318i \(0.317045\pi\)
\(948\) 496.786 + 245.436i 0.524036 + 0.258899i
\(949\) −653.912 + 710.983i −0.689054 + 0.749192i
\(950\) −505.326 235.074i −0.531922 0.247446i
\(951\) −617.590 + 1576.18i −0.649411 + 1.65740i
\(952\) −166.036 + 44.9784i −0.174407 + 0.0472462i
\(953\) −1500.26 −1.57425 −0.787123 0.616796i \(-0.788430\pi\)
−0.787123 + 0.616796i \(0.788430\pi\)
\(954\) 1605.87 + 673.088i 1.68330 + 0.705543i
\(955\) −814.964 + 814.964i −0.853365 + 0.853365i
\(956\) 53.0817 + 4.54611i 0.0555248 + 0.00475534i
\(957\) −279.236 109.412i −0.291783 0.114328i
\(958\) −133.481 + 286.937i −0.139333 + 0.299517i
\(959\) 38.1017i 0.0397306i
\(960\) 600.199 94.1845i 0.625208 0.0981088i
\(961\) 928.679i 0.966368i
\(962\) 24.0928 58.0128i 0.0250445 0.0603044i
\(963\) 571.074 616.854i 0.593016 0.640554i
\(964\) 159.371 1860.87i 0.165323 1.93036i
\(965\) 123.376i 0.127851i
\(966\) −5.14016 + 219.077i −0.00532108 + 0.226788i
\(967\) −302.480 + 302.480i −0.312803 + 0.312803i −0.845994 0.533192i \(-0.820992\pi\)
0.533192 + 0.845994i \(0.320992\pi\)
\(968\) 264.346 + 151.654i 0.273085 + 0.156667i
\(969\) −161.383 + 411.875i −0.166546 + 0.425052i
\(970\) −357.271 + 130.406i −0.368320 + 0.134440i
\(971\) −1484.57 −1.52891 −0.764453 0.644679i \(-0.776991\pi\)
−0.764453 + 0.644679i \(0.776991\pi\)
\(972\) 901.998 + 362.194i 0.927981 + 0.372627i
\(973\) −301.845 + 301.845i −0.310221 + 0.310221i
\(974\) −177.795 + 382.197i −0.182541 + 0.392399i
\(975\) −256.209 525.357i −0.262779 0.538828i
\(976\) 293.535 1701.13i 0.300753 1.74296i
\(977\) −680.203 + 680.203i −0.696216 + 0.696216i −0.963592 0.267376i \(-0.913843\pi\)
0.267376 + 0.963592i \(0.413843\pi\)
\(978\) −1732.27 40.6440i −1.77124 0.0415582i
\(979\) −1239.43 −1.26602
\(980\) −525.229 44.9825i −0.535948 0.0459005i
\(981\) −1252.39 + 48.2636i −1.27664 + 0.0491983i
\(982\) −296.154 811.363i −0.301582 0.826236i
\(983\) 178.438 178.438i 0.181524 0.181524i −0.610496 0.792019i \(-0.709030\pi\)
0.792019 + 0.610496i \(0.209030\pi\)
\(984\) −747.165 930.587i −0.759314 0.945718i
\(985\) 782.528i 0.794444i
\(986\) −59.7099 163.585i −0.0605577 0.165908i
\(987\) 484.241 211.595i 0.490619 0.214382i
\(988\) −42.1859 + 965.935i −0.0426983 + 0.977667i
\(989\) 622.240i 0.629160i
\(990\) −478.295 200.473i −0.483126 0.202498i
\(991\) 1209.46i 1.22045i 0.792230 + 0.610223i \(0.208920\pi\)
−0.792230 + 0.610223i \(0.791080\pi\)
\(992\) 149.500 + 103.664i 0.150705 + 0.104500i
\(993\) −598.556 + 1527.61i −0.602775 + 1.53838i
\(994\) −40.4730 110.883i −0.0407173 0.111552i
\(995\) −486.255 + 486.255i −0.488698 + 0.488698i
\(996\) −1426.49 + 483.074i −1.43222 + 0.485014i
\(997\) −901.595 −0.904308 −0.452154 0.891940i \(-0.649344\pi\)
−0.452154 + 0.891940i \(0.649344\pi\)
\(998\) −297.936 + 640.455i −0.298533 + 0.641739i
\(999\) 28.4020 + 58.7252i 0.0284304 + 0.0587839i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.3.l.c.47.43 yes 96
3.2 odd 2 inner 156.3.l.c.47.6 96
4.3 odd 2 inner 156.3.l.c.47.30 yes 96
12.11 even 2 inner 156.3.l.c.47.19 yes 96
13.5 odd 4 inner 156.3.l.c.83.19 yes 96
39.5 even 4 inner 156.3.l.c.83.30 yes 96
52.31 even 4 inner 156.3.l.c.83.6 yes 96
156.83 odd 4 inner 156.3.l.c.83.43 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.3.l.c.47.6 96 3.2 odd 2 inner
156.3.l.c.47.19 yes 96 12.11 even 2 inner
156.3.l.c.47.30 yes 96 4.3 odd 2 inner
156.3.l.c.47.43 yes 96 1.1 even 1 trivial
156.3.l.c.83.6 yes 96 52.31 even 4 inner
156.3.l.c.83.19 yes 96 13.5 odd 4 inner
156.3.l.c.83.30 yes 96 39.5 even 4 inner
156.3.l.c.83.43 yes 96 156.83 odd 4 inner