Properties

Label 1530.2.u.c.557.9
Level $1530$
Weight $2$
Character 1530.557
Analytic conductor $12.217$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1530,2,Mod(557,1530)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1530.557"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1530, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.u (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2171115093\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 557.9
Character \(\chi\) \(=\) 1530.557
Dual form 1530.2.u.c.1313.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(-0.0740013 - 2.23484i) q^{5} -0.956061 q^{7} +(0.707107 - 0.707107i) q^{8} +(-1.52795 + 1.63260i) q^{10} +(-1.88313 - 1.88313i) q^{11} +(-1.95234 + 1.95234i) q^{13} +(0.676037 + 0.676037i) q^{14} -1.00000 q^{16} +(4.03560 - 0.844925i) q^{17} -1.26720 q^{19} +(2.23484 - 0.0740013i) q^{20} +2.66314i q^{22} -6.61248 q^{23} +(-4.98905 + 0.330763i) q^{25} +2.76103 q^{26} -0.956061i q^{28} +(2.53934 + 2.53934i) q^{29} +(-2.95950 - 2.95950i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-3.45106 - 2.25615i) q^{34} +(0.0707497 + 2.13665i) q^{35} +7.53711i q^{37} +(0.896042 + 0.896042i) q^{38} +(-1.63260 - 1.52795i) q^{40} +(1.63281 + 1.63281i) q^{41} +(1.45685 + 1.45685i) q^{43} +(1.88313 - 1.88313i) q^{44} +(4.67573 + 4.67573i) q^{46} +(4.83539 - 4.83539i) q^{47} -6.08595 q^{49} +(3.76167 + 3.29390i) q^{50} +(-1.95234 - 1.95234i) q^{52} +(-7.57312 + 7.57312i) q^{53} +(-4.06914 + 4.34785i) q^{55} +(-0.676037 + 0.676037i) q^{56} -3.59117i q^{58} -2.87844i q^{59} +(-5.15140 + 5.15140i) q^{61} +4.18537i q^{62} -1.00000i q^{64} +(4.50765 + 4.21870i) q^{65} +(2.85608 + 2.85608i) q^{67} +(0.844925 + 4.03560i) q^{68} +(1.46081 - 1.56086i) q^{70} +(2.91575 - 2.91575i) q^{71} +4.43701 q^{73} +(5.32954 - 5.32954i) q^{74} -1.26720i q^{76} +(1.80038 + 1.80038i) q^{77} +(-5.16067 - 5.16067i) q^{79} +(0.0740013 + 2.23484i) q^{80} -2.30914i q^{82} +(-2.66034 + 2.66034i) q^{83} +(-2.18692 - 8.95642i) q^{85} -2.06030i q^{86} -2.66314 q^{88} -2.91210 q^{89} +(1.86656 - 1.86656i) q^{91} -6.61248i q^{92} -6.83827 q^{94} +(0.0937741 + 2.83198i) q^{95} +14.9887i q^{97} +(4.30342 + 4.30342i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 8 q^{10} + 8 q^{13} - 40 q^{16} + 16 q^{19} - 8 q^{31} + 32 q^{43} + 56 q^{49} + 8 q^{52} + 32 q^{55} - 64 q^{61} + 32 q^{67} + 32 q^{70} + 88 q^{79} + 72 q^{85} + 16 q^{88} + 56 q^{91} - 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1530\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(1261\) \(1361\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −0.0740013 2.23484i −0.0330944 0.999452i
\(6\) 0 0
\(7\) −0.956061 −0.361357 −0.180678 0.983542i \(-0.557829\pi\)
−0.180678 + 0.983542i \(0.557829\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −1.52795 + 1.63260i −0.483179 + 0.516273i
\(11\) −1.88313 1.88313i −0.567784 0.567784i 0.363723 0.931507i \(-0.381505\pi\)
−0.931507 + 0.363723i \(0.881505\pi\)
\(12\) 0 0
\(13\) −1.95234 + 1.95234i −0.541482 + 0.541482i −0.923963 0.382481i \(-0.875070\pi\)
0.382481 + 0.923963i \(0.375070\pi\)
\(14\) 0.676037 + 0.676037i 0.180678 + 0.180678i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 4.03560 0.844925i 0.978778 0.204924i
\(18\) 0 0
\(19\) −1.26720 −0.290715 −0.145357 0.989379i \(-0.546433\pi\)
−0.145357 + 0.989379i \(0.546433\pi\)
\(20\) 2.23484 0.0740013i 0.499726 0.0165472i
\(21\) 0 0
\(22\) 2.66314i 0.567784i
\(23\) −6.61248 −1.37880 −0.689399 0.724382i \(-0.742125\pi\)
−0.689399 + 0.724382i \(0.742125\pi\)
\(24\) 0 0
\(25\) −4.98905 + 0.330763i −0.997810 + 0.0661525i
\(26\) 2.76103 0.541482
\(27\) 0 0
\(28\) 0.956061i 0.180678i
\(29\) 2.53934 + 2.53934i 0.471543 + 0.471543i 0.902414 0.430870i \(-0.141793\pi\)
−0.430870 + 0.902414i \(0.641793\pi\)
\(30\) 0 0
\(31\) −2.95950 2.95950i −0.531542 0.531542i 0.389489 0.921031i \(-0.372652\pi\)
−0.921031 + 0.389489i \(0.872652\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) −3.45106 2.25615i −0.591851 0.386927i
\(35\) 0.0707497 + 2.13665i 0.0119589 + 0.361159i
\(36\) 0 0
\(37\) 7.53711i 1.23909i 0.784960 + 0.619546i \(0.212683\pi\)
−0.784960 + 0.619546i \(0.787317\pi\)
\(38\) 0.896042 + 0.896042i 0.145357 + 0.145357i
\(39\) 0 0
\(40\) −1.63260 1.52795i −0.258137 0.241589i
\(41\) 1.63281 + 1.63281i 0.255002 + 0.255002i 0.823018 0.568016i \(-0.192289\pi\)
−0.568016 + 0.823018i \(0.692289\pi\)
\(42\) 0 0
\(43\) 1.45685 + 1.45685i 0.222168 + 0.222168i 0.809411 0.587243i \(-0.199787\pi\)
−0.587243 + 0.809411i \(0.699787\pi\)
\(44\) 1.88313 1.88313i 0.283892 0.283892i
\(45\) 0 0
\(46\) 4.67573 + 4.67573i 0.689399 + 0.689399i
\(47\) 4.83539 4.83539i 0.705314 0.705314i −0.260232 0.965546i \(-0.583799\pi\)
0.965546 + 0.260232i \(0.0837991\pi\)
\(48\) 0 0
\(49\) −6.08595 −0.869421
\(50\) 3.76167 + 3.29390i 0.531981 + 0.465828i
\(51\) 0 0
\(52\) −1.95234 1.95234i −0.270741 0.270741i
\(53\) −7.57312 + 7.57312i −1.04025 + 1.04025i −0.0410932 + 0.999155i \(0.513084\pi\)
−0.999155 + 0.0410932i \(0.986916\pi\)
\(54\) 0 0
\(55\) −4.06914 + 4.34785i −0.548682 + 0.586263i
\(56\) −0.676037 + 0.676037i −0.0903392 + 0.0903392i
\(57\) 0 0
\(58\) 3.59117i 0.471543i
\(59\) 2.87844i 0.374741i −0.982289 0.187370i \(-0.940004\pi\)
0.982289 0.187370i \(-0.0599964\pi\)
\(60\) 0 0
\(61\) −5.15140 + 5.15140i −0.659569 + 0.659569i −0.955278 0.295709i \(-0.904444\pi\)
0.295709 + 0.955278i \(0.404444\pi\)
\(62\) 4.18537i 0.531542i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 4.50765 + 4.21870i 0.559105 + 0.523265i
\(66\) 0 0
\(67\) 2.85608 + 2.85608i 0.348925 + 0.348925i 0.859709 0.510784i \(-0.170645\pi\)
−0.510784 + 0.859709i \(0.670645\pi\)
\(68\) 0.844925 + 4.03560i 0.102462 + 0.489389i
\(69\) 0 0
\(70\) 1.46081 1.56086i 0.174600 0.186559i
\(71\) 2.91575 2.91575i 0.346036 0.346036i −0.512595 0.858631i \(-0.671316\pi\)
0.858631 + 0.512595i \(0.171316\pi\)
\(72\) 0 0
\(73\) 4.43701 0.519312 0.259656 0.965701i \(-0.416391\pi\)
0.259656 + 0.965701i \(0.416391\pi\)
\(74\) 5.32954 5.32954i 0.619546 0.619546i
\(75\) 0 0
\(76\) 1.26720i 0.145357i
\(77\) 1.80038 + 1.80038i 0.205173 + 0.205173i
\(78\) 0 0
\(79\) −5.16067 5.16067i −0.580621 0.580621i 0.354453 0.935074i \(-0.384667\pi\)
−0.935074 + 0.354453i \(0.884667\pi\)
\(80\) 0.0740013 + 2.23484i 0.00827360 + 0.249863i
\(81\) 0 0
\(82\) 2.30914i 0.255002i
\(83\) −2.66034 + 2.66034i −0.292010 + 0.292010i −0.837874 0.545864i \(-0.816202\pi\)
0.545864 + 0.837874i \(0.316202\pi\)
\(84\) 0 0
\(85\) −2.18692 8.95642i −0.237204 0.971460i
\(86\) 2.06030i 0.222168i
\(87\) 0 0
\(88\) −2.66314 −0.283892
\(89\) −2.91210 −0.308682 −0.154341 0.988018i \(-0.549325\pi\)
−0.154341 + 0.988018i \(0.549325\pi\)
\(90\) 0 0
\(91\) 1.86656 1.86656i 0.195668 0.195668i
\(92\) 6.61248i 0.689399i
\(93\) 0 0
\(94\) −6.83827 −0.705314
\(95\) 0.0937741 + 2.83198i 0.00962102 + 0.290555i
\(96\) 0 0
\(97\) 14.9887i 1.52188i 0.648824 + 0.760938i \(0.275261\pi\)
−0.648824 + 0.760938i \(0.724739\pi\)
\(98\) 4.30342 + 4.30342i 0.434711 + 0.434711i
\(99\) 0 0
\(100\) −0.330763 4.98905i −0.0330763 0.498905i
\(101\) 3.68376i 0.366548i 0.983062 + 0.183274i \(0.0586695\pi\)
−0.983062 + 0.183274i \(0.941330\pi\)
\(102\) 0 0
\(103\) −12.0782 + 12.0782i −1.19010 + 1.19010i −0.213055 + 0.977040i \(0.568341\pi\)
−0.977040 + 0.213055i \(0.931659\pi\)
\(104\) 2.76103i 0.270741i
\(105\) 0 0
\(106\) 10.7100 1.04025
\(107\) 4.49366 0.434418 0.217209 0.976125i \(-0.430305\pi\)
0.217209 + 0.976125i \(0.430305\pi\)
\(108\) 0 0
\(109\) −1.54296 1.54296i −0.147789 0.147789i 0.629341 0.777129i \(-0.283325\pi\)
−0.777129 + 0.629341i \(0.783325\pi\)
\(110\) 5.95171 0.197076i 0.567473 0.0187905i
\(111\) 0 0
\(112\) 0.956061 0.0903392
\(113\) −16.3843 −1.54131 −0.770654 0.637254i \(-0.780070\pi\)
−0.770654 + 0.637254i \(0.780070\pi\)
\(114\) 0 0
\(115\) 0.489332 + 14.7779i 0.0456305 + 1.37804i
\(116\) −2.53934 + 2.53934i −0.235772 + 0.235772i
\(117\) 0 0
\(118\) −2.03536 + 2.03536i −0.187370 + 0.187370i
\(119\) −3.85828 + 0.807800i −0.353688 + 0.0740509i
\(120\) 0 0
\(121\) 3.90767i 0.355243i
\(122\) 7.28518 0.659569
\(123\) 0 0
\(124\) 2.95950 2.95950i 0.265771 0.265771i
\(125\) 1.10840 + 11.1253i 0.0991382 + 0.995074i
\(126\) 0 0
\(127\) −1.97773 + 1.97773i −0.175495 + 0.175495i −0.789389 0.613893i \(-0.789602\pi\)
0.613893 + 0.789389i \(0.289602\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) −0.204320 6.17046i −0.0179200 0.541185i
\(131\) 1.23324 1.23324i 0.107749 0.107749i −0.651177 0.758926i \(-0.725724\pi\)
0.758926 + 0.651177i \(0.225724\pi\)
\(132\) 0 0
\(133\) 1.21152 0.105052
\(134\) 4.03910i 0.348925i
\(135\) 0 0
\(136\) 2.25615 3.45106i 0.193463 0.295926i
\(137\) −12.2948 + 12.2948i −1.05041 + 1.05041i −0.0517532 + 0.998660i \(0.516481\pi\)
−0.998660 + 0.0517532i \(0.983519\pi\)
\(138\) 0 0
\(139\) 5.63321 5.63321i 0.477803 0.477803i −0.426626 0.904428i \(-0.640298\pi\)
0.904428 + 0.426626i \(0.140298\pi\)
\(140\) −2.13665 + 0.0707497i −0.180579 + 0.00597944i
\(141\) 0 0
\(142\) −4.12349 −0.346036
\(143\) 7.35301 0.614890
\(144\) 0 0
\(145\) 5.48711 5.86294i 0.455680 0.486891i
\(146\) −3.13744 3.13744i −0.259656 0.259656i
\(147\) 0 0
\(148\) −7.53711 −0.619546
\(149\) −14.6670 −1.20156 −0.600782 0.799413i \(-0.705144\pi\)
−0.600782 + 0.799413i \(0.705144\pi\)
\(150\) 0 0
\(151\) 18.0770i 1.47109i 0.677478 + 0.735543i \(0.263073\pi\)
−0.677478 + 0.735543i \(0.736927\pi\)
\(152\) −0.896042 + 0.896042i −0.0726786 + 0.0726786i
\(153\) 0 0
\(154\) 2.54613i 0.205173i
\(155\) −6.39502 + 6.83303i −0.513660 + 0.548842i
\(156\) 0 0
\(157\) 4.02970 + 4.02970i 0.321605 + 0.321605i 0.849383 0.527778i \(-0.176975\pi\)
−0.527778 + 0.849383i \(0.676975\pi\)
\(158\) 7.29829i 0.580621i
\(159\) 0 0
\(160\) 1.52795 1.63260i 0.120795 0.129068i
\(161\) 6.32193 0.498238
\(162\) 0 0
\(163\) 7.12731i 0.558254i 0.960254 + 0.279127i \(0.0900450\pi\)
−0.960254 + 0.279127i \(0.909955\pi\)
\(164\) −1.63281 + 1.63281i −0.127501 + 0.127501i
\(165\) 0 0
\(166\) 3.76229 0.292010
\(167\) 4.05445 0.313743 0.156872 0.987619i \(-0.449859\pi\)
0.156872 + 0.987619i \(0.449859\pi\)
\(168\) 0 0
\(169\) 5.37673i 0.413595i
\(170\) −4.78676 + 7.87953i −0.367128 + 0.604332i
\(171\) 0 0
\(172\) −1.45685 + 1.45685i −0.111084 + 0.111084i
\(173\) 13.2079i 1.00417i −0.864817 0.502087i \(-0.832566\pi\)
0.864817 0.502087i \(-0.167434\pi\)
\(174\) 0 0
\(175\) 4.76983 0.316229i 0.360565 0.0239047i
\(176\) 1.88313 + 1.88313i 0.141946 + 0.141946i
\(177\) 0 0
\(178\) 2.05917 + 2.05917i 0.154341 + 0.154341i
\(179\) 17.4142i 1.30160i −0.759248 0.650801i \(-0.774433\pi\)
0.759248 0.650801i \(-0.225567\pi\)
\(180\) 0 0
\(181\) 7.71442 7.71442i 0.573408 0.573408i −0.359671 0.933079i \(-0.617111\pi\)
0.933079 + 0.359671i \(0.117111\pi\)
\(182\) −2.63971 −0.195668
\(183\) 0 0
\(184\) −4.67573 + 4.67573i −0.344699 + 0.344699i
\(185\) 16.8442 0.557756i 1.23841 0.0410070i
\(186\) 0 0
\(187\) −9.19065 6.00845i −0.672087 0.439382i
\(188\) 4.83539 + 4.83539i 0.352657 + 0.352657i
\(189\) 0 0
\(190\) 1.93621 2.06882i 0.140467 0.150088i
\(191\) 26.7181i 1.93325i −0.256187 0.966627i \(-0.582466\pi\)
0.256187 0.966627i \(-0.417534\pi\)
\(192\) 0 0
\(193\) 9.03047i 0.650027i 0.945709 + 0.325014i \(0.105369\pi\)
−0.945709 + 0.325014i \(0.894631\pi\)
\(194\) 10.5986 10.5986i 0.760938 0.760938i
\(195\) 0 0
\(196\) 6.08595i 0.434711i
\(197\) 8.00413i 0.570270i 0.958487 + 0.285135i \(0.0920385\pi\)
−0.958487 + 0.285135i \(0.907962\pi\)
\(198\) 0 0
\(199\) 3.51012 3.51012i 0.248826 0.248826i −0.571663 0.820489i \(-0.693702\pi\)
0.820489 + 0.571663i \(0.193702\pi\)
\(200\) −3.29390 + 3.76167i −0.232914 + 0.265991i
\(201\) 0 0
\(202\) 2.60481 2.60481i 0.183274 0.183274i
\(203\) −2.42776 2.42776i −0.170395 0.170395i
\(204\) 0 0
\(205\) 3.52824 3.76990i 0.246423 0.263301i
\(206\) 17.0811 1.19010
\(207\) 0 0
\(208\) 1.95234 1.95234i 0.135370 0.135370i
\(209\) 2.38629 + 2.38629i 0.165063 + 0.165063i
\(210\) 0 0
\(211\) 11.3150 11.3150i 0.778953 0.778953i −0.200699 0.979653i \(-0.564321\pi\)
0.979653 + 0.200699i \(0.0643215\pi\)
\(212\) −7.57312 7.57312i −0.520124 0.520124i
\(213\) 0 0
\(214\) −3.17750 3.17750i −0.217209 0.217209i
\(215\) 3.14803 3.36365i 0.214694 0.229399i
\(216\) 0 0
\(217\) 2.82946 + 2.82946i 0.192077 + 0.192077i
\(218\) 2.18207i 0.147789i
\(219\) 0 0
\(220\) −4.34785 4.06914i −0.293132 0.274341i
\(221\) −6.22929 + 9.52846i −0.419028 + 0.640953i
\(222\) 0 0
\(223\) 19.5450 + 19.5450i 1.30883 + 1.30883i 0.922259 + 0.386573i \(0.126341\pi\)
0.386573 + 0.922259i \(0.373659\pi\)
\(224\) −0.676037 0.676037i −0.0451696 0.0451696i
\(225\) 0 0
\(226\) 11.5855 + 11.5855i 0.770654 + 0.770654i
\(227\) 25.5978i 1.69898i −0.527603 0.849491i \(-0.676909\pi\)
0.527603 0.849491i \(-0.323091\pi\)
\(228\) 0 0
\(229\) −10.2022 −0.674182 −0.337091 0.941472i \(-0.609443\pi\)
−0.337091 + 0.941472i \(0.609443\pi\)
\(230\) 10.1035 10.7955i 0.666206 0.711836i
\(231\) 0 0
\(232\) 3.59117 0.235772
\(233\) 19.5475i 1.28060i 0.768126 + 0.640298i \(0.221189\pi\)
−0.768126 + 0.640298i \(0.778811\pi\)
\(234\) 0 0
\(235\) −11.1642 10.4485i −0.728269 0.681585i
\(236\) 2.87844 0.187370
\(237\) 0 0
\(238\) 3.29942 + 2.15702i 0.213870 + 0.139819i
\(239\) −25.0580 −1.62087 −0.810433 0.585831i \(-0.800768\pi\)
−0.810433 + 0.585831i \(0.800768\pi\)
\(240\) 0 0
\(241\) −9.79340 9.79340i −0.630849 0.630849i 0.317432 0.948281i \(-0.397179\pi\)
−0.948281 + 0.317432i \(0.897179\pi\)
\(242\) −2.76314 + 2.76314i −0.177621 + 0.177621i
\(243\) 0 0
\(244\) −5.15140 5.15140i −0.329785 0.329785i
\(245\) 0.450368 + 13.6011i 0.0287730 + 0.868945i
\(246\) 0 0
\(247\) 2.47400 2.47400i 0.157417 0.157417i
\(248\) −4.18537 −0.265771
\(249\) 0 0
\(250\) 7.08299 8.65050i 0.447968 0.547106i
\(251\) 19.2063i 1.21229i 0.795353 + 0.606146i \(0.207285\pi\)
−0.795353 + 0.606146i \(0.792715\pi\)
\(252\) 0 0
\(253\) 12.4521 + 12.4521i 0.782859 + 0.782859i
\(254\) 2.79694 0.175495
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −16.5016 16.5016i −1.02934 1.02934i −0.999556 0.0297879i \(-0.990517\pi\)
−0.0297879 0.999556i \(-0.509483\pi\)
\(258\) 0 0
\(259\) 7.20593i 0.447755i
\(260\) −4.21870 + 4.50765i −0.261633 + 0.279553i
\(261\) 0 0
\(262\) −1.74407 −0.107749
\(263\) −10.0571 + 10.0571i −0.620148 + 0.620148i −0.945569 0.325421i \(-0.894494\pi\)
0.325421 + 0.945569i \(0.394494\pi\)
\(264\) 0 0
\(265\) 17.4852 + 16.3643i 1.07411 + 1.00525i
\(266\) −0.856671 0.856671i −0.0525259 0.0525259i
\(267\) 0 0
\(268\) −2.85608 + 2.85608i −0.174463 + 0.174463i
\(269\) −3.25560 3.25560i −0.198498 0.198498i 0.600858 0.799356i \(-0.294826\pi\)
−0.799356 + 0.600858i \(0.794826\pi\)
\(270\) 0 0
\(271\) −3.46198 −0.210300 −0.105150 0.994456i \(-0.533532\pi\)
−0.105150 + 0.994456i \(0.533532\pi\)
\(272\) −4.03560 + 0.844925i −0.244694 + 0.0512311i
\(273\) 0 0
\(274\) 17.3874 1.05041
\(275\) 10.0179 + 8.77214i 0.604101 + 0.528980i
\(276\) 0 0
\(277\) 10.6782i 0.641588i −0.947149 0.320794i \(-0.896050\pi\)
0.947149 0.320794i \(-0.103950\pi\)
\(278\) −7.96656 −0.477803
\(279\) 0 0
\(280\) 1.56086 + 1.46081i 0.0932795 + 0.0873000i
\(281\) 4.95486 0.295582 0.147791 0.989019i \(-0.452784\pi\)
0.147791 + 0.989019i \(0.452784\pi\)
\(282\) 0 0
\(283\) 27.6017i 1.64075i −0.571826 0.820375i \(-0.693765\pi\)
0.571826 0.820375i \(-0.306235\pi\)
\(284\) 2.91575 + 2.91575i 0.173018 + 0.173018i
\(285\) 0 0
\(286\) −5.19936 5.19936i −0.307445 0.307445i
\(287\) −1.56106 1.56106i −0.0921466 0.0921466i
\(288\) 0 0
\(289\) 15.5722 6.81957i 0.916012 0.401151i
\(290\) −8.02570 + 0.265751i −0.471285 + 0.0156054i
\(291\) 0 0
\(292\) 4.43701i 0.259656i
\(293\) −15.7217 15.7217i −0.918469 0.918469i 0.0784487 0.996918i \(-0.475003\pi\)
−0.996918 + 0.0784487i \(0.975003\pi\)
\(294\) 0 0
\(295\) −6.43285 + 0.213008i −0.374535 + 0.0124018i
\(296\) 5.32954 + 5.32954i 0.309773 + 0.309773i
\(297\) 0 0
\(298\) 10.3711 + 10.3711i 0.600782 + 0.600782i
\(299\) 12.9098 12.9098i 0.746594 0.746594i
\(300\) 0 0
\(301\) −1.39284 1.39284i −0.0802819 0.0802819i
\(302\) 12.7824 12.7824i 0.735543 0.735543i
\(303\) 0 0
\(304\) 1.26720 0.0726786
\(305\) 11.8938 + 11.1314i 0.681036 + 0.637380i
\(306\) 0 0
\(307\) −5.01961 5.01961i −0.286484 0.286484i 0.549204 0.835688i \(-0.314931\pi\)
−0.835688 + 0.549204i \(0.814931\pi\)
\(308\) −1.80038 + 1.80038i −0.102586 + 0.102586i
\(309\) 0 0
\(310\) 9.35364 0.309723i 0.531251 0.0175911i
\(311\) −5.94482 + 5.94482i −0.337100 + 0.337100i −0.855275 0.518175i \(-0.826612\pi\)
0.518175 + 0.855275i \(0.326612\pi\)
\(312\) 0 0
\(313\) 12.2937i 0.694880i −0.937702 0.347440i \(-0.887051\pi\)
0.937702 0.347440i \(-0.112949\pi\)
\(314\) 5.69886i 0.321605i
\(315\) 0 0
\(316\) 5.16067 5.16067i 0.290310 0.290310i
\(317\) 5.79422i 0.325436i −0.986673 0.162718i \(-0.947974\pi\)
0.986673 0.162718i \(-0.0520261\pi\)
\(318\) 0 0
\(319\) 9.56379i 0.535470i
\(320\) −2.23484 + 0.0740013i −0.124932 + 0.00413680i
\(321\) 0 0
\(322\) −4.47028 4.47028i −0.249119 0.249119i
\(323\) −5.11390 + 1.07069i −0.284545 + 0.0595745i
\(324\) 0 0
\(325\) 9.09456 10.3861i 0.504475 0.576116i
\(326\) 5.03977 5.03977i 0.279127 0.279127i
\(327\) 0 0
\(328\) 2.30914 0.127501
\(329\) −4.62292 + 4.62292i −0.254870 + 0.254870i
\(330\) 0 0
\(331\) 13.6433i 0.749902i −0.927045 0.374951i \(-0.877659\pi\)
0.927045 0.374951i \(-0.122341\pi\)
\(332\) −2.66034 2.66034i −0.146005 0.146005i
\(333\) 0 0
\(334\) −2.86693 2.86693i −0.156872 0.156872i
\(335\) 6.17153 6.59424i 0.337187 0.360282i
\(336\) 0 0
\(337\) 0.786275i 0.0428311i −0.999771 0.0214156i \(-0.993183\pi\)
0.999771 0.0214156i \(-0.00681731\pi\)
\(338\) 3.80192 3.80192i 0.206797 0.206797i
\(339\) 0 0
\(340\) 8.95642 2.18692i 0.485730 0.118602i
\(341\) 11.1462i 0.603602i
\(342\) 0 0
\(343\) 12.5110 0.675528
\(344\) 2.06030 0.111084
\(345\) 0 0
\(346\) −9.33937 + 9.33937i −0.502087 + 0.502087i
\(347\) 30.6100i 1.64323i −0.570041 0.821616i \(-0.693073\pi\)
0.570041 0.821616i \(-0.306927\pi\)
\(348\) 0 0
\(349\) 12.0908 0.647205 0.323602 0.946193i \(-0.395106\pi\)
0.323602 + 0.946193i \(0.395106\pi\)
\(350\) −3.59639 3.14917i −0.192235 0.168330i
\(351\) 0 0
\(352\) 2.66314i 0.141946i
\(353\) −6.14878 6.14878i −0.327267 0.327267i 0.524280 0.851546i \(-0.324335\pi\)
−0.851546 + 0.524280i \(0.824335\pi\)
\(354\) 0 0
\(355\) −6.73201 6.30047i −0.357298 0.334394i
\(356\) 2.91210i 0.154341i
\(357\) 0 0
\(358\) −12.3137 + 12.3137i −0.650801 + 0.650801i
\(359\) 8.52400i 0.449880i −0.974373 0.224940i \(-0.927781\pi\)
0.974373 0.224940i \(-0.0722185\pi\)
\(360\) 0 0
\(361\) −17.3942 −0.915485
\(362\) −10.9098 −0.573408
\(363\) 0 0
\(364\) 1.86656 + 1.86656i 0.0978341 + 0.0978341i
\(365\) −0.328344 9.91601i −0.0171863 0.519028i
\(366\) 0 0
\(367\) −4.69865 −0.245267 −0.122634 0.992452i \(-0.539134\pi\)
−0.122634 + 0.992452i \(0.539134\pi\)
\(368\) 6.61248 0.344699
\(369\) 0 0
\(370\) −12.3051 11.5163i −0.639710 0.598703i
\(371\) 7.24036 7.24036i 0.375901 0.375901i
\(372\) 0 0
\(373\) 6.79992 6.79992i 0.352086 0.352086i −0.508799 0.860885i \(-0.669910\pi\)
0.860885 + 0.508799i \(0.169910\pi\)
\(374\) 2.25016 + 10.7474i 0.116353 + 0.555734i
\(375\) 0 0
\(376\) 6.83827i 0.352657i
\(377\) −9.91531 −0.510665
\(378\) 0 0
\(379\) 15.4980 15.4980i 0.796077 0.796077i −0.186398 0.982474i \(-0.559681\pi\)
0.982474 + 0.186398i \(0.0596813\pi\)
\(380\) −2.83198 + 0.0937741i −0.145278 + 0.00481051i
\(381\) 0 0
\(382\) −18.8926 + 18.8926i −0.966627 + 0.966627i
\(383\) −13.0376 + 13.0376i −0.666188 + 0.666188i −0.956831 0.290643i \(-0.906131\pi\)
0.290643 + 0.956831i \(0.406131\pi\)
\(384\) 0 0
\(385\) 3.89034 4.15680i 0.198270 0.211850i
\(386\) 6.38551 6.38551i 0.325014 0.325014i
\(387\) 0 0
\(388\) −14.9887 −0.760938
\(389\) 38.6711i 1.96070i −0.197255 0.980352i \(-0.563203\pi\)
0.197255 0.980352i \(-0.436797\pi\)
\(390\) 0 0
\(391\) −26.6853 + 5.58705i −1.34954 + 0.282549i
\(392\) −4.30342 + 4.30342i −0.217355 + 0.217355i
\(393\) 0 0
\(394\) 5.65977 5.65977i 0.285135 0.285135i
\(395\) −11.1514 + 11.9152i −0.561087 + 0.599518i
\(396\) 0 0
\(397\) 14.1213 0.708726 0.354363 0.935108i \(-0.384698\pi\)
0.354363 + 0.935108i \(0.384698\pi\)
\(398\) −4.96405 −0.248826
\(399\) 0 0
\(400\) 4.98905 0.330763i 0.249452 0.0165381i
\(401\) 9.27440 + 9.27440i 0.463142 + 0.463142i 0.899684 0.436542i \(-0.143797\pi\)
−0.436542 + 0.899684i \(0.643797\pi\)
\(402\) 0 0
\(403\) 11.5559 0.575641
\(404\) −3.68376 −0.183274
\(405\) 0 0
\(406\) 3.43337i 0.170395i
\(407\) 14.1933 14.1933i 0.703537 0.703537i
\(408\) 0 0
\(409\) 11.4600i 0.566662i −0.959022 0.283331i \(-0.908560\pi\)
0.959022 0.283331i \(-0.0914395\pi\)
\(410\) −5.16056 + 0.170879i −0.254862 + 0.00843913i
\(411\) 0 0
\(412\) −12.0782 12.0782i −0.595048 0.595048i
\(413\) 2.75196i 0.135415i
\(414\) 0 0
\(415\) 6.14231 + 5.74857i 0.301514 + 0.282186i
\(416\) −2.76103 −0.135370
\(417\) 0 0
\(418\) 3.37472i 0.165063i
\(419\) 12.0537 12.0537i 0.588863 0.588863i −0.348461 0.937323i \(-0.613296\pi\)
0.937323 + 0.348461i \(0.113296\pi\)
\(420\) 0 0
\(421\) 26.9876 1.31530 0.657648 0.753326i \(-0.271552\pi\)
0.657648 + 0.753326i \(0.271552\pi\)
\(422\) −16.0018 −0.778953
\(423\) 0 0
\(424\) 10.7100i 0.520124i
\(425\) −19.8544 + 5.55020i −0.963078 + 0.269224i
\(426\) 0 0
\(427\) 4.92505 4.92505i 0.238340 0.238340i
\(428\) 4.49366i 0.217209i
\(429\) 0 0
\(430\) −4.60445 + 0.152465i −0.222046 + 0.00735251i
\(431\) 2.88276 + 2.88276i 0.138858 + 0.138858i 0.773119 0.634261i \(-0.218696\pi\)
−0.634261 + 0.773119i \(0.718696\pi\)
\(432\) 0 0
\(433\) 0.359052 + 0.359052i 0.0172549 + 0.0172549i 0.715682 0.698427i \(-0.246116\pi\)
−0.698427 + 0.715682i \(0.746116\pi\)
\(434\) 4.00147i 0.192077i
\(435\) 0 0
\(436\) 1.54296 1.54296i 0.0738944 0.0738944i
\(437\) 8.37930 0.400836
\(438\) 0 0
\(439\) −9.91117 + 9.91117i −0.473034 + 0.473034i −0.902895 0.429861i \(-0.858563\pi\)
0.429861 + 0.902895i \(0.358563\pi\)
\(440\) 0.197076 + 5.95171i 0.00939523 + 0.283736i
\(441\) 0 0
\(442\) 11.1424 2.33286i 0.529991 0.110963i
\(443\) −25.7078 25.7078i −1.22141 1.22141i −0.967130 0.254283i \(-0.918161\pi\)
−0.254283 0.967130i \(-0.581839\pi\)
\(444\) 0 0
\(445\) 0.215500 + 6.50810i 0.0102157 + 0.308513i
\(446\) 27.6408i 1.30883i
\(447\) 0 0
\(448\) 0.956061i 0.0451696i
\(449\) 17.6634 17.6634i 0.833587 0.833587i −0.154419 0.988005i \(-0.549351\pi\)
0.988005 + 0.154419i \(0.0493505\pi\)
\(450\) 0 0
\(451\) 6.14957i 0.289572i
\(452\) 16.3843i 0.770654i
\(453\) 0 0
\(454\) −18.1003 + 18.1003i −0.849491 + 0.849491i
\(455\) −4.30959 4.03333i −0.202037 0.189086i
\(456\) 0 0
\(457\) −5.77169 + 5.77169i −0.269988 + 0.269988i −0.829095 0.559107i \(-0.811144\pi\)
0.559107 + 0.829095i \(0.311144\pi\)
\(458\) 7.21406 + 7.21406i 0.337091 + 0.337091i
\(459\) 0 0
\(460\) −14.7779 + 0.489332i −0.689021 + 0.0228152i
\(461\) −20.4301 −0.951525 −0.475763 0.879574i \(-0.657828\pi\)
−0.475763 + 0.879574i \(0.657828\pi\)
\(462\) 0 0
\(463\) −29.1278 + 29.1278i −1.35369 + 1.35369i −0.472187 + 0.881498i \(0.656535\pi\)
−0.881498 + 0.472187i \(0.843465\pi\)
\(464\) −2.53934 2.53934i −0.117886 0.117886i
\(465\) 0 0
\(466\) 13.8221 13.8221i 0.640298 0.640298i
\(467\) −5.32865 5.32865i −0.246580 0.246580i 0.572985 0.819566i \(-0.305785\pi\)
−0.819566 + 0.572985i \(0.805785\pi\)
\(468\) 0 0
\(469\) −2.73058 2.73058i −0.126087 0.126087i
\(470\) 0.506041 + 15.2825i 0.0233419 + 0.704927i
\(471\) 0 0
\(472\) −2.03536 2.03536i −0.0936851 0.0936851i
\(473\) 5.48688i 0.252287i
\(474\) 0 0
\(475\) 6.32210 0.419141i 0.290078 0.0192315i
\(476\) −0.807800 3.85828i −0.0370254 0.176844i
\(477\) 0 0
\(478\) 17.7187 + 17.7187i 0.810433 + 0.810433i
\(479\) −26.9581 26.9581i −1.23174 1.23174i −0.963293 0.268452i \(-0.913488\pi\)
−0.268452 0.963293i \(-0.586512\pi\)
\(480\) 0 0
\(481\) −14.7150 14.7150i −0.670946 0.670946i
\(482\) 13.8500i 0.630849i
\(483\) 0 0
\(484\) 3.90767 0.177621
\(485\) 33.4975 1.10919i 1.52104 0.0503656i
\(486\) 0 0
\(487\) −31.1558 −1.41180 −0.705902 0.708310i \(-0.749458\pi\)
−0.705902 + 0.708310i \(0.749458\pi\)
\(488\) 7.28518i 0.329785i
\(489\) 0 0
\(490\) 9.29900 9.93592i 0.420086 0.448859i
\(491\) 7.28365 0.328707 0.164353 0.986402i \(-0.447446\pi\)
0.164353 + 0.986402i \(0.447446\pi\)
\(492\) 0 0
\(493\) 12.3933 + 8.10222i 0.558167 + 0.364905i
\(494\) −3.49876 −0.157417
\(495\) 0 0
\(496\) 2.95950 + 2.95950i 0.132886 + 0.132886i
\(497\) −2.78763 + 2.78763i −0.125042 + 0.125042i
\(498\) 0 0
\(499\) −28.8990 28.8990i −1.29370 1.29370i −0.932482 0.361215i \(-0.882362\pi\)
−0.361215 0.932482i \(-0.617638\pi\)
\(500\) −11.1253 + 1.10840i −0.497537 + 0.0495691i
\(501\) 0 0
\(502\) 13.5809 13.5809i 0.606146 0.606146i
\(503\) 22.7436 1.01409 0.507045 0.861920i \(-0.330738\pi\)
0.507045 + 0.861920i \(0.330738\pi\)
\(504\) 0 0
\(505\) 8.23263 0.272603i 0.366347 0.0121307i
\(506\) 17.6100i 0.782859i
\(507\) 0 0
\(508\) −1.97773 1.97773i −0.0877477 0.0877477i
\(509\) 16.9804 0.752644 0.376322 0.926489i \(-0.377189\pi\)
0.376322 + 0.926489i \(0.377189\pi\)
\(510\) 0 0
\(511\) −4.24205 −0.187657
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 23.3368i 1.02934i
\(515\) 27.8866 + 26.0990i 1.22883 + 1.15006i
\(516\) 0 0
\(517\) −18.2113 −0.800932
\(518\) −5.09536 + 5.09536i −0.223877 + 0.223877i
\(519\) 0 0
\(520\) 6.17046 0.204320i 0.270593 0.00896001i
\(521\) 30.8160 + 30.8160i 1.35007 + 1.35007i 0.885574 + 0.464498i \(0.153765\pi\)
0.464498 + 0.885574i \(0.346235\pi\)
\(522\) 0 0
\(523\) 6.05956 6.05956i 0.264966 0.264966i −0.562102 0.827068i \(-0.690007\pi\)
0.827068 + 0.562102i \(0.190007\pi\)
\(524\) 1.23324 + 1.23324i 0.0538745 + 0.0538745i
\(525\) 0 0
\(526\) 14.2229 0.620148
\(527\) −14.4439 9.44282i −0.629188 0.411336i
\(528\) 0 0
\(529\) 20.7249 0.901082
\(530\) −0.792555 23.9352i −0.0344264 1.03968i
\(531\) 0 0
\(532\) 1.21152i 0.0525259i
\(533\) −6.37559 −0.276158
\(534\) 0 0
\(535\) −0.332537 10.0426i −0.0143768 0.434180i
\(536\) 4.03910 0.174463
\(537\) 0 0
\(538\) 4.60412i 0.198498i
\(539\) 11.4606 + 11.4606i 0.493643 + 0.493643i
\(540\) 0 0
\(541\) 1.72774 + 1.72774i 0.0742812 + 0.0742812i 0.743271 0.668990i \(-0.233273\pi\)
−0.668990 + 0.743271i \(0.733273\pi\)
\(542\) 2.44799 + 2.44799i 0.105150 + 0.105150i
\(543\) 0 0
\(544\) 3.45106 + 2.25615i 0.147963 + 0.0967317i
\(545\) −3.33409 + 3.56245i −0.142817 + 0.152599i
\(546\) 0 0
\(547\) 21.7136i 0.928408i 0.885728 + 0.464204i \(0.153659\pi\)
−0.885728 + 0.464204i \(0.846341\pi\)
\(548\) −12.2948 12.2948i −0.525207 0.525207i
\(549\) 0 0
\(550\) −0.880868 13.2865i −0.0375603 0.566540i
\(551\) −3.21784 3.21784i −0.137085 0.137085i
\(552\) 0 0
\(553\) 4.93391 + 4.93391i 0.209811 + 0.209811i
\(554\) −7.55059 + 7.55059i −0.320794 + 0.320794i
\(555\) 0 0
\(556\) 5.63321 + 5.63321i 0.238901 + 0.238901i
\(557\) −12.4890 + 12.4890i −0.529177 + 0.529177i −0.920327 0.391150i \(-0.872077\pi\)
0.391150 + 0.920327i \(0.372077\pi\)
\(558\) 0 0
\(559\) −5.68855 −0.240600
\(560\) −0.0707497 2.13665i −0.00298972 0.0902897i
\(561\) 0 0
\(562\) −3.50362 3.50362i −0.147791 0.147791i
\(563\) −20.4018 + 20.4018i −0.859832 + 0.859832i −0.991318 0.131486i \(-0.958025\pi\)
0.131486 + 0.991318i \(0.458025\pi\)
\(564\) 0 0
\(565\) 1.21246 + 36.6164i 0.0510087 + 1.54046i
\(566\) −19.5173 + 19.5173i −0.820375 + 0.820375i
\(567\) 0 0
\(568\) 4.12349i 0.173018i
\(569\) 33.6842i 1.41212i 0.708154 + 0.706058i \(0.249528\pi\)
−0.708154 + 0.706058i \(0.750472\pi\)
\(570\) 0 0
\(571\) −18.3652 + 18.3652i −0.768559 + 0.768559i −0.977853 0.209294i \(-0.932884\pi\)
0.209294 + 0.977853i \(0.432884\pi\)
\(572\) 7.35301i 0.307445i
\(573\) 0 0
\(574\) 2.20768i 0.0921466i
\(575\) 32.9900 2.18716i 1.37578 0.0912109i
\(576\) 0 0
\(577\) 4.04107 + 4.04107i 0.168232 + 0.168232i 0.786202 0.617970i \(-0.212045\pi\)
−0.617970 + 0.786202i \(0.712045\pi\)
\(578\) −15.8334 6.18905i −0.658581 0.257430i
\(579\) 0 0
\(580\) 5.86294 + 5.48711i 0.243445 + 0.227840i
\(581\) 2.54344 2.54344i 0.105520 0.105520i
\(582\) 0 0
\(583\) 28.5223 1.18127
\(584\) 3.13744 3.13744i 0.129828 0.129828i
\(585\) 0 0
\(586\) 22.2338i 0.918469i
\(587\) 3.66396 + 3.66396i 0.151228 + 0.151228i 0.778666 0.627438i \(-0.215897\pi\)
−0.627438 + 0.778666i \(0.715897\pi\)
\(588\) 0 0
\(589\) 3.75027 + 3.75027i 0.154527 + 0.154527i
\(590\) 4.69933 + 4.39810i 0.193469 + 0.181067i
\(591\) 0 0
\(592\) 7.53711i 0.309773i
\(593\) 22.3770 22.3770i 0.918915 0.918915i −0.0780360 0.996951i \(-0.524865\pi\)
0.996951 + 0.0780360i \(0.0248649\pi\)
\(594\) 0 0
\(595\) 2.09082 + 8.56288i 0.0857154 + 0.351044i
\(596\) 14.6670i 0.600782i
\(597\) 0 0
\(598\) −18.2572 −0.746594
\(599\) 9.17056 0.374699 0.187350 0.982293i \(-0.440010\pi\)
0.187350 + 0.982293i \(0.440010\pi\)
\(600\) 0 0
\(601\) 5.82720 5.82720i 0.237697 0.237697i −0.578199 0.815896i \(-0.696244\pi\)
0.815896 + 0.578199i \(0.196244\pi\)
\(602\) 1.96977i 0.0802819i
\(603\) 0 0
\(604\) −18.0770 −0.735543
\(605\) −8.73303 + 0.289173i −0.355048 + 0.0117565i
\(606\) 0 0
\(607\) 33.8794i 1.37512i 0.726127 + 0.687561i \(0.241319\pi\)
−0.726127 + 0.687561i \(0.758681\pi\)
\(608\) −0.896042 0.896042i −0.0363393 0.0363393i
\(609\) 0 0
\(610\) −0.539113 16.2812i −0.0218280 0.659208i
\(611\) 18.8807i 0.763829i
\(612\) 0 0
\(613\) 14.9677 14.9677i 0.604540 0.604540i −0.336974 0.941514i \(-0.609404\pi\)
0.941514 + 0.336974i \(0.109404\pi\)
\(614\) 7.09880i 0.286484i
\(615\) 0 0
\(616\) 2.54613 0.102586
\(617\) 13.8559 0.557818 0.278909 0.960317i \(-0.410027\pi\)
0.278909 + 0.960317i \(0.410027\pi\)
\(618\) 0 0
\(619\) −16.1152 16.1152i −0.647726 0.647726i 0.304717 0.952443i \(-0.401438\pi\)
−0.952443 + 0.304717i \(0.901438\pi\)
\(620\) −6.83303 6.39502i −0.274421 0.256830i
\(621\) 0 0
\(622\) 8.40724 0.337100
\(623\) 2.78415 0.111545
\(624\) 0 0
\(625\) 24.7812 3.30038i 0.991248 0.132015i
\(626\) −8.69295 + 8.69295i −0.347440 + 0.347440i
\(627\) 0 0
\(628\) −4.02970 + 4.02970i −0.160803 + 0.160803i
\(629\) 6.36829 + 30.4168i 0.253920 + 1.21280i
\(630\) 0 0
\(631\) 1.02543i 0.0408219i 0.999792 + 0.0204110i \(0.00649746\pi\)
−0.999792 + 0.0204110i \(0.993503\pi\)
\(632\) −7.29829 −0.290310
\(633\) 0 0
\(634\) −4.09713 + 4.09713i −0.162718 + 0.162718i
\(635\) 4.56628 + 4.27357i 0.181207 + 0.169591i
\(636\) 0 0
\(637\) 11.8818 11.8818i 0.470776 0.470776i
\(638\) −6.76262 + 6.76262i −0.267735 + 0.267735i
\(639\) 0 0
\(640\) 1.63260 + 1.52795i 0.0645342 + 0.0603974i
\(641\) −14.6244 + 14.6244i −0.577629 + 0.577629i −0.934250 0.356620i \(-0.883929\pi\)
0.356620 + 0.934250i \(0.383929\pi\)
\(642\) 0 0
\(643\) −14.0281 −0.553214 −0.276607 0.960983i \(-0.589210\pi\)
−0.276607 + 0.960983i \(0.589210\pi\)
\(644\) 6.32193i 0.249119i
\(645\) 0 0
\(646\) 4.37316 + 2.85898i 0.172060 + 0.112485i
\(647\) −8.09332 + 8.09332i −0.318181 + 0.318181i −0.848068 0.529887i \(-0.822234\pi\)
0.529887 + 0.848068i \(0.322234\pi\)
\(648\) 0 0
\(649\) −5.42046 + 5.42046i −0.212772 + 0.212772i
\(650\) −13.7749 + 0.913245i −0.540296 + 0.0358204i
\(651\) 0 0
\(652\) −7.12731 −0.279127
\(653\) 48.9384 1.91511 0.957553 0.288257i \(-0.0930757\pi\)
0.957553 + 0.288257i \(0.0930757\pi\)
\(654\) 0 0
\(655\) −2.84737 2.66484i −0.111256 0.104124i
\(656\) −1.63281 1.63281i −0.0637504 0.0637504i
\(657\) 0 0
\(658\) 6.53780 0.254870
\(659\) 22.5542 0.878586 0.439293 0.898344i \(-0.355229\pi\)
0.439293 + 0.898344i \(0.355229\pi\)
\(660\) 0 0
\(661\) 32.2676i 1.25506i −0.778591 0.627531i \(-0.784066\pi\)
0.778591 0.627531i \(-0.215934\pi\)
\(662\) −9.64725 + 9.64725i −0.374951 + 0.374951i
\(663\) 0 0
\(664\) 3.76229i 0.146005i
\(665\) −0.0896537 2.70755i −0.00347662 0.104994i
\(666\) 0 0
\(667\) −16.7913 16.7913i −0.650163 0.650163i
\(668\) 4.05445i 0.156872i
\(669\) 0 0
\(670\) −9.02676 + 0.298899i −0.348734 + 0.0115475i
\(671\) 19.4015 0.748986
\(672\) 0 0
\(673\) 22.2768i 0.858709i −0.903136 0.429355i \(-0.858741\pi\)
0.903136 0.429355i \(-0.141259\pi\)
\(674\) −0.555980 + 0.555980i −0.0214156 + 0.0214156i
\(675\) 0 0
\(676\) −5.37673 −0.206797
\(677\) 7.24062 0.278280 0.139140 0.990273i \(-0.455566\pi\)
0.139140 + 0.990273i \(0.455566\pi\)
\(678\) 0 0
\(679\) 14.3301i 0.549941i
\(680\) −7.87953 4.78676i −0.302166 0.183564i
\(681\) 0 0
\(682\) 7.88158 7.88158i 0.301801 0.301801i
\(683\) 13.1612i 0.503600i 0.967779 + 0.251800i \(0.0810225\pi\)
−0.967779 + 0.251800i \(0.918977\pi\)
\(684\) 0 0
\(685\) 28.3867 + 26.5671i 1.08460 + 1.01507i
\(686\) −8.84658 8.84658i −0.337764 0.337764i
\(687\) 0 0
\(688\) −1.45685 1.45685i −0.0555420 0.0555420i
\(689\) 29.5706i 1.12655i
\(690\) 0 0
\(691\) −2.18788 + 2.18788i −0.0832310 + 0.0832310i −0.747497 0.664266i \(-0.768744\pi\)
0.664266 + 0.747497i \(0.268744\pi\)
\(692\) 13.2079 0.502087
\(693\) 0 0
\(694\) −21.6446 + 21.6446i −0.821616 + 0.821616i
\(695\) −13.0062 12.1725i −0.493354 0.461728i
\(696\) 0 0
\(697\) 7.96897 + 5.20976i 0.301846 + 0.197334i
\(698\) −8.54947 8.54947i −0.323602 0.323602i
\(699\) 0 0
\(700\) 0.316229 + 4.76983i 0.0119523 + 0.180283i
\(701\) 32.8456i 1.24056i 0.784380 + 0.620280i \(0.212981\pi\)
−0.784380 + 0.620280i \(0.787019\pi\)
\(702\) 0 0
\(703\) 9.55098i 0.360222i
\(704\) −1.88313 + 1.88313i −0.0709730 + 0.0709730i
\(705\) 0 0
\(706\) 8.69569i 0.327267i
\(707\) 3.52190i 0.132455i
\(708\) 0 0
\(709\) −35.6948 + 35.6948i −1.34055 + 1.34055i −0.445030 + 0.895516i \(0.646807\pi\)
−0.895516 + 0.445030i \(0.853193\pi\)
\(710\) 0.305144 + 9.21536i 0.0114518 + 0.345846i
\(711\) 0 0
\(712\) −2.05917 + 2.05917i −0.0771706 + 0.0771706i
\(713\) 19.5696 + 19.5696i 0.732889 + 0.732889i
\(714\) 0 0
\(715\) −0.544132 16.4328i −0.0203494 0.614553i
\(716\) 17.4142 0.650801
\(717\) 0 0
\(718\) −6.02738 + 6.02738i −0.224940 + 0.224940i
\(719\) 24.1106 + 24.1106i 0.899174 + 0.899174i 0.995363 0.0961892i \(-0.0306654\pi\)
−0.0961892 + 0.995363i \(0.530665\pi\)
\(720\) 0 0
\(721\) 11.5474 11.5474i 0.430049 0.430049i
\(722\) 12.2996 + 12.2996i 0.457743 + 0.457743i
\(723\) 0 0
\(724\) 7.71442 + 7.71442i 0.286704 + 0.286704i
\(725\) −13.5088 11.8290i −0.501704 0.439317i
\(726\) 0 0
\(727\) 11.4374 + 11.4374i 0.424189 + 0.424189i 0.886643 0.462454i \(-0.153031\pi\)
−0.462454 + 0.886643i \(0.653031\pi\)
\(728\) 2.63971i 0.0978341i
\(729\) 0 0
\(730\) −6.77950 + 7.24385i −0.250921 + 0.268107i
\(731\) 7.11021 + 4.64835i 0.262981 + 0.171925i
\(732\) 0 0
\(733\) 1.02983 + 1.02983i 0.0380376 + 0.0380376i 0.725870 0.687832i \(-0.241438\pi\)
−0.687832 + 0.725870i \(0.741438\pi\)
\(734\) 3.32245 + 3.32245i 0.122634 + 0.122634i
\(735\) 0 0
\(736\) −4.67573 4.67573i −0.172350 0.172350i
\(737\) 10.7567i 0.396228i
\(738\) 0 0
\(739\) −44.1533 −1.62421 −0.812103 0.583514i \(-0.801677\pi\)
−0.812103 + 0.583514i \(0.801677\pi\)
\(740\) 0.557756 + 16.8442i 0.0205035 + 0.619207i
\(741\) 0 0
\(742\) −10.2394 −0.375901
\(743\) 26.6995i 0.979509i 0.871860 + 0.489755i \(0.162914\pi\)
−0.871860 + 0.489755i \(0.837086\pi\)
\(744\) 0 0
\(745\) 1.08537 + 32.7784i 0.0397650 + 1.20091i
\(746\) −9.61653 −0.352086
\(747\) 0 0
\(748\) 6.00845 9.19065i 0.219691 0.336044i
\(749\) −4.29621 −0.156980
\(750\) 0 0
\(751\) −6.90274 6.90274i −0.251885 0.251885i 0.569858 0.821743i \(-0.306998\pi\)
−0.821743 + 0.569858i \(0.806998\pi\)
\(752\) −4.83539 + 4.83539i −0.176328 + 0.176328i
\(753\) 0 0
\(754\) 7.01118 + 7.01118i 0.255332 + 0.255332i
\(755\) 40.3993 1.33772i 1.47028 0.0486847i
\(756\) 0 0
\(757\) 1.62241 1.62241i 0.0589675 0.0589675i −0.677008 0.735976i \(-0.736724\pi\)
0.735976 + 0.677008i \(0.236724\pi\)
\(758\) −21.9174 −0.796077
\(759\) 0 0
\(760\) 2.06882 + 1.93621i 0.0750441 + 0.0702336i
\(761\) 9.42144i 0.341527i 0.985312 + 0.170764i \(0.0546234\pi\)
−0.985312 + 0.170764i \(0.945377\pi\)
\(762\) 0 0
\(763\) 1.47516 + 1.47516i 0.0534045 + 0.0534045i
\(764\) 26.7181 0.966627
\(765\) 0 0
\(766\) 18.4379 0.666188
\(767\) 5.61969 + 5.61969i 0.202915 + 0.202915i
\(768\) 0 0
\(769\) 15.1876i 0.547679i 0.961775 + 0.273840i \(0.0882937\pi\)
−0.961775 + 0.273840i \(0.911706\pi\)
\(770\) −5.69019 + 0.188417i −0.205060 + 0.00679007i
\(771\) 0 0
\(772\) −9.03047 −0.325014
\(773\) −12.3050 + 12.3050i −0.442581 + 0.442581i −0.892879 0.450297i \(-0.851318\pi\)
0.450297 + 0.892879i \(0.351318\pi\)
\(774\) 0 0
\(775\) 15.7440 + 13.7862i 0.565541 + 0.495215i
\(776\) 10.5986 + 10.5986i 0.380469 + 0.380469i
\(777\) 0 0
\(778\) −27.3446 + 27.3446i −0.980352 + 0.980352i
\(779\) −2.06909 2.06909i −0.0741327 0.0741327i
\(780\) 0 0
\(781\) −10.9814 −0.392947
\(782\) 22.8200 + 14.9188i 0.816043 + 0.533493i
\(783\) 0 0
\(784\) 6.08595 0.217355
\(785\) 8.70754 9.30395i 0.310786 0.332072i
\(786\) 0 0
\(787\) 11.5134i 0.410408i 0.978719 + 0.205204i \(0.0657858\pi\)
−0.978719 + 0.205204i \(0.934214\pi\)
\(788\) −8.00413 −0.285135
\(789\) 0 0
\(790\) 16.3105 0.540083i 0.580303 0.0192153i
\(791\) 15.6644 0.556962
\(792\) 0 0
\(793\) 20.1146i 0.714290i
\(794\) −9.98524 9.98524i −0.354363 0.354363i
\(795\) 0 0
\(796\) 3.51012 + 3.51012i 0.124413 + 0.124413i
\(797\) 13.6618 + 13.6618i 0.483926 + 0.483926i 0.906383 0.422457i \(-0.138832\pi\)
−0.422457 + 0.906383i \(0.638832\pi\)
\(798\) 0 0
\(799\) 15.4282 23.5993i 0.545809 0.834881i
\(800\) −3.76167 3.29390i −0.132995 0.116457i
\(801\) 0 0
\(802\) 13.1160i 0.463142i
\(803\) −8.35544 8.35544i −0.294857 0.294857i
\(804\) 0 0
\(805\) −0.467831 14.1285i −0.0164889 0.497965i
\(806\) −8.17127 8.17127i −0.287821 0.287821i
\(807\) 0 0
\(808\) 2.60481 + 2.60481i 0.0916370 + 0.0916370i
\(809\) −25.5552 + 25.5552i −0.898472 + 0.898472i −0.995301 0.0968287i \(-0.969130\pi\)
0.0968287 + 0.995301i \(0.469130\pi\)
\(810\) 0 0
\(811\) −22.9303 22.9303i −0.805190 0.805190i 0.178711 0.983902i \(-0.442807\pi\)
−0.983902 + 0.178711i \(0.942807\pi\)
\(812\) 2.42776 2.42776i 0.0851977 0.0851977i
\(813\) 0 0
\(814\) −20.0724 −0.703537
\(815\) 15.9284 0.527430i 0.557948 0.0184751i
\(816\) 0 0
\(817\) −1.84612 1.84612i −0.0645875 0.0645875i
\(818\) −8.10346 + 8.10346i −0.283331 + 0.283331i
\(819\) 0 0
\(820\) 3.76990 + 3.52824i 0.131651 + 0.123211i
\(821\) −29.7007 + 29.7007i −1.03656 + 1.03656i −0.0372565 + 0.999306i \(0.511862\pi\)
−0.999306 + 0.0372565i \(0.988138\pi\)
\(822\) 0 0
\(823\) 18.0398i 0.628828i 0.949286 + 0.314414i \(0.101808\pi\)
−0.949286 + 0.314414i \(0.898192\pi\)
\(824\) 17.0811i 0.595048i
\(825\) 0 0
\(826\) 1.94593 1.94593i 0.0677075 0.0677075i
\(827\) 17.0469i 0.592778i 0.955067 + 0.296389i \(0.0957825\pi\)
−0.955067 + 0.296389i \(0.904218\pi\)
\(828\) 0 0
\(829\) 23.5645i 0.818428i 0.912439 + 0.409214i \(0.134197\pi\)
−0.912439 + 0.409214i \(0.865803\pi\)
\(830\) −0.278414 8.40812i −0.00966390 0.291850i
\(831\) 0 0
\(832\) 1.95234 + 1.95234i 0.0676852 + 0.0676852i
\(833\) −24.5605 + 5.14217i −0.850970 + 0.178166i
\(834\) 0 0
\(835\) −0.300035 9.06107i −0.0103831 0.313571i
\(836\) −2.38629 + 2.38629i −0.0825315 + 0.0825315i
\(837\) 0 0
\(838\) −17.0465 −0.588863
\(839\) −22.0944 + 22.0944i −0.762782 + 0.762782i −0.976824 0.214043i \(-0.931337\pi\)
0.214043 + 0.976824i \(0.431337\pi\)
\(840\) 0 0
\(841\) 16.1035i 0.555294i
\(842\) −19.0831 19.0831i −0.657648 0.657648i
\(843\) 0 0
\(844\) 11.3150 + 11.3150i 0.389477 + 0.389477i
\(845\) 12.0161 0.397885i 0.413368 0.0136877i
\(846\) 0 0
\(847\) 3.73597i 0.128369i
\(848\) 7.57312 7.57312i 0.260062 0.260062i
\(849\) 0 0
\(850\) 17.9637 + 10.1146i 0.616151 + 0.346927i
\(851\) 49.8390i 1.70846i
\(852\) 0 0
\(853\) −30.9121 −1.05841 −0.529205 0.848494i \(-0.677510\pi\)
−0.529205 + 0.848494i \(0.677510\pi\)
\(854\) −6.96507 −0.238340
\(855\) 0 0
\(856\) 3.17750 3.17750i 0.108605 0.108605i
\(857\) 40.8719i 1.39616i 0.716021 + 0.698079i \(0.245961\pi\)
−0.716021 + 0.698079i \(0.754039\pi\)
\(858\) 0 0
\(859\) −6.70638 −0.228819 −0.114409 0.993434i \(-0.536498\pi\)
−0.114409 + 0.993434i \(0.536498\pi\)
\(860\) 3.36365 + 3.14803i 0.114699 + 0.107347i
\(861\) 0 0
\(862\) 4.07684i 0.138858i
\(863\) −15.6237 15.6237i −0.531838 0.531838i 0.389281 0.921119i \(-0.372724\pi\)
−0.921119 + 0.389281i \(0.872724\pi\)
\(864\) 0 0
\(865\) −29.5175 + 0.977399i −1.00362 + 0.0332326i
\(866\) 0.507776i 0.0172549i
\(867\) 0 0
\(868\) −2.82946 + 2.82946i −0.0960383 + 0.0960383i
\(869\) 19.4364i 0.659334i
\(870\) 0 0
\(871\) −11.1521 −0.377874
\(872\) −2.18207 −0.0738944
\(873\) 0 0
\(874\) −5.92506 5.92506i −0.200418 0.200418i
\(875\) −1.05970 10.6364i −0.0358243 0.359577i
\(876\) 0 0
\(877\) 41.5253 1.40221 0.701105 0.713058i \(-0.252691\pi\)
0.701105 + 0.713058i \(0.252691\pi\)
\(878\) 14.0165 0.473034
\(879\) 0 0
\(880\) 4.06914 4.34785i 0.137171 0.146566i
\(881\) 15.5873 15.5873i 0.525149 0.525149i −0.393973 0.919122i \(-0.628900\pi\)
0.919122 + 0.393973i \(0.128900\pi\)
\(882\) 0 0
\(883\) 37.5067 37.5067i 1.26220 1.26220i 0.312175 0.950024i \(-0.398942\pi\)
0.950024 0.312175i \(-0.101058\pi\)
\(884\) −9.52846 6.22929i −0.320477 0.209514i
\(885\) 0 0
\(886\) 36.3563i 1.22141i
\(887\) −2.15059 −0.0722097 −0.0361049 0.999348i \(-0.511495\pi\)
−0.0361049 + 0.999348i \(0.511495\pi\)
\(888\) 0 0
\(889\) 1.89083 1.89083i 0.0634165 0.0634165i
\(890\) 4.44954 4.75430i 0.149149 0.159364i
\(891\) 0 0
\(892\) −19.5450 + 19.5450i −0.654416 + 0.654416i
\(893\) −6.12738 + 6.12738i −0.205045 + 0.205045i
\(894\) 0 0
\(895\) −38.9181 + 1.28868i −1.30089 + 0.0430757i
\(896\) 0.676037 0.676037i 0.0225848 0.0225848i
\(897\) 0 0
\(898\) −24.9798 −0.833587
\(899\) 15.0304i 0.501291i
\(900\) 0 0
\(901\) −24.1634 + 36.9609i −0.805000 + 1.23134i
\(902\) −4.34840 + 4.34840i −0.144786 + 0.144786i
\(903\) 0 0
\(904\) −11.5855 + 11.5855i −0.385327 + 0.385327i
\(905\) −17.8114 16.6696i −0.592071 0.554118i
\(906\) 0 0
\(907\) −19.0637 −0.632999 −0.316500 0.948593i \(-0.602508\pi\)
−0.316500 + 0.948593i \(0.602508\pi\)
\(908\) 25.5978 0.849491
\(909\) 0 0
\(910\) 0.195342 + 5.89934i 0.00647552 + 0.195561i
\(911\) −22.4893 22.4893i −0.745104 0.745104i 0.228451 0.973555i \(-0.426634\pi\)
−0.973555 + 0.228451i \(0.926634\pi\)
\(912\) 0 0
\(913\) 10.0195 0.331597
\(914\) 8.16241 0.269988
\(915\) 0 0
\(916\) 10.2022i 0.337091i
\(917\) −1.17906 + 1.17906i −0.0389358 + 0.0389358i
\(918\) 0 0
\(919\) 49.0603i 1.61835i 0.587568 + 0.809175i \(0.300085\pi\)
−0.587568 + 0.809175i \(0.699915\pi\)
\(920\) 10.7955 + 10.1035i 0.355918 + 0.333103i
\(921\) 0 0
\(922\) 14.4463 + 14.4463i 0.475763 + 0.475763i
\(923\) 11.3851i 0.374744i
\(924\) 0 0
\(925\) −2.49299 37.6030i −0.0819691 1.23638i
\(926\) 41.1930 1.35369
\(927\) 0 0
\(928\) 3.59117i 0.117886i
\(929\) 20.9340 20.9340i 0.686821 0.686821i −0.274707 0.961528i \(-0.588581\pi\)
0.961528 + 0.274707i \(0.0885809\pi\)
\(930\) 0 0
\(931\) 7.71208 0.252753
\(932\) −19.5475 −0.640298
\(933\) 0 0
\(934\) 7.53584i 0.246580i
\(935\) −12.7478 + 20.9843i −0.416899 + 0.686260i
\(936\) 0 0
\(937\) −11.9941 + 11.9941i −0.391830 + 0.391830i −0.875339 0.483509i \(-0.839362\pi\)
0.483509 + 0.875339i \(0.339362\pi\)
\(938\) 3.86163i 0.126087i
\(939\) 0 0
\(940\) 10.4485 11.1642i 0.340793 0.364135i
\(941\) 25.9135 + 25.9135i 0.844755 + 0.844755i 0.989473 0.144718i \(-0.0462274\pi\)
−0.144718 + 0.989473i \(0.546227\pi\)
\(942\) 0 0
\(943\) −10.7969 10.7969i −0.351596 0.351596i
\(944\) 2.87844i 0.0936851i
\(945\) 0 0
\(946\) −3.87981 + 3.87981i −0.126143 + 0.126143i
\(947\) 22.2402 0.722709 0.361355 0.932428i \(-0.382314\pi\)
0.361355 + 0.932428i \(0.382314\pi\)
\(948\) 0 0
\(949\) −8.66255 + 8.66255i −0.281198 + 0.281198i
\(950\) −4.76677 4.17402i −0.154655 0.135423i
\(951\) 0 0
\(952\) −2.15702 + 3.29942i −0.0699093 + 0.106935i
\(953\) −5.72875 5.72875i −0.185572 0.185572i 0.608207 0.793779i \(-0.291889\pi\)
−0.793779 + 0.608207i \(0.791889\pi\)
\(954\) 0 0
\(955\) −59.7108 + 1.97718i −1.93220 + 0.0639799i
\(956\) 25.0580i 0.810433i
\(957\) 0 0
\(958\) 38.1244i 1.23174i
\(959\) 11.7545 11.7545i 0.379574 0.379574i
\(960\) 0 0
\(961\) 13.4827i 0.434926i
\(962\) 20.8102i 0.670946i
\(963\) 0 0
\(964\) 9.79340 9.79340i 0.315424 0.315424i
\(965\) 20.1817 0.668267i 0.649671 0.0215123i
\(966\) 0 0
\(967\) −0.228906 + 0.228906i −0.00736112 + 0.00736112i −0.710778 0.703417i \(-0.751657\pi\)
0.703417 + 0.710778i \(0.251657\pi\)
\(968\) −2.76314 2.76314i −0.0888107 0.0888107i
\(969\) 0 0
\(970\) −24.4706 22.9020i −0.785704 0.735339i
\(971\) −41.6687 −1.33721 −0.668606 0.743617i \(-0.733109\pi\)
−0.668606 + 0.743617i \(0.733109\pi\)
\(972\) 0 0
\(973\) −5.38569 + 5.38569i −0.172657 + 0.172657i
\(974\) 22.0305 + 22.0305i 0.705902 + 0.705902i
\(975\) 0 0
\(976\) 5.15140 5.15140i 0.164892 0.164892i
\(977\) −0.780819 0.780819i −0.0249806 0.0249806i 0.694506 0.719487i \(-0.255623\pi\)
−0.719487 + 0.694506i \(0.755623\pi\)
\(978\) 0 0
\(979\) 5.48386 + 5.48386i 0.175265 + 0.175265i
\(980\) −13.6011 + 0.450368i −0.434472 + 0.0143865i
\(981\) 0 0
\(982\) −5.15032 5.15032i −0.164353 0.164353i
\(983\) 58.2275i 1.85717i −0.371123 0.928584i \(-0.621027\pi\)
0.371123 0.928584i \(-0.378973\pi\)
\(984\) 0 0
\(985\) 17.8880 0.592316i 0.569958 0.0188728i
\(986\) −3.03427 14.4925i −0.0966308 0.461536i
\(987\) 0 0
\(988\) 2.47400 + 2.47400i 0.0787083 + 0.0787083i
\(989\) −9.63341 9.63341i −0.306325 0.306325i
\(990\) 0 0
\(991\) 11.5623 + 11.5623i 0.367288 + 0.367288i 0.866487 0.499199i \(-0.166372\pi\)
−0.499199 + 0.866487i \(0.666372\pi\)
\(992\) 4.18537i 0.132886i
\(993\) 0 0
\(994\) 3.94231 0.125042
\(995\) −8.10431 7.58481i −0.256924 0.240455i
\(996\) 0 0
\(997\) −55.7008 −1.76406 −0.882032 0.471190i \(-0.843825\pi\)
−0.882032 + 0.471190i \(0.843825\pi\)
\(998\) 40.8694i 1.29370i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1530.2.u.c.557.9 yes 40
3.2 odd 2 inner 1530.2.u.c.557.14 yes 40
5.3 odd 4 1530.2.j.c.863.9 40
15.8 even 4 1530.2.j.c.863.14 yes 40
17.4 even 4 1530.2.j.c.1007.14 yes 40
51.38 odd 4 1530.2.j.c.1007.9 yes 40
85.38 odd 4 inner 1530.2.u.c.1313.14 yes 40
255.38 even 4 inner 1530.2.u.c.1313.9 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1530.2.j.c.863.9 40 5.3 odd 4
1530.2.j.c.863.14 yes 40 15.8 even 4
1530.2.j.c.1007.9 yes 40 51.38 odd 4
1530.2.j.c.1007.14 yes 40 17.4 even 4
1530.2.u.c.557.9 yes 40 1.1 even 1 trivial
1530.2.u.c.557.14 yes 40 3.2 odd 2 inner
1530.2.u.c.1313.9 yes 40 255.38 even 4 inner
1530.2.u.c.1313.14 yes 40 85.38 odd 4 inner