Properties

Label 1530.2.j.c.1007.9
Level $1530$
Weight $2$
Character 1530.1007
Analytic conductor $12.217$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1530,2,Mod(863,1530)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1530.863"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1530, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2171115093\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1007.9
Character \(\chi\) \(=\) 1530.1007
Dual form 1530.2.j.c.863.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(2.23484 - 0.0740013i) q^{5} -0.956061i q^{7} +(0.707107 - 0.707107i) q^{8} +(-1.63260 - 1.52795i) q^{10} +(-1.88313 + 1.88313i) q^{11} +(-1.95234 + 1.95234i) q^{13} +(-0.676037 + 0.676037i) q^{14} -1.00000 q^{16} +(-0.844925 + 4.03560i) q^{17} +1.26720 q^{19} +(0.0740013 + 2.23484i) q^{20} +2.66314 q^{22} +6.61248i q^{23} +(4.98905 - 0.330763i) q^{25} +2.76103 q^{26} +0.956061 q^{28} +(-2.53934 + 2.53934i) q^{29} +(-2.95950 + 2.95950i) q^{31} +(0.707107 + 0.707107i) q^{32} +(3.45106 - 2.25615i) q^{34} +(-0.0707497 - 2.13665i) q^{35} +7.53711 q^{37} +(-0.896042 - 0.896042i) q^{38} +(1.52795 - 1.63260i) q^{40} +(1.63281 - 1.63281i) q^{41} +(-1.45685 - 1.45685i) q^{43} +(-1.88313 - 1.88313i) q^{44} +(4.67573 - 4.67573i) q^{46} +(-4.83539 + 4.83539i) q^{47} +6.08595 q^{49} +(-3.76167 - 3.29390i) q^{50} +(-1.95234 - 1.95234i) q^{52} +(-7.57312 + 7.57312i) q^{53} +(-4.06914 + 4.34785i) q^{55} +(-0.676037 - 0.676037i) q^{56} +3.59117 q^{58} -2.87844i q^{59} +(-5.15140 - 5.15140i) q^{61} +4.18537 q^{62} -1.00000i q^{64} +(-4.21870 + 4.50765i) q^{65} +(2.85608 + 2.85608i) q^{67} +(-4.03560 - 0.844925i) q^{68} +(-1.46081 + 1.56086i) q^{70} +(2.91575 + 2.91575i) q^{71} -4.43701i q^{73} +(-5.32954 - 5.32954i) q^{74} +1.26720i q^{76} +(1.80038 + 1.80038i) q^{77} +(5.16067 - 5.16067i) q^{79} +(-2.23484 + 0.0740013i) q^{80} -2.30914 q^{82} +(-2.66034 + 2.66034i) q^{83} +(-1.58964 + 9.08147i) q^{85} +2.06030i q^{86} +2.66314i q^{88} +2.91210 q^{89} +(1.86656 + 1.86656i) q^{91} -6.61248 q^{92} +6.83827 q^{94} +(2.83198 - 0.0937741i) q^{95} +14.9887 q^{97} +(-4.30342 - 4.30342i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 8 q^{13} - 40 q^{16} - 16 q^{19} - 16 q^{22} - 8 q^{31} + 16 q^{37} - 8 q^{40} - 32 q^{43} - 56 q^{49} + 8 q^{52} + 32 q^{55} - 32 q^{58} - 64 q^{61} + 32 q^{67} - 32 q^{70} - 88 q^{79} + 32 q^{85}+ \cdots - 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1530\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(1261\) \(1361\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 2.23484 0.0740013i 0.999452 0.0330944i
\(6\) 0 0
\(7\) 0.956061i 0.361357i −0.983542 0.180678i \(-0.942171\pi\)
0.983542 0.180678i \(-0.0578293\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −1.63260 1.52795i −0.516273 0.483179i
\(11\) −1.88313 + 1.88313i −0.567784 + 0.567784i −0.931507 0.363723i \(-0.881505\pi\)
0.363723 + 0.931507i \(0.381505\pi\)
\(12\) 0 0
\(13\) −1.95234 + 1.95234i −0.541482 + 0.541482i −0.923963 0.382481i \(-0.875070\pi\)
0.382481 + 0.923963i \(0.375070\pi\)
\(14\) −0.676037 + 0.676037i −0.180678 + 0.180678i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −0.844925 + 4.03560i −0.204924 + 0.978778i
\(18\) 0 0
\(19\) 1.26720 0.290715 0.145357 0.989379i \(-0.453567\pi\)
0.145357 + 0.989379i \(0.453567\pi\)
\(20\) 0.0740013 + 2.23484i 0.0165472 + 0.499726i
\(21\) 0 0
\(22\) 2.66314 0.567784
\(23\) 6.61248i 1.37880i 0.724382 + 0.689399i \(0.242125\pi\)
−0.724382 + 0.689399i \(0.757875\pi\)
\(24\) 0 0
\(25\) 4.98905 0.330763i 0.997810 0.0661525i
\(26\) 2.76103 0.541482
\(27\) 0 0
\(28\) 0.956061 0.180678
\(29\) −2.53934 + 2.53934i −0.471543 + 0.471543i −0.902414 0.430870i \(-0.858207\pi\)
0.430870 + 0.902414i \(0.358207\pi\)
\(30\) 0 0
\(31\) −2.95950 + 2.95950i −0.531542 + 0.531542i −0.921031 0.389489i \(-0.872652\pi\)
0.389489 + 0.921031i \(0.372652\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 3.45106 2.25615i 0.591851 0.386927i
\(35\) −0.0707497 2.13665i −0.0119589 0.361159i
\(36\) 0 0
\(37\) 7.53711 1.23909 0.619546 0.784960i \(-0.287317\pi\)
0.619546 + 0.784960i \(0.287317\pi\)
\(38\) −0.896042 0.896042i −0.145357 0.145357i
\(39\) 0 0
\(40\) 1.52795 1.63260i 0.241589 0.258137i
\(41\) 1.63281 1.63281i 0.255002 0.255002i −0.568016 0.823018i \(-0.692289\pi\)
0.823018 + 0.568016i \(0.192289\pi\)
\(42\) 0 0
\(43\) −1.45685 1.45685i −0.222168 0.222168i 0.587243 0.809411i \(-0.300213\pi\)
−0.809411 + 0.587243i \(0.800213\pi\)
\(44\) −1.88313 1.88313i −0.283892 0.283892i
\(45\) 0 0
\(46\) 4.67573 4.67573i 0.689399 0.689399i
\(47\) −4.83539 + 4.83539i −0.705314 + 0.705314i −0.965546 0.260232i \(-0.916201\pi\)
0.260232 + 0.965546i \(0.416201\pi\)
\(48\) 0 0
\(49\) 6.08595 0.869421
\(50\) −3.76167 3.29390i −0.531981 0.465828i
\(51\) 0 0
\(52\) −1.95234 1.95234i −0.270741 0.270741i
\(53\) −7.57312 + 7.57312i −1.04025 + 1.04025i −0.0410932 + 0.999155i \(0.513084\pi\)
−0.999155 + 0.0410932i \(0.986916\pi\)
\(54\) 0 0
\(55\) −4.06914 + 4.34785i −0.548682 + 0.586263i
\(56\) −0.676037 0.676037i −0.0903392 0.0903392i
\(57\) 0 0
\(58\) 3.59117 0.471543
\(59\) 2.87844i 0.374741i −0.982289 0.187370i \(-0.940004\pi\)
0.982289 0.187370i \(-0.0599964\pi\)
\(60\) 0 0
\(61\) −5.15140 5.15140i −0.659569 0.659569i 0.295709 0.955278i \(-0.404444\pi\)
−0.955278 + 0.295709i \(0.904444\pi\)
\(62\) 4.18537 0.531542
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −4.21870 + 4.50765i −0.523265 + 0.559105i
\(66\) 0 0
\(67\) 2.85608 + 2.85608i 0.348925 + 0.348925i 0.859709 0.510784i \(-0.170645\pi\)
−0.510784 + 0.859709i \(0.670645\pi\)
\(68\) −4.03560 0.844925i −0.489389 0.102462i
\(69\) 0 0
\(70\) −1.46081 + 1.56086i −0.174600 + 0.186559i
\(71\) 2.91575 + 2.91575i 0.346036 + 0.346036i 0.858631 0.512595i \(-0.171316\pi\)
−0.512595 + 0.858631i \(0.671316\pi\)
\(72\) 0 0
\(73\) 4.43701i 0.519312i −0.965701 0.259656i \(-0.916391\pi\)
0.965701 0.259656i \(-0.0836092\pi\)
\(74\) −5.32954 5.32954i −0.619546 0.619546i
\(75\) 0 0
\(76\) 1.26720i 0.145357i
\(77\) 1.80038 + 1.80038i 0.205173 + 0.205173i
\(78\) 0 0
\(79\) 5.16067 5.16067i 0.580621 0.580621i −0.354453 0.935074i \(-0.615333\pi\)
0.935074 + 0.354453i \(0.115333\pi\)
\(80\) −2.23484 + 0.0740013i −0.249863 + 0.00827360i
\(81\) 0 0
\(82\) −2.30914 −0.255002
\(83\) −2.66034 + 2.66034i −0.292010 + 0.292010i −0.837874 0.545864i \(-0.816202\pi\)
0.545864 + 0.837874i \(0.316202\pi\)
\(84\) 0 0
\(85\) −1.58964 + 9.08147i −0.172420 + 0.985024i
\(86\) 2.06030i 0.222168i
\(87\) 0 0
\(88\) 2.66314i 0.283892i
\(89\) 2.91210 0.308682 0.154341 0.988018i \(-0.450675\pi\)
0.154341 + 0.988018i \(0.450675\pi\)
\(90\) 0 0
\(91\) 1.86656 + 1.86656i 0.195668 + 0.195668i
\(92\) −6.61248 −0.689399
\(93\) 0 0
\(94\) 6.83827 0.705314
\(95\) 2.83198 0.0937741i 0.290555 0.00962102i
\(96\) 0 0
\(97\) 14.9887 1.52188 0.760938 0.648824i \(-0.224739\pi\)
0.760938 + 0.648824i \(0.224739\pi\)
\(98\) −4.30342 4.30342i −0.434711 0.434711i
\(99\) 0 0
\(100\) 0.330763 + 4.98905i 0.0330763 + 0.498905i
\(101\) 3.68376i 0.366548i −0.983062 0.183274i \(-0.941330\pi\)
0.983062 0.183274i \(-0.0586695\pi\)
\(102\) 0 0
\(103\) −12.0782 + 12.0782i −1.19010 + 1.19010i −0.213055 + 0.977040i \(0.568341\pi\)
−0.977040 + 0.213055i \(0.931659\pi\)
\(104\) 2.76103i 0.270741i
\(105\) 0 0
\(106\) 10.7100 1.04025
\(107\) 4.49366i 0.434418i 0.976125 + 0.217209i \(0.0696954\pi\)
−0.976125 + 0.217209i \(0.930305\pi\)
\(108\) 0 0
\(109\) 1.54296 1.54296i 0.147789 0.147789i −0.629341 0.777129i \(-0.716675\pi\)
0.777129 + 0.629341i \(0.216675\pi\)
\(110\) 5.95171 0.197076i 0.567473 0.0187905i
\(111\) 0 0
\(112\) 0.956061i 0.0903392i
\(113\) 16.3843i 1.54131i 0.637254 + 0.770654i \(0.280070\pi\)
−0.637254 + 0.770654i \(0.719930\pi\)
\(114\) 0 0
\(115\) 0.489332 + 14.7779i 0.0456305 + 1.37804i
\(116\) −2.53934 2.53934i −0.235772 0.235772i
\(117\) 0 0
\(118\) −2.03536 + 2.03536i −0.187370 + 0.187370i
\(119\) 3.85828 + 0.807800i 0.353688 + 0.0740509i
\(120\) 0 0
\(121\) 3.90767i 0.355243i
\(122\) 7.28518i 0.659569i
\(123\) 0 0
\(124\) −2.95950 2.95950i −0.265771 0.265771i
\(125\) 11.1253 1.10840i 0.995074 0.0991382i
\(126\) 0 0
\(127\) 1.97773 1.97773i 0.175495 0.175495i −0.613893 0.789389i \(-0.710398\pi\)
0.789389 + 0.613893i \(0.210398\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 6.17046 0.204320i 0.541185 0.0179200i
\(131\) 1.23324 + 1.23324i 0.107749 + 0.107749i 0.758926 0.651177i \(-0.225724\pi\)
−0.651177 + 0.758926i \(0.725724\pi\)
\(132\) 0 0
\(133\) 1.21152i 0.105052i
\(134\) 4.03910i 0.348925i
\(135\) 0 0
\(136\) 2.25615 + 3.45106i 0.193463 + 0.295926i
\(137\) 12.2948 12.2948i 1.05041 1.05041i 0.0517532 0.998660i \(-0.483519\pi\)
0.998660 0.0517532i \(-0.0164809\pi\)
\(138\) 0 0
\(139\) −5.63321 5.63321i −0.477803 0.477803i 0.426626 0.904428i \(-0.359702\pi\)
−0.904428 + 0.426626i \(0.859702\pi\)
\(140\) 2.13665 0.0707497i 0.180579 0.00597944i
\(141\) 0 0
\(142\) 4.12349i 0.346036i
\(143\) 7.35301i 0.614890i
\(144\) 0 0
\(145\) −5.48711 + 5.86294i −0.455680 + 0.486891i
\(146\) −3.13744 + 3.13744i −0.259656 + 0.259656i
\(147\) 0 0
\(148\) 7.53711i 0.619546i
\(149\) 14.6670 1.20156 0.600782 0.799413i \(-0.294856\pi\)
0.600782 + 0.799413i \(0.294856\pi\)
\(150\) 0 0
\(151\) 18.0770i 1.47109i −0.677478 0.735543i \(-0.736927\pi\)
0.677478 0.735543i \(-0.263073\pi\)
\(152\) 0.896042 0.896042i 0.0726786 0.0726786i
\(153\) 0 0
\(154\) 2.54613i 0.205173i
\(155\) −6.39502 + 6.83303i −0.513660 + 0.548842i
\(156\) 0 0
\(157\) 4.02970 + 4.02970i 0.321605 + 0.321605i 0.849383 0.527778i \(-0.176975\pi\)
−0.527778 + 0.849383i \(0.676975\pi\)
\(158\) −7.29829 −0.580621
\(159\) 0 0
\(160\) 1.63260 + 1.52795i 0.129068 + 0.120795i
\(161\) 6.32193 0.498238
\(162\) 0 0
\(163\) −7.12731 −0.558254 −0.279127 0.960254i \(-0.590045\pi\)
−0.279127 + 0.960254i \(0.590045\pi\)
\(164\) 1.63281 + 1.63281i 0.127501 + 0.127501i
\(165\) 0 0
\(166\) 3.76229 0.292010
\(167\) 4.05445i 0.313743i 0.987619 + 0.156872i \(0.0501409\pi\)
−0.987619 + 0.156872i \(0.949859\pi\)
\(168\) 0 0
\(169\) 5.37673i 0.413595i
\(170\) 7.54561 5.29753i 0.578722 0.406302i
\(171\) 0 0
\(172\) 1.45685 1.45685i 0.111084 0.111084i
\(173\) 13.2079 1.00417 0.502087 0.864817i \(-0.332566\pi\)
0.502087 + 0.864817i \(0.332566\pi\)
\(174\) 0 0
\(175\) −0.316229 4.76983i −0.0239047 0.360565i
\(176\) 1.88313 1.88313i 0.141946 0.141946i
\(177\) 0 0
\(178\) −2.05917 2.05917i −0.154341 0.154341i
\(179\) 17.4142i 1.30160i −0.759248 0.650801i \(-0.774433\pi\)
0.759248 0.650801i \(-0.225567\pi\)
\(180\) 0 0
\(181\) 7.71442 + 7.71442i 0.573408 + 0.573408i 0.933079 0.359671i \(-0.117111\pi\)
−0.359671 + 0.933079i \(0.617111\pi\)
\(182\) 2.63971i 0.195668i
\(183\) 0 0
\(184\) 4.67573 + 4.67573i 0.344699 + 0.344699i
\(185\) 16.8442 0.557756i 1.23841 0.0410070i
\(186\) 0 0
\(187\) −6.00845 9.19065i −0.439382 0.672087i
\(188\) −4.83539 4.83539i −0.352657 0.352657i
\(189\) 0 0
\(190\) −2.06882 1.93621i −0.150088 0.140467i
\(191\) 26.7181i 1.93325i 0.256187 + 0.966627i \(0.417534\pi\)
−0.256187 + 0.966627i \(0.582466\pi\)
\(192\) 0 0
\(193\) −9.03047 −0.650027 −0.325014 0.945709i \(-0.605369\pi\)
−0.325014 + 0.945709i \(0.605369\pi\)
\(194\) −10.5986 10.5986i −0.760938 0.760938i
\(195\) 0 0
\(196\) 6.08595i 0.434711i
\(197\) 8.00413 0.570270 0.285135 0.958487i \(-0.407962\pi\)
0.285135 + 0.958487i \(0.407962\pi\)
\(198\) 0 0
\(199\) −3.51012 3.51012i −0.248826 0.248826i 0.571663 0.820489i \(-0.306298\pi\)
−0.820489 + 0.571663i \(0.806298\pi\)
\(200\) 3.29390 3.76167i 0.232914 0.265991i
\(201\) 0 0
\(202\) −2.60481 + 2.60481i −0.183274 + 0.183274i
\(203\) 2.42776 + 2.42776i 0.170395 + 0.170395i
\(204\) 0 0
\(205\) 3.52824 3.76990i 0.246423 0.263301i
\(206\) 17.0811 1.19010
\(207\) 0 0
\(208\) 1.95234 1.95234i 0.135370 0.135370i
\(209\) −2.38629 + 2.38629i −0.165063 + 0.165063i
\(210\) 0 0
\(211\) 11.3150 + 11.3150i 0.778953 + 0.778953i 0.979653 0.200699i \(-0.0643215\pi\)
−0.200699 + 0.979653i \(0.564321\pi\)
\(212\) −7.57312 7.57312i −0.520124 0.520124i
\(213\) 0 0
\(214\) 3.17750 3.17750i 0.217209 0.217209i
\(215\) −3.36365 3.14803i −0.229399 0.214694i
\(216\) 0 0
\(217\) 2.82946 + 2.82946i 0.192077 + 0.192077i
\(218\) −2.18207 −0.147789
\(219\) 0 0
\(220\) −4.34785 4.06914i −0.293132 0.274341i
\(221\) −6.22929 9.52846i −0.419028 0.640953i
\(222\) 0 0
\(223\) −19.5450 19.5450i −1.30883 1.30883i −0.922259 0.386573i \(-0.873659\pi\)
−0.386573 0.922259i \(-0.626341\pi\)
\(224\) 0.676037 0.676037i 0.0451696 0.0451696i
\(225\) 0 0
\(226\) 11.5855 11.5855i 0.770654 0.770654i
\(227\) −25.5978 −1.69898 −0.849491 0.527603i \(-0.823091\pi\)
−0.849491 + 0.527603i \(0.823091\pi\)
\(228\) 0 0
\(229\) 10.2022 0.674182 0.337091 0.941472i \(-0.390557\pi\)
0.337091 + 0.941472i \(0.390557\pi\)
\(230\) 10.1035 10.7955i 0.666206 0.711836i
\(231\) 0 0
\(232\) 3.59117i 0.235772i
\(233\) −19.5475 −1.28060 −0.640298 0.768126i \(-0.721189\pi\)
−0.640298 + 0.768126i \(0.721189\pi\)
\(234\) 0 0
\(235\) −10.4485 + 11.1642i −0.681585 + 0.728269i
\(236\) 2.87844 0.187370
\(237\) 0 0
\(238\) −2.15702 3.29942i −0.139819 0.213870i
\(239\) 25.0580 1.62087 0.810433 0.585831i \(-0.199232\pi\)
0.810433 + 0.585831i \(0.199232\pi\)
\(240\) 0 0
\(241\) −9.79340 + 9.79340i −0.630849 + 0.630849i −0.948281 0.317432i \(-0.897179\pi\)
0.317432 + 0.948281i \(0.397179\pi\)
\(242\) 2.76314 2.76314i 0.177621 0.177621i
\(243\) 0 0
\(244\) 5.15140 5.15140i 0.329785 0.329785i
\(245\) 13.6011 0.450368i 0.868945 0.0287730i
\(246\) 0 0
\(247\) −2.47400 + 2.47400i −0.157417 + 0.157417i
\(248\) 4.18537i 0.265771i
\(249\) 0 0
\(250\) −8.65050 7.08299i −0.547106 0.447968i
\(251\) 19.2063i 1.21229i −0.795353 0.606146i \(-0.792715\pi\)
0.795353 0.606146i \(-0.207285\pi\)
\(252\) 0 0
\(253\) −12.4521 12.4521i −0.782859 0.782859i
\(254\) −2.79694 −0.175495
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −16.5016 16.5016i −1.02934 1.02934i −0.999556 0.0297879i \(-0.990517\pi\)
−0.0297879 0.999556i \(-0.509483\pi\)
\(258\) 0 0
\(259\) 7.20593i 0.447755i
\(260\) −4.50765 4.21870i −0.279553 0.261633i
\(261\) 0 0
\(262\) 1.74407i 0.107749i
\(263\) −10.0571 + 10.0571i −0.620148 + 0.620148i −0.945569 0.325421i \(-0.894494\pi\)
0.325421 + 0.945569i \(0.394494\pi\)
\(264\) 0 0
\(265\) −16.3643 + 17.4852i −1.00525 + 1.07411i
\(266\) −0.856671 + 0.856671i −0.0525259 + 0.0525259i
\(267\) 0 0
\(268\) −2.85608 + 2.85608i −0.174463 + 0.174463i
\(269\) 3.25560 3.25560i 0.198498 0.198498i −0.600858 0.799356i \(-0.705174\pi\)
0.799356 + 0.600858i \(0.205174\pi\)
\(270\) 0 0
\(271\) −3.46198 −0.210300 −0.105150 0.994456i \(-0.533532\pi\)
−0.105150 + 0.994456i \(0.533532\pi\)
\(272\) 0.844925 4.03560i 0.0512311 0.244694i
\(273\) 0 0
\(274\) −17.3874 −1.05041
\(275\) −8.77214 + 10.0179i −0.528980 + 0.604101i
\(276\) 0 0
\(277\) −10.6782 −0.641588 −0.320794 0.947149i \(-0.603950\pi\)
−0.320794 + 0.947149i \(0.603950\pi\)
\(278\) 7.96656i 0.477803i
\(279\) 0 0
\(280\) −1.56086 1.46081i −0.0932795 0.0873000i
\(281\) 4.95486 0.295582 0.147791 0.989019i \(-0.452784\pi\)
0.147791 + 0.989019i \(0.452784\pi\)
\(282\) 0 0
\(283\) 27.6017 1.64075 0.820375 0.571826i \(-0.193765\pi\)
0.820375 + 0.571826i \(0.193765\pi\)
\(284\) −2.91575 + 2.91575i −0.173018 + 0.173018i
\(285\) 0 0
\(286\) −5.19936 + 5.19936i −0.307445 + 0.307445i
\(287\) −1.56106 1.56106i −0.0921466 0.0921466i
\(288\) 0 0
\(289\) −15.5722 6.81957i −0.916012 0.401151i
\(290\) 8.02570 0.265751i 0.471285 0.0156054i
\(291\) 0 0
\(292\) 4.43701 0.259656
\(293\) 15.7217 + 15.7217i 0.918469 + 0.918469i 0.996918 0.0784487i \(-0.0249967\pi\)
−0.0784487 + 0.996918i \(0.524997\pi\)
\(294\) 0 0
\(295\) −0.213008 6.43285i −0.0124018 0.374535i
\(296\) 5.32954 5.32954i 0.309773 0.309773i
\(297\) 0 0
\(298\) −10.3711 10.3711i −0.600782 0.600782i
\(299\) −12.9098 12.9098i −0.746594 0.746594i
\(300\) 0 0
\(301\) −1.39284 + 1.39284i −0.0802819 + 0.0802819i
\(302\) −12.7824 + 12.7824i −0.735543 + 0.735543i
\(303\) 0 0
\(304\) −1.26720 −0.0726786
\(305\) −11.8938 11.1314i −0.681036 0.637380i
\(306\) 0 0
\(307\) −5.01961 5.01961i −0.286484 0.286484i 0.549204 0.835688i \(-0.314931\pi\)
−0.835688 + 0.549204i \(0.814931\pi\)
\(308\) −1.80038 + 1.80038i −0.102586 + 0.102586i
\(309\) 0 0
\(310\) 9.35364 0.309723i 0.531251 0.0175911i
\(311\) −5.94482 5.94482i −0.337100 0.337100i 0.518175 0.855275i \(-0.326612\pi\)
−0.855275 + 0.518175i \(0.826612\pi\)
\(312\) 0 0
\(313\) 12.2937 0.694880 0.347440 0.937702i \(-0.387051\pi\)
0.347440 + 0.937702i \(0.387051\pi\)
\(314\) 5.69886i 0.321605i
\(315\) 0 0
\(316\) 5.16067 + 5.16067i 0.290310 + 0.290310i
\(317\) −5.79422 −0.325436 −0.162718 0.986673i \(-0.552026\pi\)
−0.162718 + 0.986673i \(0.552026\pi\)
\(318\) 0 0
\(319\) 9.56379i 0.535470i
\(320\) −0.0740013 2.23484i −0.00413680 0.124932i
\(321\) 0 0
\(322\) −4.47028 4.47028i −0.249119 0.249119i
\(323\) −1.07069 + 5.11390i −0.0595745 + 0.284545i
\(324\) 0 0
\(325\) −9.09456 + 10.3861i −0.504475 + 0.576116i
\(326\) 5.03977 + 5.03977i 0.279127 + 0.279127i
\(327\) 0 0
\(328\) 2.30914i 0.127501i
\(329\) 4.62292 + 4.62292i 0.254870 + 0.254870i
\(330\) 0 0
\(331\) 13.6433i 0.749902i 0.927045 + 0.374951i \(0.122341\pi\)
−0.927045 + 0.374951i \(0.877659\pi\)
\(332\) −2.66034 2.66034i −0.146005 0.146005i
\(333\) 0 0
\(334\) 2.86693 2.86693i 0.156872 0.156872i
\(335\) 6.59424 + 6.17153i 0.360282 + 0.337187i
\(336\) 0 0
\(337\) −0.786275 −0.0428311 −0.0214156 0.999771i \(-0.506817\pi\)
−0.0214156 + 0.999771i \(0.506817\pi\)
\(338\) 3.80192 3.80192i 0.206797 0.206797i
\(339\) 0 0
\(340\) −9.08147 1.58964i −0.492512 0.0862101i
\(341\) 11.1462i 0.603602i
\(342\) 0 0
\(343\) 12.5110i 0.675528i
\(344\) −2.06030 −0.111084
\(345\) 0 0
\(346\) −9.33937 9.33937i −0.502087 0.502087i
\(347\) −30.6100 −1.64323 −0.821616 0.570041i \(-0.806927\pi\)
−0.821616 + 0.570041i \(0.806927\pi\)
\(348\) 0 0
\(349\) −12.0908 −0.647205 −0.323602 0.946193i \(-0.604894\pi\)
−0.323602 + 0.946193i \(0.604894\pi\)
\(350\) −3.14917 + 3.59639i −0.168330 + 0.192235i
\(351\) 0 0
\(352\) −2.66314 −0.141946
\(353\) 6.14878 + 6.14878i 0.327267 + 0.327267i 0.851546 0.524280i \(-0.175665\pi\)
−0.524280 + 0.851546i \(0.675665\pi\)
\(354\) 0 0
\(355\) 6.73201 + 6.30047i 0.357298 + 0.334394i
\(356\) 2.91210i 0.154341i
\(357\) 0 0
\(358\) −12.3137 + 12.3137i −0.650801 + 0.650801i
\(359\) 8.52400i 0.449880i −0.974373 0.224940i \(-0.927781\pi\)
0.974373 0.224940i \(-0.0722185\pi\)
\(360\) 0 0
\(361\) −17.3942 −0.915485
\(362\) 10.9098i 0.573408i
\(363\) 0 0
\(364\) −1.86656 + 1.86656i −0.0978341 + 0.0978341i
\(365\) −0.328344 9.91601i −0.0171863 0.519028i
\(366\) 0 0
\(367\) 4.69865i 0.245267i −0.992452 0.122634i \(-0.960866\pi\)
0.992452 0.122634i \(-0.0391340\pi\)
\(368\) 6.61248i 0.344699i
\(369\) 0 0
\(370\) −12.3051 11.5163i −0.639710 0.598703i
\(371\) 7.24036 + 7.24036i 0.375901 + 0.375901i
\(372\) 0 0
\(373\) 6.79992 6.79992i 0.352086 0.352086i −0.508799 0.860885i \(-0.669910\pi\)
0.860885 + 0.508799i \(0.169910\pi\)
\(374\) −2.25016 + 10.7474i −0.116353 + 0.555734i
\(375\) 0 0
\(376\) 6.83827i 0.352657i
\(377\) 9.91531i 0.510665i
\(378\) 0 0
\(379\) −15.4980 15.4980i −0.796077 0.796077i 0.186398 0.982474i \(-0.440319\pi\)
−0.982474 + 0.186398i \(0.940319\pi\)
\(380\) 0.0937741 + 2.83198i 0.00481051 + 0.145278i
\(381\) 0 0
\(382\) 18.8926 18.8926i 0.966627 0.966627i
\(383\) −13.0376 + 13.0376i −0.666188 + 0.666188i −0.956831 0.290643i \(-0.906131\pi\)
0.290643 + 0.956831i \(0.406131\pi\)
\(384\) 0 0
\(385\) 4.15680 + 3.89034i 0.211850 + 0.198270i
\(386\) 6.38551 + 6.38551i 0.325014 + 0.325014i
\(387\) 0 0
\(388\) 14.9887i 0.760938i
\(389\) 38.6711i 1.96070i −0.197255 0.980352i \(-0.563203\pi\)
0.197255 0.980352i \(-0.436797\pi\)
\(390\) 0 0
\(391\) −26.6853 5.58705i −1.34954 0.282549i
\(392\) 4.30342 4.30342i 0.217355 0.217355i
\(393\) 0 0
\(394\) −5.65977 5.65977i −0.285135 0.285135i
\(395\) 11.1514 11.9152i 0.561087 0.599518i
\(396\) 0 0
\(397\) 14.1213i 0.708726i 0.935108 + 0.354363i \(0.115302\pi\)
−0.935108 + 0.354363i \(0.884698\pi\)
\(398\) 4.96405i 0.248826i
\(399\) 0 0
\(400\) −4.98905 + 0.330763i −0.249452 + 0.0165381i
\(401\) 9.27440 9.27440i 0.463142 0.463142i −0.436542 0.899684i \(-0.643797\pi\)
0.899684 + 0.436542i \(0.143797\pi\)
\(402\) 0 0
\(403\) 11.5559i 0.575641i
\(404\) 3.68376 0.183274
\(405\) 0 0
\(406\) 3.43337i 0.170395i
\(407\) −14.1933 + 14.1933i −0.703537 + 0.703537i
\(408\) 0 0
\(409\) 11.4600i 0.566662i −0.959022 0.283331i \(-0.908560\pi\)
0.959022 0.283331i \(-0.0914395\pi\)
\(410\) −5.16056 + 0.170879i −0.254862 + 0.00843913i
\(411\) 0 0
\(412\) −12.0782 12.0782i −0.595048 0.595048i
\(413\) −2.75196 −0.135415
\(414\) 0 0
\(415\) −5.74857 + 6.14231i −0.282186 + 0.301514i
\(416\) −2.76103 −0.135370
\(417\) 0 0
\(418\) 3.37472 0.165063
\(419\) −12.0537 12.0537i −0.588863 0.588863i 0.348461 0.937323i \(-0.386704\pi\)
−0.937323 + 0.348461i \(0.886704\pi\)
\(420\) 0 0
\(421\) 26.9876 1.31530 0.657648 0.753326i \(-0.271552\pi\)
0.657648 + 0.753326i \(0.271552\pi\)
\(422\) 16.0018i 0.778953i
\(423\) 0 0
\(424\) 10.7100i 0.520124i
\(425\) −2.88054 + 20.4133i −0.139727 + 0.990190i
\(426\) 0 0
\(427\) −4.92505 + 4.92505i −0.238340 + 0.238340i
\(428\) −4.49366 −0.217209
\(429\) 0 0
\(430\) 0.152465 + 4.60445i 0.00735251 + 0.222046i
\(431\) 2.88276 2.88276i 0.138858 0.138858i −0.634261 0.773119i \(-0.718696\pi\)
0.773119 + 0.634261i \(0.218696\pi\)
\(432\) 0 0
\(433\) −0.359052 0.359052i −0.0172549 0.0172549i 0.698427 0.715682i \(-0.253884\pi\)
−0.715682 + 0.698427i \(0.753884\pi\)
\(434\) 4.00147i 0.192077i
\(435\) 0 0
\(436\) 1.54296 + 1.54296i 0.0738944 + 0.0738944i
\(437\) 8.37930i 0.400836i
\(438\) 0 0
\(439\) 9.91117 + 9.91117i 0.473034 + 0.473034i 0.902895 0.429861i \(-0.141437\pi\)
−0.429861 + 0.902895i \(0.641437\pi\)
\(440\) 0.197076 + 5.95171i 0.00939523 + 0.283736i
\(441\) 0 0
\(442\) −2.33286 + 11.1424i −0.110963 + 0.529991i
\(443\) 25.7078 + 25.7078i 1.22141 + 1.22141i 0.967130 + 0.254283i \(0.0818393\pi\)
0.254283 + 0.967130i \(0.418161\pi\)
\(444\) 0 0
\(445\) 6.50810 0.215500i 0.308513 0.0102157i
\(446\) 27.6408i 1.30883i
\(447\) 0 0
\(448\) −0.956061 −0.0451696
\(449\) −17.6634 17.6634i −0.833587 0.833587i 0.154419 0.988005i \(-0.450649\pi\)
−0.988005 + 0.154419i \(0.950649\pi\)
\(450\) 0 0
\(451\) 6.14957i 0.289572i
\(452\) −16.3843 −0.770654
\(453\) 0 0
\(454\) 18.1003 + 18.1003i 0.849491 + 0.849491i
\(455\) 4.30959 + 4.03333i 0.202037 + 0.189086i
\(456\) 0 0
\(457\) 5.77169 5.77169i 0.269988 0.269988i −0.559107 0.829095i \(-0.688856\pi\)
0.829095 + 0.559107i \(0.188856\pi\)
\(458\) −7.21406 7.21406i −0.337091 0.337091i
\(459\) 0 0
\(460\) −14.7779 + 0.489332i −0.689021 + 0.0228152i
\(461\) −20.4301 −0.951525 −0.475763 0.879574i \(-0.657828\pi\)
−0.475763 + 0.879574i \(0.657828\pi\)
\(462\) 0 0
\(463\) −29.1278 + 29.1278i −1.35369 + 1.35369i −0.472187 + 0.881498i \(0.656535\pi\)
−0.881498 + 0.472187i \(0.843465\pi\)
\(464\) 2.53934 2.53934i 0.117886 0.117886i
\(465\) 0 0
\(466\) 13.8221 + 13.8221i 0.640298 + 0.640298i
\(467\) −5.32865 5.32865i −0.246580 0.246580i 0.572985 0.819566i \(-0.305785\pi\)
−0.819566 + 0.572985i \(0.805785\pi\)
\(468\) 0 0
\(469\) 2.73058 2.73058i 0.126087 0.126087i
\(470\) 15.2825 0.506041i 0.704927 0.0233419i
\(471\) 0 0
\(472\) −2.03536 2.03536i −0.0936851 0.0936851i
\(473\) 5.48688 0.252287
\(474\) 0 0
\(475\) 6.32210 0.419141i 0.290078 0.0192315i
\(476\) −0.807800 + 3.85828i −0.0370254 + 0.176844i
\(477\) 0 0
\(478\) −17.7187 17.7187i −0.810433 0.810433i
\(479\) 26.9581 26.9581i 1.23174 1.23174i 0.268452 0.963293i \(-0.413488\pi\)
0.963293 0.268452i \(-0.0865119\pi\)
\(480\) 0 0
\(481\) −14.7150 + 14.7150i −0.670946 + 0.670946i
\(482\) 13.8500 0.630849
\(483\) 0 0
\(484\) −3.90767 −0.177621
\(485\) 33.4975 1.10919i 1.52104 0.0503656i
\(486\) 0 0
\(487\) 31.1558i 1.41180i −0.708310 0.705902i \(-0.750542\pi\)
0.708310 0.705902i \(-0.249458\pi\)
\(488\) −7.28518 −0.329785
\(489\) 0 0
\(490\) −9.93592 9.29900i −0.448859 0.420086i
\(491\) 7.28365 0.328707 0.164353 0.986402i \(-0.447446\pi\)
0.164353 + 0.986402i \(0.447446\pi\)
\(492\) 0 0
\(493\) −8.10222 12.3933i −0.364905 0.558167i
\(494\) 3.49876 0.157417
\(495\) 0 0
\(496\) 2.95950 2.95950i 0.132886 0.132886i
\(497\) 2.78763 2.78763i 0.125042 0.125042i
\(498\) 0 0
\(499\) 28.8990 28.8990i 1.29370 1.29370i 0.361215 0.932482i \(-0.382362\pi\)
0.932482 0.361215i \(-0.117638\pi\)
\(500\) 1.10840 + 11.1253i 0.0495691 + 0.497537i
\(501\) 0 0
\(502\) −13.5809 + 13.5809i −0.606146 + 0.606146i
\(503\) 22.7436i 1.01409i −0.861920 0.507045i \(-0.830738\pi\)
0.861920 0.507045i \(-0.169262\pi\)
\(504\) 0 0
\(505\) −0.272603 8.23263i −0.0121307 0.366347i
\(506\) 17.6100i 0.782859i
\(507\) 0 0
\(508\) 1.97773 + 1.97773i 0.0877477 + 0.0877477i
\(509\) −16.9804 −0.752644 −0.376322 0.926489i \(-0.622811\pi\)
−0.376322 + 0.926489i \(0.622811\pi\)
\(510\) 0 0
\(511\) −4.24205 −0.187657
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 23.3368i 1.02934i
\(515\) −26.0990 + 27.8866i −1.15006 + 1.22883i
\(516\) 0 0
\(517\) 18.2113i 0.800932i
\(518\) −5.09536 + 5.09536i −0.223877 + 0.223877i
\(519\) 0 0
\(520\) 0.204320 + 6.17046i 0.00896001 + 0.270593i
\(521\) 30.8160 30.8160i 1.35007 1.35007i 0.464498 0.885574i \(-0.346235\pi\)
0.885574 0.464498i \(-0.153765\pi\)
\(522\) 0 0
\(523\) 6.05956 6.05956i 0.264966 0.264966i −0.562102 0.827068i \(-0.690007\pi\)
0.827068 + 0.562102i \(0.190007\pi\)
\(524\) −1.23324 + 1.23324i −0.0538745 + 0.0538745i
\(525\) 0 0
\(526\) 14.2229 0.620148
\(527\) −9.44282 14.4439i −0.411336 0.629188i
\(528\) 0 0
\(529\) −20.7249 −0.901082
\(530\) 23.9352 0.792555i 1.03968 0.0344264i
\(531\) 0 0
\(532\) 1.21152 0.0525259
\(533\) 6.37559i 0.276158i
\(534\) 0 0
\(535\) 0.332537 + 10.0426i 0.0143768 + 0.434180i
\(536\) 4.03910 0.174463
\(537\) 0 0
\(538\) −4.60412 −0.198498
\(539\) −11.4606 + 11.4606i −0.493643 + 0.493643i
\(540\) 0 0
\(541\) 1.72774 1.72774i 0.0742812 0.0742812i −0.668990 0.743271i \(-0.733273\pi\)
0.743271 + 0.668990i \(0.233273\pi\)
\(542\) 2.44799 + 2.44799i 0.105150 + 0.105150i
\(543\) 0 0
\(544\) −3.45106 + 2.25615i −0.147963 + 0.0967317i
\(545\) 3.33409 3.56245i 0.142817 0.152599i
\(546\) 0 0
\(547\) 21.7136 0.928408 0.464204 0.885728i \(-0.346341\pi\)
0.464204 + 0.885728i \(0.346341\pi\)
\(548\) 12.2948 + 12.2948i 0.525207 + 0.525207i
\(549\) 0 0
\(550\) 13.2865 0.880868i 0.566540 0.0375603i
\(551\) −3.21784 + 3.21784i −0.137085 + 0.137085i
\(552\) 0 0
\(553\) −4.93391 4.93391i −0.209811 0.209811i
\(554\) 7.55059 + 7.55059i 0.320794 + 0.320794i
\(555\) 0 0
\(556\) 5.63321 5.63321i 0.238901 0.238901i
\(557\) 12.4890 12.4890i 0.529177 0.529177i −0.391150 0.920327i \(-0.627923\pi\)
0.920327 + 0.391150i \(0.127923\pi\)
\(558\) 0 0
\(559\) 5.68855 0.240600
\(560\) 0.0707497 + 2.13665i 0.00298972 + 0.0902897i
\(561\) 0 0
\(562\) −3.50362 3.50362i −0.147791 0.147791i
\(563\) −20.4018 + 20.4018i −0.859832 + 0.859832i −0.991318 0.131486i \(-0.958025\pi\)
0.131486 + 0.991318i \(0.458025\pi\)
\(564\) 0 0
\(565\) 1.21246 + 36.6164i 0.0510087 + 1.54046i
\(566\) −19.5173 19.5173i −0.820375 0.820375i
\(567\) 0 0
\(568\) 4.12349 0.173018
\(569\) 33.6842i 1.41212i 0.708154 + 0.706058i \(0.249528\pi\)
−0.708154 + 0.706058i \(0.750472\pi\)
\(570\) 0 0
\(571\) −18.3652 18.3652i −0.768559 0.768559i 0.209294 0.977853i \(-0.432884\pi\)
−0.977853 + 0.209294i \(0.932884\pi\)
\(572\) 7.35301 0.307445
\(573\) 0 0
\(574\) 2.20768i 0.0921466i
\(575\) 2.18716 + 32.9900i 0.0912109 + 1.37578i
\(576\) 0 0
\(577\) 4.04107 + 4.04107i 0.168232 + 0.168232i 0.786202 0.617970i \(-0.212045\pi\)
−0.617970 + 0.786202i \(0.712045\pi\)
\(578\) 6.18905 + 15.8334i 0.257430 + 0.658581i
\(579\) 0 0
\(580\) −5.86294 5.48711i −0.243445 0.227840i
\(581\) 2.54344 + 2.54344i 0.105520 + 0.105520i
\(582\) 0 0
\(583\) 28.5223i 1.18127i
\(584\) −3.13744 3.13744i −0.129828 0.129828i
\(585\) 0 0
\(586\) 22.2338i 0.918469i
\(587\) 3.66396 + 3.66396i 0.151228 + 0.151228i 0.778666 0.627438i \(-0.215897\pi\)
−0.627438 + 0.778666i \(0.715897\pi\)
\(588\) 0 0
\(589\) −3.75027 + 3.75027i −0.154527 + 0.154527i
\(590\) −4.39810 + 4.69933i −0.181067 + 0.193469i
\(591\) 0 0
\(592\) −7.53711 −0.309773
\(593\) 22.3770 22.3770i 0.918915 0.918915i −0.0780360 0.996951i \(-0.524865\pi\)
0.996951 + 0.0780360i \(0.0248649\pi\)
\(594\) 0 0
\(595\) 8.68243 + 1.51979i 0.355945 + 0.0623052i
\(596\) 14.6670i 0.600782i
\(597\) 0 0
\(598\) 18.2572i 0.746594i
\(599\) −9.17056 −0.374699 −0.187350 0.982293i \(-0.559990\pi\)
−0.187350 + 0.982293i \(0.559990\pi\)
\(600\) 0 0
\(601\) 5.82720 + 5.82720i 0.237697 + 0.237697i 0.815896 0.578199i \(-0.196244\pi\)
−0.578199 + 0.815896i \(0.696244\pi\)
\(602\) 1.96977 0.0802819
\(603\) 0 0
\(604\) 18.0770 0.735543
\(605\) 0.289173 + 8.73303i 0.0117565 + 0.355048i
\(606\) 0 0
\(607\) 33.8794 1.37512 0.687561 0.726127i \(-0.258681\pi\)
0.687561 + 0.726127i \(0.258681\pi\)
\(608\) 0.896042 + 0.896042i 0.0363393 + 0.0363393i
\(609\) 0 0
\(610\) 0.539113 + 16.2812i 0.0218280 + 0.659208i
\(611\) 18.8807i 0.763829i
\(612\) 0 0
\(613\) 14.9677 14.9677i 0.604540 0.604540i −0.336974 0.941514i \(-0.609404\pi\)
0.941514 + 0.336974i \(0.109404\pi\)
\(614\) 7.09880i 0.286484i
\(615\) 0 0
\(616\) 2.54613 0.102586
\(617\) 13.8559i 0.557818i 0.960317 + 0.278909i \(0.0899729\pi\)
−0.960317 + 0.278909i \(0.910027\pi\)
\(618\) 0 0
\(619\) 16.1152 16.1152i 0.647726 0.647726i −0.304717 0.952443i \(-0.598562\pi\)
0.952443 + 0.304717i \(0.0985618\pi\)
\(620\) −6.83303 6.39502i −0.274421 0.256830i
\(621\) 0 0
\(622\) 8.40724i 0.337100i
\(623\) 2.78415i 0.111545i
\(624\) 0 0
\(625\) 24.7812 3.30038i 0.991248 0.132015i
\(626\) −8.69295 8.69295i −0.347440 0.347440i
\(627\) 0 0
\(628\) −4.02970 + 4.02970i −0.160803 + 0.160803i
\(629\) −6.36829 + 30.4168i −0.253920 + 1.21280i
\(630\) 0 0
\(631\) 1.02543i 0.0408219i −0.999792 0.0204110i \(-0.993503\pi\)
0.999792 0.0204110i \(-0.00649746\pi\)
\(632\) 7.29829i 0.290310i
\(633\) 0 0
\(634\) 4.09713 + 4.09713i 0.162718 + 0.162718i
\(635\) 4.27357 4.56628i 0.169591 0.181207i
\(636\) 0 0
\(637\) −11.8818 + 11.8818i −0.470776 + 0.470776i
\(638\) −6.76262 + 6.76262i −0.267735 + 0.267735i
\(639\) 0 0
\(640\) −1.52795 + 1.63260i −0.0603974 + 0.0645342i
\(641\) −14.6244 14.6244i −0.577629 0.577629i 0.356620 0.934250i \(-0.383929\pi\)
−0.934250 + 0.356620i \(0.883929\pi\)
\(642\) 0 0
\(643\) 14.0281i 0.553214i 0.960983 + 0.276607i \(0.0892101\pi\)
−0.960983 + 0.276607i \(0.910790\pi\)
\(644\) 6.32193i 0.249119i
\(645\) 0 0
\(646\) 4.37316 2.85898i 0.172060 0.112485i
\(647\) 8.09332 8.09332i 0.318181 0.318181i −0.529887 0.848068i \(-0.677766\pi\)
0.848068 + 0.529887i \(0.177766\pi\)
\(648\) 0 0
\(649\) 5.42046 + 5.42046i 0.212772 + 0.212772i
\(650\) 13.7749 0.913245i 0.540296 0.0358204i
\(651\) 0 0
\(652\) 7.12731i 0.279127i
\(653\) 48.9384i 1.91511i −0.288257 0.957553i \(-0.593076\pi\)
0.288257 0.957553i \(-0.406924\pi\)
\(654\) 0 0
\(655\) 2.84737 + 2.66484i 0.111256 + 0.104124i
\(656\) −1.63281 + 1.63281i −0.0637504 + 0.0637504i
\(657\) 0 0
\(658\) 6.53780i 0.254870i
\(659\) −22.5542 −0.878586 −0.439293 0.898344i \(-0.644771\pi\)
−0.439293 + 0.898344i \(0.644771\pi\)
\(660\) 0 0
\(661\) 32.2676i 1.25506i 0.778591 + 0.627531i \(0.215934\pi\)
−0.778591 + 0.627531i \(0.784066\pi\)
\(662\) 9.64725 9.64725i 0.374951 0.374951i
\(663\) 0 0
\(664\) 3.76229i 0.146005i
\(665\) −0.0896537 2.70755i −0.00347662 0.104994i
\(666\) 0 0
\(667\) −16.7913 16.7913i −0.650163 0.650163i
\(668\) −4.05445 −0.156872
\(669\) 0 0
\(670\) −0.298899 9.02676i −0.0115475 0.348734i
\(671\) 19.4015 0.748986
\(672\) 0 0
\(673\) 22.2768 0.858709 0.429355 0.903136i \(-0.358741\pi\)
0.429355 + 0.903136i \(0.358741\pi\)
\(674\) 0.555980 + 0.555980i 0.0214156 + 0.0214156i
\(675\) 0 0
\(676\) −5.37673 −0.206797
\(677\) 7.24062i 0.278280i 0.990273 + 0.139140i \(0.0444337\pi\)
−0.990273 + 0.139140i \(0.955566\pi\)
\(678\) 0 0
\(679\) 14.3301i 0.549941i
\(680\) 5.29753 + 7.54561i 0.203151 + 0.289361i
\(681\) 0 0
\(682\) −7.88158 + 7.88158i −0.301801 + 0.301801i
\(683\) −13.1612 −0.503600 −0.251800 0.967779i \(-0.581023\pi\)
−0.251800 + 0.967779i \(0.581023\pi\)
\(684\) 0 0
\(685\) 26.5671 28.3867i 1.01507 1.08460i
\(686\) −8.84658 + 8.84658i −0.337764 + 0.337764i
\(687\) 0 0
\(688\) 1.45685 + 1.45685i 0.0555420 + 0.0555420i
\(689\) 29.5706i 1.12655i
\(690\) 0 0
\(691\) −2.18788 2.18788i −0.0832310 0.0832310i 0.664266 0.747497i \(-0.268744\pi\)
−0.747497 + 0.664266i \(0.768744\pi\)
\(692\) 13.2079i 0.502087i
\(693\) 0 0
\(694\) 21.6446 + 21.6446i 0.821616 + 0.821616i
\(695\) −13.0062 12.1725i −0.493354 0.461728i
\(696\) 0 0
\(697\) 5.20976 + 7.96897i 0.197334 + 0.301846i
\(698\) 8.54947 + 8.54947i 0.323602 + 0.323602i
\(699\) 0 0
\(700\) 4.76983 0.316229i 0.180283 0.0119523i
\(701\) 32.8456i 1.24056i −0.784380 0.620280i \(-0.787019\pi\)
0.784380 0.620280i \(-0.212981\pi\)
\(702\) 0 0
\(703\) 9.55098 0.360222
\(704\) 1.88313 + 1.88313i 0.0709730 + 0.0709730i
\(705\) 0 0
\(706\) 8.69569i 0.327267i
\(707\) −3.52190 −0.132455
\(708\) 0 0
\(709\) 35.6948 + 35.6948i 1.34055 + 1.34055i 0.895516 + 0.445030i \(0.146807\pi\)
0.445030 + 0.895516i \(0.353193\pi\)
\(710\) −0.305144 9.21536i −0.0114518 0.345846i
\(711\) 0 0
\(712\) 2.05917 2.05917i 0.0771706 0.0771706i
\(713\) −19.5696 19.5696i −0.732889 0.732889i
\(714\) 0 0
\(715\) −0.544132 16.4328i −0.0203494 0.614553i
\(716\) 17.4142 0.650801
\(717\) 0 0
\(718\) −6.02738 + 6.02738i −0.224940 + 0.224940i
\(719\) −24.1106 + 24.1106i −0.899174 + 0.899174i −0.995363 0.0961892i \(-0.969335\pi\)
0.0961892 + 0.995363i \(0.469335\pi\)
\(720\) 0 0
\(721\) 11.5474 + 11.5474i 0.430049 + 0.430049i
\(722\) 12.2996 + 12.2996i 0.457743 + 0.457743i
\(723\) 0 0
\(724\) −7.71442 + 7.71442i −0.286704 + 0.286704i
\(725\) −11.8290 + 13.5088i −0.439317 + 0.501704i
\(726\) 0 0
\(727\) 11.4374 + 11.4374i 0.424189 + 0.424189i 0.886643 0.462454i \(-0.153031\pi\)
−0.462454 + 0.886643i \(0.653031\pi\)
\(728\) 2.63971 0.0978341
\(729\) 0 0
\(730\) −6.77950 + 7.24385i −0.250921 + 0.268107i
\(731\) 7.11021 4.64835i 0.262981 0.171925i
\(732\) 0 0
\(733\) −1.02983 1.02983i −0.0380376 0.0380376i 0.687832 0.725870i \(-0.258562\pi\)
−0.725870 + 0.687832i \(0.758562\pi\)
\(734\) −3.32245 + 3.32245i −0.122634 + 0.122634i
\(735\) 0 0
\(736\) −4.67573 + 4.67573i −0.172350 + 0.172350i
\(737\) −10.7567 −0.396228
\(738\) 0 0
\(739\) 44.1533 1.62421 0.812103 0.583514i \(-0.198323\pi\)
0.812103 + 0.583514i \(0.198323\pi\)
\(740\) 0.557756 + 16.8442i 0.0205035 + 0.619207i
\(741\) 0 0
\(742\) 10.2394i 0.375901i
\(743\) −26.6995 −0.979509 −0.489755 0.871860i \(-0.662914\pi\)
−0.489755 + 0.871860i \(0.662914\pi\)
\(744\) 0 0
\(745\) 32.7784 1.08537i 1.20091 0.0397650i
\(746\) −9.61653 −0.352086
\(747\) 0 0
\(748\) 9.19065 6.00845i 0.336044 0.219691i
\(749\) 4.29621 0.156980
\(750\) 0 0
\(751\) −6.90274 + 6.90274i −0.251885 + 0.251885i −0.821743 0.569858i \(-0.806998\pi\)
0.569858 + 0.821743i \(0.306998\pi\)
\(752\) 4.83539 4.83539i 0.176328 0.176328i
\(753\) 0 0
\(754\) −7.01118 + 7.01118i −0.255332 + 0.255332i
\(755\) −1.33772 40.3993i −0.0486847 1.47028i
\(756\) 0 0
\(757\) −1.62241 + 1.62241i −0.0589675 + 0.0589675i −0.735976 0.677008i \(-0.763276\pi\)
0.677008 + 0.735976i \(0.263276\pi\)
\(758\) 21.9174i 0.796077i
\(759\) 0 0
\(760\) 1.93621 2.06882i 0.0702336 0.0750441i
\(761\) 9.42144i 0.341527i −0.985312 0.170764i \(-0.945377\pi\)
0.985312 0.170764i \(-0.0546234\pi\)
\(762\) 0 0
\(763\) −1.47516 1.47516i −0.0534045 0.0534045i
\(764\) −26.7181 −0.966627
\(765\) 0 0
\(766\) 18.4379 0.666188
\(767\) 5.61969 + 5.61969i 0.202915 + 0.202915i
\(768\) 0 0
\(769\) 15.1876i 0.547679i 0.961775 + 0.273840i \(0.0882937\pi\)
−0.961775 + 0.273840i \(0.911706\pi\)
\(770\) −0.188417 5.69019i −0.00679007 0.205060i
\(771\) 0 0
\(772\) 9.03047i 0.325014i
\(773\) −12.3050 + 12.3050i −0.442581 + 0.442581i −0.892879 0.450297i \(-0.851318\pi\)
0.450297 + 0.892879i \(0.351318\pi\)
\(774\) 0 0
\(775\) −13.7862 + 15.7440i −0.495215 + 0.565541i
\(776\) 10.5986 10.5986i 0.380469 0.380469i
\(777\) 0 0
\(778\) −27.3446 + 27.3446i −0.980352 + 0.980352i
\(779\) 2.06909 2.06909i 0.0741327 0.0741327i
\(780\) 0 0
\(781\) −10.9814 −0.392947
\(782\) 14.9188 + 22.8200i 0.533493 + 0.816043i
\(783\) 0 0
\(784\) −6.08595 −0.217355
\(785\) 9.30395 + 8.70754i 0.332072 + 0.310786i
\(786\) 0 0
\(787\) 11.5134 0.410408 0.205204 0.978719i \(-0.434214\pi\)
0.205204 + 0.978719i \(0.434214\pi\)
\(788\) 8.00413i 0.285135i
\(789\) 0 0
\(790\) −16.3105 + 0.540083i −0.580303 + 0.0192153i
\(791\) 15.6644 0.556962
\(792\) 0 0
\(793\) 20.1146 0.714290
\(794\) 9.98524 9.98524i 0.354363 0.354363i
\(795\) 0 0
\(796\) 3.51012 3.51012i 0.124413 0.124413i
\(797\) 13.6618 + 13.6618i 0.483926 + 0.483926i 0.906383 0.422457i \(-0.138832\pi\)
−0.422457 + 0.906383i \(0.638832\pi\)
\(798\) 0 0
\(799\) −15.4282 23.5993i −0.545809 0.834881i
\(800\) 3.76167 + 3.29390i 0.132995 + 0.116457i
\(801\) 0 0
\(802\) −13.1160 −0.463142
\(803\) 8.35544 + 8.35544i 0.294857 + 0.294857i
\(804\) 0 0
\(805\) 14.1285 0.467831i 0.497965 0.0164889i
\(806\) −8.17127 + 8.17127i −0.287821 + 0.287821i
\(807\) 0 0
\(808\) −2.60481 2.60481i −0.0916370 0.0916370i
\(809\) 25.5552 + 25.5552i 0.898472 + 0.898472i 0.995301 0.0968287i \(-0.0308699\pi\)
−0.0968287 + 0.995301i \(0.530870\pi\)
\(810\) 0 0
\(811\) −22.9303 + 22.9303i −0.805190 + 0.805190i −0.983902 0.178711i \(-0.942807\pi\)
0.178711 + 0.983902i \(0.442807\pi\)
\(812\) −2.42776 + 2.42776i −0.0851977 + 0.0851977i
\(813\) 0 0
\(814\) 20.0724 0.703537
\(815\) −15.9284 + 0.527430i −0.557948 + 0.0184751i
\(816\) 0 0
\(817\) −1.84612 1.84612i −0.0645875 0.0645875i
\(818\) −8.10346 + 8.10346i −0.283331 + 0.283331i
\(819\) 0 0
\(820\) 3.76990 + 3.52824i 0.131651 + 0.123211i
\(821\) −29.7007 29.7007i −1.03656 1.03656i −0.999306 0.0372565i \(-0.988138\pi\)
−0.0372565 0.999306i \(-0.511862\pi\)
\(822\) 0 0
\(823\) −18.0398 −0.628828 −0.314414 0.949286i \(-0.601808\pi\)
−0.314414 + 0.949286i \(0.601808\pi\)
\(824\) 17.0811i 0.595048i
\(825\) 0 0
\(826\) 1.94593 + 1.94593i 0.0677075 + 0.0677075i
\(827\) 17.0469 0.592778 0.296389 0.955067i \(-0.404218\pi\)
0.296389 + 0.955067i \(0.404218\pi\)
\(828\) 0 0
\(829\) 23.5645i 0.818428i 0.912439 + 0.409214i \(0.134197\pi\)
−0.912439 + 0.409214i \(0.865803\pi\)
\(830\) 8.40812 0.278414i 0.291850 0.00966390i
\(831\) 0 0
\(832\) 1.95234 + 1.95234i 0.0676852 + 0.0676852i
\(833\) −5.14217 + 24.5605i −0.178166 + 0.850970i
\(834\) 0 0
\(835\) 0.300035 + 9.06107i 0.0103831 + 0.313571i
\(836\) −2.38629 2.38629i −0.0825315 0.0825315i
\(837\) 0 0
\(838\) 17.0465i 0.588863i
\(839\) 22.0944 + 22.0944i 0.762782 + 0.762782i 0.976824 0.214043i \(-0.0686631\pi\)
−0.214043 + 0.976824i \(0.568663\pi\)
\(840\) 0 0
\(841\) 16.1035i 0.555294i
\(842\) −19.0831 19.0831i −0.657648 0.657648i
\(843\) 0 0
\(844\) −11.3150 + 11.3150i −0.389477 + 0.389477i
\(845\) 0.397885 + 12.0161i 0.0136877 + 0.413368i
\(846\) 0 0
\(847\) 3.73597 0.128369
\(848\) 7.57312 7.57312i 0.260062 0.260062i
\(849\) 0 0
\(850\) 16.4712 12.3975i 0.564959 0.425232i
\(851\) 49.8390i 1.70846i
\(852\) 0 0
\(853\) 30.9121i 1.05841i 0.848494 + 0.529205i \(0.177510\pi\)
−0.848494 + 0.529205i \(0.822490\pi\)
\(854\) 6.96507 0.238340
\(855\) 0 0
\(856\) 3.17750 + 3.17750i 0.108605 + 0.108605i
\(857\) 40.8719 1.39616 0.698079 0.716021i \(-0.254039\pi\)
0.698079 + 0.716021i \(0.254039\pi\)
\(858\) 0 0
\(859\) 6.70638 0.228819 0.114409 0.993434i \(-0.463502\pi\)
0.114409 + 0.993434i \(0.463502\pi\)
\(860\) 3.14803 3.36365i 0.107347 0.114699i
\(861\) 0 0
\(862\) −4.07684 −0.138858
\(863\) 15.6237 + 15.6237i 0.531838 + 0.531838i 0.921119 0.389281i \(-0.127276\pi\)
−0.389281 + 0.921119i \(0.627276\pi\)
\(864\) 0 0
\(865\) 29.5175 0.977399i 1.00362 0.0332326i
\(866\) 0.507776i 0.0172549i
\(867\) 0 0
\(868\) −2.82946 + 2.82946i −0.0960383 + 0.0960383i
\(869\) 19.4364i 0.659334i
\(870\) 0 0
\(871\) −11.1521 −0.377874
\(872\) 2.18207i 0.0738944i
\(873\) 0 0
\(874\) 5.92506 5.92506i 0.200418 0.200418i
\(875\) −1.05970 10.6364i −0.0358243 0.359577i
\(876\) 0 0
\(877\) 41.5253i 1.40221i 0.713058 + 0.701105i \(0.247309\pi\)
−0.713058 + 0.701105i \(0.752691\pi\)
\(878\) 14.0165i 0.473034i
\(879\) 0 0
\(880\) 4.06914 4.34785i 0.137171 0.146566i
\(881\) 15.5873 + 15.5873i 0.525149 + 0.525149i 0.919122 0.393973i \(-0.128900\pi\)
−0.393973 + 0.919122i \(0.628900\pi\)
\(882\) 0 0
\(883\) 37.5067 37.5067i 1.26220 1.26220i 0.312175 0.950024i \(-0.398942\pi\)
0.950024 0.312175i \(-0.101058\pi\)
\(884\) 9.52846 6.22929i 0.320477 0.209514i
\(885\) 0 0
\(886\) 36.3563i 1.22141i
\(887\) 2.15059i 0.0722097i −0.999348 0.0361049i \(-0.988505\pi\)
0.999348 0.0361049i \(-0.0114950\pi\)
\(888\) 0 0
\(889\) −1.89083 1.89083i −0.0634165 0.0634165i
\(890\) −4.75430 4.44954i −0.159364 0.149149i
\(891\) 0 0
\(892\) 19.5450 19.5450i 0.654416 0.654416i
\(893\) −6.12738 + 6.12738i −0.205045 + 0.205045i
\(894\) 0 0
\(895\) −1.28868 38.9181i −0.0430757 1.30089i
\(896\) 0.676037 + 0.676037i 0.0225848 + 0.0225848i
\(897\) 0 0
\(898\) 24.9798i 0.833587i
\(899\) 15.0304i 0.501291i
\(900\) 0 0
\(901\) −24.1634 36.9609i −0.805000 1.23134i
\(902\) 4.34840 4.34840i 0.144786 0.144786i
\(903\) 0 0
\(904\) 11.5855 + 11.5855i 0.385327 + 0.385327i
\(905\) 17.8114 + 16.6696i 0.592071 + 0.554118i
\(906\) 0 0
\(907\) 19.0637i 0.632999i −0.948593 0.316500i \(-0.897492\pi\)
0.948593 0.316500i \(-0.102508\pi\)
\(908\) 25.5978i 0.849491i
\(909\) 0 0
\(910\) −0.195342 5.89934i −0.00647552 0.195561i
\(911\) −22.4893 + 22.4893i −0.745104 + 0.745104i −0.973555 0.228451i \(-0.926634\pi\)
0.228451 + 0.973555i \(0.426634\pi\)
\(912\) 0 0
\(913\) 10.0195i 0.331597i
\(914\) −8.16241 −0.269988
\(915\) 0 0
\(916\) 10.2022i 0.337091i
\(917\) 1.17906 1.17906i 0.0389358 0.0389358i
\(918\) 0 0
\(919\) 49.0603i 1.61835i 0.587568 + 0.809175i \(0.300085\pi\)
−0.587568 + 0.809175i \(0.699915\pi\)
\(920\) 10.7955 + 10.1035i 0.355918 + 0.333103i
\(921\) 0 0
\(922\) 14.4463 + 14.4463i 0.475763 + 0.475763i
\(923\) −11.3851 −0.374744
\(924\) 0 0
\(925\) 37.6030 2.49299i 1.23638 0.0819691i
\(926\) 41.1930 1.35369
\(927\) 0 0
\(928\) −3.59117 −0.117886
\(929\) −20.9340 20.9340i −0.686821 0.686821i 0.274707 0.961528i \(-0.411419\pi\)
−0.961528 + 0.274707i \(0.911419\pi\)
\(930\) 0 0
\(931\) 7.71208 0.252753
\(932\) 19.5475i 0.640298i
\(933\) 0 0
\(934\) 7.53584i 0.246580i
\(935\) −14.1081 20.0950i −0.461383 0.657178i
\(936\) 0 0
\(937\) 11.9941 11.9941i 0.391830 0.391830i −0.483509 0.875339i \(-0.660638\pi\)
0.875339 + 0.483509i \(0.160638\pi\)
\(938\) −3.86163 −0.126087
\(939\) 0 0
\(940\) −11.1642 10.4485i −0.364135 0.340793i
\(941\) 25.9135 25.9135i 0.844755 0.844755i −0.144718 0.989473i \(-0.546227\pi\)
0.989473 + 0.144718i \(0.0462274\pi\)
\(942\) 0 0
\(943\) 10.7969 + 10.7969i 0.351596 + 0.351596i
\(944\) 2.87844i 0.0936851i
\(945\) 0 0
\(946\) −3.87981 3.87981i −0.126143 0.126143i
\(947\) 22.2402i 0.722709i 0.932428 + 0.361355i \(0.117686\pi\)
−0.932428 + 0.361355i \(0.882314\pi\)
\(948\) 0 0
\(949\) 8.66255 + 8.66255i 0.281198 + 0.281198i
\(950\) −4.76677 4.17402i −0.154655 0.135423i
\(951\) 0 0
\(952\) 3.29942 2.15702i 0.106935 0.0699093i
\(953\) 5.72875 + 5.72875i 0.185572 + 0.185572i 0.793779 0.608207i \(-0.208111\pi\)
−0.608207 + 0.793779i \(0.708111\pi\)
\(954\) 0 0
\(955\) 1.97718 + 59.7108i 0.0639799 + 1.93220i
\(956\) 25.0580i 0.810433i
\(957\) 0 0
\(958\) −38.1244 −1.23174
\(959\) −11.7545 11.7545i −0.379574 0.379574i
\(960\) 0 0
\(961\) 13.4827i 0.434926i
\(962\) 20.8102 0.670946
\(963\) 0 0
\(964\) −9.79340 9.79340i −0.315424 0.315424i
\(965\) −20.1817 + 0.668267i −0.649671 + 0.0215123i
\(966\) 0 0
\(967\) 0.228906 0.228906i 0.00736112 0.00736112i −0.703417 0.710778i \(-0.748343\pi\)
0.710778 + 0.703417i \(0.248343\pi\)
\(968\) 2.76314 + 2.76314i 0.0888107 + 0.0888107i
\(969\) 0 0
\(970\) −24.4706 22.9020i −0.785704 0.735339i
\(971\) −41.6687 −1.33721 −0.668606 0.743617i \(-0.733109\pi\)
−0.668606 + 0.743617i \(0.733109\pi\)
\(972\) 0 0
\(973\) −5.38569 + 5.38569i −0.172657 + 0.172657i
\(974\) −22.0305 + 22.0305i −0.705902 + 0.705902i
\(975\) 0 0
\(976\) 5.15140 + 5.15140i 0.164892 + 0.164892i
\(977\) −0.780819 0.780819i −0.0249806 0.0249806i 0.694506 0.719487i \(-0.255623\pi\)
−0.719487 + 0.694506i \(0.755623\pi\)
\(978\) 0 0
\(979\) −5.48386 + 5.48386i −0.175265 + 0.175265i
\(980\) 0.450368 + 13.6011i 0.0143865 + 0.434472i
\(981\) 0 0
\(982\) −5.15032 5.15032i −0.164353 0.164353i
\(983\) 58.2275 1.85717 0.928584 0.371123i \(-0.121027\pi\)
0.928584 + 0.371123i \(0.121027\pi\)
\(984\) 0 0
\(985\) 17.8880 0.592316i 0.569958 0.0188728i
\(986\) −3.03427 + 14.4925i −0.0966308 + 0.461536i
\(987\) 0 0
\(988\) −2.47400 2.47400i −0.0787083 0.0787083i
\(989\) 9.63341 9.63341i 0.306325 0.306325i
\(990\) 0 0
\(991\) 11.5623 11.5623i 0.367288 0.367288i −0.499199 0.866487i \(-0.666372\pi\)
0.866487 + 0.499199i \(0.166372\pi\)
\(992\) −4.18537 −0.132886
\(993\) 0 0
\(994\) −3.94231 −0.125042
\(995\) −8.10431 7.58481i −0.256924 0.240455i
\(996\) 0 0
\(997\) 55.7008i 1.76406i −0.471190 0.882032i \(-0.656175\pi\)
0.471190 0.882032i \(-0.343825\pi\)
\(998\) −40.8694 −1.29370
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1530.2.j.c.1007.9 yes 40
3.2 odd 2 inner 1530.2.j.c.1007.14 yes 40
5.3 odd 4 1530.2.u.c.1313.9 yes 40
15.8 even 4 1530.2.u.c.1313.14 yes 40
17.13 even 4 1530.2.u.c.557.14 yes 40
51.47 odd 4 1530.2.u.c.557.9 yes 40
85.13 odd 4 inner 1530.2.j.c.863.14 yes 40
255.98 even 4 inner 1530.2.j.c.863.9 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1530.2.j.c.863.9 40 255.98 even 4 inner
1530.2.j.c.863.14 yes 40 85.13 odd 4 inner
1530.2.j.c.1007.9 yes 40 1.1 even 1 trivial
1530.2.j.c.1007.14 yes 40 3.2 odd 2 inner
1530.2.u.c.557.9 yes 40 51.47 odd 4
1530.2.u.c.557.14 yes 40 17.13 even 4
1530.2.u.c.1313.9 yes 40 5.3 odd 4
1530.2.u.c.1313.14 yes 40 15.8 even 4