Newspace parameters
| Level: | \( N \) | \(=\) | \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1530.u (of order \(4\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(12.2171115093\) |
| Analytic rank: | \(0\) |
| Dimension: | \(40\) |
| Relative dimension: | \(20\) over \(\Q(i)\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 557.1 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −0.844240 | + | 2.07057i | 0 | 5.17497 | 0.707107 | − | 0.707107i | 0 | 2.06108 | − | 0.867146i | ||||||||||
| 557.2 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −1.92688 | + | 1.13451i | 0 | −2.08205 | 0.707107 | − | 0.707107i | 0 | 2.16473 | + | 0.560290i | ||||||||||
| 557.3 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −1.98486 | − | 1.02972i | 0 | 1.10043 | 0.707107 | − | 0.707107i | 0 | 0.675385 | + | 2.13163i | ||||||||||
| 557.4 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −1.72967 | − | 1.41713i | 0 | 3.01070 | 0.707107 | − | 0.707107i | 0 | 0.220996 | + | 2.22512i | ||||||||||
| 557.5 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −1.46080 | + | 1.69295i | 0 | −4.17229 | 0.707107 | − | 0.707107i | 0 | 2.23003 | − | 0.164152i | ||||||||||
| 557.6 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 1.66962 | + | 1.48741i | 0 | 2.66970 | 0.707107 | − | 0.707107i | 0 | −0.128842 | − | 2.23235i | ||||||||||
| 557.7 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 2.23606 | − | 0.00470086i | 0 | 0.105515 | 0.707107 | − | 0.707107i | 0 | −1.58446 | − | 1.57781i | ||||||||||
| 557.8 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 1.53663 | + | 1.62443i | 0 | −0.784820 | 0.707107 | − | 0.707107i | 0 | 0.0620885 | − | 2.23521i | ||||||||||
| 557.9 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −0.0740013 | − | 2.23484i | 0 | −0.956061 | 0.707107 | − | 0.707107i | 0 | −1.52795 | + | 1.63260i | ||||||||||
| 557.10 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 1.16393 | − | 1.90926i | 0 | −4.06609 | 0.707107 | − | 0.707107i | 0 | −2.17307 | + | 0.527026i | ||||||||||
| 557.11 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 1.92688 | − | 1.13451i | 0 | −2.08205 | −0.707107 | + | 0.707107i | 0 | 2.16473 | + | 0.560290i | ||||||||||
| 557.12 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 0.844240 | − | 2.07057i | 0 | 5.17497 | −0.707107 | + | 0.707107i | 0 | 2.06108 | − | 0.867146i | ||||||||||
| 557.13 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −1.66962 | − | 1.48741i | 0 | 2.66970 | −0.707107 | + | 0.707107i | 0 | −0.128842 | − | 2.23235i | ||||||||||
| 557.14 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 0.0740013 | + | 2.23484i | 0 | −0.956061 | −0.707107 | + | 0.707107i | 0 | −1.52795 | + | 1.63260i | ||||||||||
| 557.15 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 1.98486 | + | 1.02972i | 0 | 1.10043 | −0.707107 | + | 0.707107i | 0 | 0.675385 | + | 2.13163i | ||||||||||
| 557.16 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −1.16393 | + | 1.90926i | 0 | −4.06609 | −0.707107 | + | 0.707107i | 0 | −2.17307 | + | 0.527026i | ||||||||||
| 557.17 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −1.53663 | − | 1.62443i | 0 | −0.784820 | −0.707107 | + | 0.707107i | 0 | 0.0620885 | − | 2.23521i | ||||||||||
| 557.18 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −2.23606 | + | 0.00470086i | 0 | 0.105515 | −0.707107 | + | 0.707107i | 0 | −1.58446 | − | 1.57781i | ||||||||||
| 557.19 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 1.46080 | − | 1.69295i | 0 | −4.17229 | −0.707107 | + | 0.707107i | 0 | 2.23003 | − | 0.164152i | ||||||||||
| 557.20 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 1.72967 | + | 1.41713i | 0 | 3.01070 | −0.707107 | + | 0.707107i | 0 | 0.220996 | + | 2.22512i | ||||||||||
| See all 40 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 85.i | odd | 4 | 1 | inner |
| 255.r | even | 4 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 1530.2.u.c | yes | 40 |
| 3.b | odd | 2 | 1 | inner | 1530.2.u.c | yes | 40 |
| 5.c | odd | 4 | 1 | 1530.2.j.c | ✓ | 40 | |
| 15.e | even | 4 | 1 | 1530.2.j.c | ✓ | 40 | |
| 17.c | even | 4 | 1 | 1530.2.j.c | ✓ | 40 | |
| 51.f | odd | 4 | 1 | 1530.2.j.c | ✓ | 40 | |
| 85.i | odd | 4 | 1 | inner | 1530.2.u.c | yes | 40 |
| 255.r | even | 4 | 1 | inner | 1530.2.u.c | yes | 40 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 1530.2.j.c | ✓ | 40 | 5.c | odd | 4 | 1 | |
| 1530.2.j.c | ✓ | 40 | 15.e | even | 4 | 1 | |
| 1530.2.j.c | ✓ | 40 | 17.c | even | 4 | 1 | |
| 1530.2.j.c | ✓ | 40 | 51.f | odd | 4 | 1 | |
| 1530.2.u.c | yes | 40 | 1.a | even | 1 | 1 | trivial |
| 1530.2.u.c | yes | 40 | 3.b | odd | 2 | 1 | inner |
| 1530.2.u.c | yes | 40 | 85.i | odd | 4 | 1 | inner |
| 1530.2.u.c | yes | 40 | 255.r | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{10} - 42T_{7}^{8} - 12T_{7}^{7} + 520T_{7}^{6} + 168T_{7}^{5} - 2104T_{7}^{4} - 992T_{7}^{3} + 1920T_{7}^{2} + 1024T_{7} - 128 \)
acting on \(S_{2}^{\mathrm{new}}(1530, [\chi])\).