| L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (−1.98 − 1.02i)5-s + 1.10·7-s + (0.707 − 0.707i)8-s + (0.675 + 2.13i)10-s + (−2.77 − 2.77i)11-s + (−2.44 + 2.44i)13-s + (−0.778 − 0.778i)14-s − 1.00·16-s + (−2.61 + 3.18i)17-s − 0.349·19-s + (1.02 − 1.98i)20-s + 3.92i·22-s + 7.52·23-s + ⋯ |
| L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (−0.887 − 0.460i)5-s + 0.415·7-s + (0.250 − 0.250i)8-s + (0.213 + 0.674i)10-s + (−0.836 − 0.836i)11-s + (−0.679 + 0.679i)13-s + (−0.207 − 0.207i)14-s − 0.250·16-s + (−0.633 + 0.773i)17-s − 0.0801·19-s + (0.230 − 0.443i)20-s + 0.836i·22-s + 1.56·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.893 - 0.449i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.893 - 0.449i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.7473606312\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7473606312\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.98 + 1.02i)T \) |
| 17 | \( 1 + (2.61 - 3.18i)T \) |
| good | 7 | \( 1 - 1.10T + 7T^{2} \) |
| 11 | \( 1 + (2.77 + 2.77i)T + 11iT^{2} \) |
| 13 | \( 1 + (2.44 - 2.44i)T - 13iT^{2} \) |
| 19 | \( 1 + 0.349T + 19T^{2} \) |
| 23 | \( 1 - 7.52T + 23T^{2} \) |
| 29 | \( 1 + (3.76 + 3.76i)T + 29iT^{2} \) |
| 31 | \( 1 + (-6.62 - 6.62i)T + 31iT^{2} \) |
| 37 | \( 1 + 8.31iT - 37T^{2} \) |
| 41 | \( 1 + (-3.79 - 3.79i)T + 41iT^{2} \) |
| 43 | \( 1 + (-0.826 - 0.826i)T + 43iT^{2} \) |
| 47 | \( 1 + (4.79 - 4.79i)T - 47iT^{2} \) |
| 53 | \( 1 + (-1.01 + 1.01i)T - 53iT^{2} \) |
| 59 | \( 1 - 8.82iT - 59T^{2} \) |
| 61 | \( 1 + (7.17 - 7.17i)T - 61iT^{2} \) |
| 67 | \( 1 + (-3.18 - 3.18i)T + 67iT^{2} \) |
| 71 | \( 1 + (-2.14 + 2.14i)T - 71iT^{2} \) |
| 73 | \( 1 - 13.2T + 73T^{2} \) |
| 79 | \( 1 + (-9.26 - 9.26i)T + 79iT^{2} \) |
| 83 | \( 1 + (-6.52 + 6.52i)T - 83iT^{2} \) |
| 89 | \( 1 - 5.03T + 89T^{2} \) |
| 97 | \( 1 - 11.4iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.320730164594816484689719976344, −8.765633184411405745237727951986, −8.026759172454261410512593634796, −7.43938910189947720292532723508, −6.41689491305705725556363481223, −5.11599702356085550871040185942, −4.44785944812705358990264895015, −3.41491195795464900775476744225, −2.37242011981007404872190481581, −0.969406349137267832615177644036,
0.43959324827177784699652969176, 2.25070665677415386992489913522, 3.23868149129133781931325339004, 4.78450126209169703186369153118, 4.98269965094373571677040641720, 6.44684682635552900938060104492, 7.20261659501745935795773834528, 7.73789182532965721388283857407, 8.368520195847885153508138715669, 9.400358523759032838092164703044