Properties

Label 153.3.j.a.86.14
Level $153$
Weight $3$
Character 153.86
Analytic conductor $4.169$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,3,Mod(86,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.86"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 153.j (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16894804471\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 86.14
Character \(\chi\) \(=\) 153.86
Dual form 153.3.j.a.137.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.510714 + 0.294861i) q^{2} +(-1.38625 + 2.66051i) q^{3} +(-1.82611 + 3.16292i) q^{4} +(4.01198 + 2.31632i) q^{5} +(-0.0765013 - 1.76751i) q^{6} +(2.98103 + 5.16330i) q^{7} -4.51269i q^{8} +(-5.15661 - 7.37627i) q^{9} -2.73197 q^{10} +(-5.45790 + 3.15112i) q^{11} +(-5.88352 - 9.24300i) q^{12} +(-0.650693 + 1.12703i) q^{13} +(-3.04491 - 1.75798i) q^{14} +(-11.7242 + 7.46290i) q^{15} +(-5.97384 - 10.3470i) q^{16} +4.12311i q^{17} +(4.80853 + 2.24669i) q^{18} -25.8689 q^{19} +(-14.6527 + 8.45972i) q^{20} +(-17.8695 + 0.773424i) q^{21} +(1.85829 - 3.21865i) q^{22} +(24.7706 + 14.3013i) q^{23} +(12.0060 + 6.25573i) q^{24} +(-1.76936 - 3.06461i) q^{25} -0.767456i q^{26} +(26.7730 - 3.49382i) q^{27} -21.7748 q^{28} +(21.3205 - 12.3094i) q^{29} +(3.78720 - 7.26842i) q^{30} +(-7.27488 + 12.6005i) q^{31} +(21.7343 + 12.5483i) q^{32} +(-0.817554 - 18.8890i) q^{33} +(-1.21574 - 2.10573i) q^{34} +27.6201i q^{35} +(32.7471 - 2.84004i) q^{36} -36.3386 q^{37} +(13.2116 - 7.62773i) q^{38} +(-2.09646 - 3.29353i) q^{39} +(10.4528 - 18.1048i) q^{40} +(42.5451 + 24.5634i) q^{41} +(8.89814 - 5.66401i) q^{42} +(19.2635 + 33.3654i) q^{43} -23.0172i q^{44} +(-3.60242 - 41.5378i) q^{45} -16.8676 q^{46} +(-13.8385 + 7.98969i) q^{47} +(35.8095 - 1.54990i) q^{48} +(6.72689 - 11.6513i) q^{49} +(1.80727 + 1.04343i) q^{50} +(-10.9696 - 5.71567i) q^{51} +(-2.37648 - 4.11618i) q^{52} +23.1681i q^{53} +(-12.6432 + 9.67866i) q^{54} -29.1960 q^{55} +(23.3004 - 13.4525i) q^{56} +(35.8608 - 68.8244i) q^{57} +(-7.25913 + 12.5732i) q^{58} +(7.88857 + 4.55447i) q^{59} +(-2.19486 - 50.7108i) q^{60} +(33.8608 + 58.6486i) q^{61} -8.58032i q^{62} +(22.7139 - 48.6140i) q^{63} +32.9907 q^{64} +(-5.22113 + 3.01442i) q^{65} +(5.98718 + 9.40585i) q^{66} +(17.7786 - 30.7934i) q^{67} +(-13.0411 - 7.52926i) q^{68} +(-72.3871 + 46.0772i) q^{69} +(-8.14408 - 14.1060i) q^{70} +120.461i q^{71} +(-33.2868 + 23.2702i) q^{72} -23.5416 q^{73} +(18.5587 - 10.7148i) q^{74} +(10.6062 - 0.459056i) q^{75} +(47.2395 - 81.8212i) q^{76} +(-32.5404 - 18.7872i) q^{77} +(2.04182 + 1.06389i) q^{78} +(67.7420 + 117.333i) q^{79} -55.3492i q^{80} +(-27.8188 + 76.0731i) q^{81} -28.9712 q^{82} +(51.8259 - 29.9217i) q^{83} +(30.1854 - 57.9321i) q^{84} +(-9.55042 + 16.5418i) q^{85} +(-19.6763 - 11.3601i) q^{86} +(3.19366 + 73.7874i) q^{87} +(14.2200 + 24.6298i) q^{88} -71.9875i q^{89} +(14.0877 + 20.1517i) q^{90} -7.75894 q^{91} +(-90.4679 + 52.2317i) q^{92} +(-23.4388 - 36.8223i) q^{93} +(4.71170 - 8.16090i) q^{94} +(-103.785 - 59.9205i) q^{95} +(-63.5140 + 40.4291i) q^{96} +(-77.2067 - 133.726i) q^{97} +7.93399i q^{98} +(51.3878 + 24.0099i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 2 q^{3} + 64 q^{4} - 18 q^{5} - 22 q^{6} + 2 q^{7} - 6 q^{9} - 44 q^{12} - 10 q^{13} + 72 q^{14} - 36 q^{15} - 128 q^{16} - 38 q^{18} - 28 q^{19} - 18 q^{20} + 88 q^{21} + 144 q^{23} - 42 q^{24}+ \cdots + 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.510714 + 0.294861i −0.255357 + 0.147431i −0.622215 0.782847i \(-0.713767\pi\)
0.366858 + 0.930277i \(0.380434\pi\)
\(3\) −1.38625 + 2.66051i −0.462084 + 0.886836i
\(4\) −1.82611 + 3.16292i −0.456528 + 0.790730i
\(5\) 4.01198 + 2.31632i 0.802396 + 0.463263i 0.844308 0.535858i \(-0.180012\pi\)
−0.0419125 + 0.999121i \(0.513345\pi\)
\(6\) −0.0765013 1.76751i −0.0127502 0.294585i
\(7\) 2.98103 + 5.16330i 0.425862 + 0.737614i 0.996500 0.0835870i \(-0.0266376\pi\)
−0.570639 + 0.821201i \(0.693304\pi\)
\(8\) 4.51269i 0.564086i
\(9\) −5.15661 7.37627i −0.572956 0.819586i
\(10\) −2.73197 −0.273197
\(11\) −5.45790 + 3.15112i −0.496173 + 0.286466i −0.727132 0.686498i \(-0.759147\pi\)
0.230959 + 0.972964i \(0.425814\pi\)
\(12\) −5.88352 9.24300i −0.490294 0.770250i
\(13\) −0.650693 + 1.12703i −0.0500533 + 0.0866948i −0.889967 0.456026i \(-0.849272\pi\)
0.839913 + 0.542721i \(0.182606\pi\)
\(14\) −3.04491 1.75798i −0.217494 0.125570i
\(15\) −11.7242 + 7.46290i −0.781613 + 0.497527i
\(16\) −5.97384 10.3470i −0.373365 0.646687i
\(17\) 4.12311i 0.242536i
\(18\) 4.80853 + 2.24669i 0.267141 + 0.124816i
\(19\) −25.8689 −1.36152 −0.680760 0.732507i \(-0.738350\pi\)
−0.680760 + 0.732507i \(0.738350\pi\)
\(20\) −14.6527 + 8.45972i −0.732633 + 0.422986i
\(21\) −17.8695 + 0.773424i −0.850927 + 0.0368297i
\(22\) 1.85829 3.21865i 0.0844676 0.146302i
\(23\) 24.7706 + 14.3013i 1.07698 + 0.621796i 0.930081 0.367355i \(-0.119737\pi\)
0.146902 + 0.989151i \(0.453070\pi\)
\(24\) 12.0060 + 6.25573i 0.500252 + 0.260655i
\(25\) −1.76936 3.06461i −0.0707742 0.122585i
\(26\) 0.767456i 0.0295175i
\(27\) 26.7730 3.49382i 0.991592 0.129401i
\(28\) −21.7748 −0.777672
\(29\) 21.3205 12.3094i 0.735191 0.424462i −0.0851275 0.996370i \(-0.527130\pi\)
0.820318 + 0.571908i \(0.193796\pi\)
\(30\) 3.78720 7.26842i 0.126240 0.242281i
\(31\) −7.27488 + 12.6005i −0.234673 + 0.406466i −0.959178 0.282804i \(-0.908735\pi\)
0.724504 + 0.689270i \(0.242069\pi\)
\(32\) 21.7343 + 12.5483i 0.679196 + 0.392134i
\(33\) −0.817554 18.8890i −0.0247744 0.572395i
\(34\) −1.21574 2.10573i −0.0357572 0.0619332i
\(35\) 27.6201i 0.789145i
\(36\) 32.7471 2.84004i 0.909642 0.0788899i
\(37\) −36.3386 −0.982125 −0.491062 0.871124i \(-0.663391\pi\)
−0.491062 + 0.871124i \(0.663391\pi\)
\(38\) 13.2116 7.62773i 0.347674 0.200730i
\(39\) −2.09646 3.29353i −0.0537553 0.0844494i
\(40\) 10.4528 18.1048i 0.261320 0.452620i
\(41\) 42.5451 + 24.5634i 1.03768 + 0.599107i 0.919177 0.393846i \(-0.128856\pi\)
0.118508 + 0.992953i \(0.462189\pi\)
\(42\) 8.89814 5.66401i 0.211861 0.134857i
\(43\) 19.2635 + 33.3654i 0.447988 + 0.775939i 0.998255 0.0590502i \(-0.0188072\pi\)
−0.550267 + 0.834989i \(0.685474\pi\)
\(44\) 23.0172i 0.523119i
\(45\) −3.60242 41.5378i −0.0800537 0.923062i
\(46\) −16.8676 −0.366687
\(47\) −13.8385 + 7.98969i −0.294437 + 0.169993i −0.639941 0.768424i \(-0.721041\pi\)
0.345504 + 0.938417i \(0.387708\pi\)
\(48\) 35.8095 1.54990i 0.746031 0.0322896i
\(49\) 6.72689 11.6513i 0.137283 0.237782i
\(50\) 1.80727 + 1.04343i 0.0361454 + 0.0208686i
\(51\) −10.9696 5.71567i −0.215089 0.112072i
\(52\) −2.37648 4.11618i −0.0457015 0.0791573i
\(53\) 23.1681i 0.437135i 0.975822 + 0.218567i \(0.0701383\pi\)
−0.975822 + 0.218567i \(0.929862\pi\)
\(54\) −12.6432 + 9.67866i −0.234133 + 0.179234i
\(55\) −29.1960 −0.530836
\(56\) 23.3004 13.4525i 0.416078 0.240223i
\(57\) 35.8608 68.8244i 0.629137 1.20744i
\(58\) −7.25913 + 12.5732i −0.125157 + 0.216779i
\(59\) 7.88857 + 4.55447i 0.133705 + 0.0771944i 0.565360 0.824844i \(-0.308737\pi\)
−0.431656 + 0.902038i \(0.642070\pi\)
\(60\) −2.19486 50.7108i −0.0365810 0.845180i
\(61\) 33.8608 + 58.6486i 0.555094 + 0.961452i 0.997896 + 0.0648323i \(0.0206512\pi\)
−0.442802 + 0.896620i \(0.646015\pi\)
\(62\) 8.58032i 0.138392i
\(63\) 22.7139 48.6140i 0.360538 0.771651i
\(64\) 32.9907 0.515480
\(65\) −5.22113 + 3.01442i −0.0803251 + 0.0463757i
\(66\) 5.98718 + 9.40585i 0.0907149 + 0.142513i
\(67\) 17.7786 30.7934i 0.265352 0.459603i −0.702304 0.711877i \(-0.747845\pi\)
0.967656 + 0.252274i \(0.0811785\pi\)
\(68\) −13.0411 7.52926i −0.191780 0.110724i
\(69\) −72.3871 + 46.0772i −1.04909 + 0.667785i
\(70\) −8.14408 14.1060i −0.116344 0.201514i
\(71\) 120.461i 1.69664i 0.529487 + 0.848318i \(0.322385\pi\)
−0.529487 + 0.848318i \(0.677615\pi\)
\(72\) −33.2868 + 23.2702i −0.462317 + 0.323197i
\(73\) −23.5416 −0.322488 −0.161244 0.986915i \(-0.551551\pi\)
−0.161244 + 0.986915i \(0.551551\pi\)
\(74\) 18.5587 10.7148i 0.250793 0.144795i
\(75\) 10.6062 0.459056i 0.141416 0.00612075i
\(76\) 47.2395 81.8212i 0.621573 1.07660i
\(77\) −32.5404 18.7872i −0.422602 0.243990i
\(78\) 2.04182 + 1.06389i 0.0261772 + 0.0136396i
\(79\) 67.7420 + 117.333i 0.857494 + 1.48522i 0.874312 + 0.485365i \(0.161313\pi\)
−0.0168179 + 0.999859i \(0.505354\pi\)
\(80\) 55.3492i 0.691865i
\(81\) −27.8188 + 76.0731i −0.343442 + 0.939174i
\(82\) −28.9712 −0.353307
\(83\) 51.8259 29.9217i 0.624409 0.360503i −0.154175 0.988044i \(-0.549272\pi\)
0.778583 + 0.627541i \(0.215939\pi\)
\(84\) 30.1854 57.9321i 0.359350 0.689668i
\(85\) −9.55042 + 16.5418i −0.112358 + 0.194610i
\(86\) −19.6763 11.3601i −0.228794 0.132094i
\(87\) 3.19366 + 73.7874i 0.0367087 + 0.848131i
\(88\) 14.2200 + 24.6298i 0.161591 + 0.279884i
\(89\) 71.9875i 0.808848i −0.914572 0.404424i \(-0.867472\pi\)
0.914572 0.404424i \(-0.132528\pi\)
\(90\) 14.0877 + 20.1517i 0.156530 + 0.223908i
\(91\) −7.75894 −0.0852631
\(92\) −90.4679 + 52.2317i −0.983347 + 0.567735i
\(93\) −23.4388 36.8223i −0.252030 0.395939i
\(94\) 4.71170 8.16090i 0.0501244 0.0868181i
\(95\) −103.785 59.9205i −1.09248 0.630742i
\(96\) −63.5140 + 40.4291i −0.661604 + 0.421136i
\(97\) −77.2067 133.726i −0.795945 1.37862i −0.922237 0.386625i \(-0.873641\pi\)
0.126292 0.991993i \(-0.459693\pi\)
\(98\) 7.93399i 0.0809591i
\(99\) 51.3878 + 24.0099i 0.519069 + 0.242524i
\(100\) 12.9242 0.129242
\(101\) −53.0880 + 30.6504i −0.525623 + 0.303469i −0.739232 0.673450i \(-0.764811\pi\)
0.213609 + 0.976919i \(0.431478\pi\)
\(102\) 7.28764 0.315423i 0.0714474 0.00309238i
\(103\) −88.8238 + 153.847i −0.862367 + 1.49366i 0.00727092 + 0.999974i \(0.497686\pi\)
−0.869638 + 0.493690i \(0.835648\pi\)
\(104\) 5.08595 + 2.93637i 0.0489034 + 0.0282344i
\(105\) −73.4834 38.2884i −0.699842 0.364651i
\(106\) −6.83138 11.8323i −0.0644470 0.111625i
\(107\) 112.532i 1.05170i −0.850577 0.525850i \(-0.823747\pi\)
0.850577 0.525850i \(-0.176253\pi\)
\(108\) −37.8398 + 91.0610i −0.350369 + 0.843157i
\(109\) −118.008 −1.08264 −0.541320 0.840817i \(-0.682075\pi\)
−0.541320 + 0.840817i \(0.682075\pi\)
\(110\) 14.9108 8.60876i 0.135553 0.0782615i
\(111\) 50.3745 96.6792i 0.453824 0.870984i
\(112\) 35.6164 61.6894i 0.318004 0.550799i
\(113\) 102.209 + 59.0106i 0.904508 + 0.522218i 0.878660 0.477448i \(-0.158438\pi\)
0.0258479 + 0.999666i \(0.491771\pi\)
\(114\) 1.97900 + 45.7236i 0.0173597 + 0.401084i
\(115\) 66.2527 + 114.753i 0.576111 + 0.997853i
\(116\) 89.9135i 0.775117i
\(117\) 11.6687 1.01198i 0.0997322 0.00864940i
\(118\) −5.37174 −0.0455232
\(119\) −21.2888 + 12.2911i −0.178898 + 0.103287i
\(120\) 33.6778 + 52.9076i 0.280648 + 0.440897i
\(121\) −40.6409 + 70.3920i −0.335875 + 0.581752i
\(122\) −34.5864 19.9684i −0.283495 0.163676i
\(123\) −124.329 + 79.1404i −1.01081 + 0.643418i
\(124\) −26.5695 46.0197i −0.214270 0.371127i
\(125\) 132.209i 1.05768i
\(126\) 2.73407 + 31.5253i 0.0216990 + 0.250201i
\(127\) 124.142 0.977493 0.488747 0.872426i \(-0.337454\pi\)
0.488747 + 0.872426i \(0.337454\pi\)
\(128\) −103.786 + 59.9208i −0.810827 + 0.468131i
\(129\) −115.473 + 4.99789i −0.895139 + 0.0387433i
\(130\) 1.77767 3.07902i 0.0136744 0.0236847i
\(131\) −25.8211 14.9078i −0.197108 0.113800i 0.398198 0.917299i \(-0.369636\pi\)
−0.595306 + 0.803499i \(0.702969\pi\)
\(132\) 61.2375 + 31.9077i 0.463921 + 0.241725i
\(133\) −77.1160 133.569i −0.579819 1.00428i
\(134\) 20.9689i 0.156484i
\(135\) 115.505 + 47.9976i 0.855596 + 0.355538i
\(136\) 18.6063 0.136811
\(137\) 180.644 104.295i 1.31857 0.761277i 0.335072 0.942192i \(-0.391239\pi\)
0.983499 + 0.180915i \(0.0579059\pi\)
\(138\) 23.3828 44.8764i 0.169440 0.325191i
\(139\) 135.794 235.202i 0.976934 1.69210i 0.303536 0.952820i \(-0.401833\pi\)
0.673398 0.739280i \(-0.264834\pi\)
\(140\) −87.3601 50.4374i −0.624001 0.360267i
\(141\) −2.07291 47.8933i −0.0147015 0.339669i
\(142\) −35.5193 61.5213i −0.250136 0.433248i
\(143\) 8.20165i 0.0573542i
\(144\) −45.5175 + 97.4200i −0.316094 + 0.676528i
\(145\) 114.050 0.786552
\(146\) 12.0230 6.94150i 0.0823496 0.0475445i
\(147\) 21.6732 + 34.0486i 0.147437 + 0.231623i
\(148\) 66.3585 114.936i 0.448368 0.776596i
\(149\) −13.8702 8.00794i −0.0930884 0.0537446i 0.452733 0.891646i \(-0.350449\pi\)
−0.545822 + 0.837901i \(0.683782\pi\)
\(150\) −5.28138 + 3.36180i −0.0352092 + 0.0224120i
\(151\) 67.8591 + 117.535i 0.449398 + 0.778380i 0.998347 0.0574758i \(-0.0183052\pi\)
−0.548949 + 0.835856i \(0.684972\pi\)
\(152\) 116.738i 0.768015i
\(153\) 30.4132 21.2612i 0.198779 0.138962i
\(154\) 22.1585 0.143886
\(155\) −58.3733 + 33.7018i −0.376602 + 0.217431i
\(156\) 14.2455 0.616573i 0.0913175 0.00395239i
\(157\) 100.803 174.595i 0.642055 1.11207i −0.342918 0.939365i \(-0.611415\pi\)
0.984973 0.172707i \(-0.0552514\pi\)
\(158\) −69.1937 39.9490i −0.437935 0.252842i
\(159\) −61.6390 32.1169i −0.387667 0.201993i
\(160\) 58.1316 + 100.687i 0.363322 + 0.629293i
\(161\) 170.531i 1.05920i
\(162\) −8.22354 47.0543i −0.0507626 0.290459i
\(163\) −12.9702 −0.0795718 −0.0397859 0.999208i \(-0.512668\pi\)
−0.0397859 + 0.999208i \(0.512668\pi\)
\(164\) −155.384 + 89.7111i −0.947465 + 0.547019i
\(165\) 40.4730 77.6762i 0.245291 0.470765i
\(166\) −17.6455 + 30.5629i −0.106298 + 0.184114i
\(167\) 0.989655 + 0.571377i 0.00592608 + 0.00342142i 0.502960 0.864310i \(-0.332244\pi\)
−0.497034 + 0.867731i \(0.665578\pi\)
\(168\) 3.49022 + 80.6394i 0.0207751 + 0.479996i
\(169\) 83.6532 + 144.892i 0.494989 + 0.857347i
\(170\) 11.2642i 0.0662599i
\(171\) 133.396 + 190.816i 0.780092 + 1.11588i
\(172\) −140.709 −0.818078
\(173\) 7.62505 4.40232i 0.0440754 0.0254470i −0.477800 0.878468i \(-0.658566\pi\)
0.521876 + 0.853021i \(0.325232\pi\)
\(174\) −23.3881 36.7426i −0.134414 0.211164i
\(175\) 10.5490 18.2714i 0.0602801 0.104408i
\(176\) 65.2093 + 37.6486i 0.370507 + 0.213912i
\(177\) −23.0527 + 14.6740i −0.130241 + 0.0829037i
\(178\) 21.2263 + 36.7650i 0.119249 + 0.206545i
\(179\) 254.573i 1.42219i −0.703094 0.711097i \(-0.748199\pi\)
0.703094 0.711097i \(-0.251801\pi\)
\(180\) 137.959 + 64.4586i 0.766440 + 0.358103i
\(181\) 330.723 1.82720 0.913599 0.406617i \(-0.133292\pi\)
0.913599 + 0.406617i \(0.133292\pi\)
\(182\) 3.96261 2.28781i 0.0217726 0.0125704i
\(183\) −202.975 + 8.78512i −1.10915 + 0.0480061i
\(184\) 64.5374 111.782i 0.350747 0.607511i
\(185\) −145.790 84.1717i −0.788053 0.454982i
\(186\) 22.8280 + 11.8945i 0.122731 + 0.0639488i
\(187\) −12.9924 22.5035i −0.0694781 0.120340i
\(188\) 58.3603i 0.310427i
\(189\) 97.8508 + 127.822i 0.517729 + 0.676306i
\(190\) 70.6729 0.371963
\(191\) 223.842 129.235i 1.17195 0.676624i 0.217809 0.975991i \(-0.430109\pi\)
0.954138 + 0.299368i \(0.0967757\pi\)
\(192\) −45.7334 + 87.7720i −0.238195 + 0.457146i
\(193\) 4.26317 7.38403i 0.0220890 0.0382592i −0.854770 0.519008i \(-0.826302\pi\)
0.876859 + 0.480748i \(0.159635\pi\)
\(194\) 78.8612 + 45.5305i 0.406501 + 0.234693i
\(195\) −0.782087 18.0696i −0.00401070 0.0926646i
\(196\) 24.5681 + 42.5532i 0.125348 + 0.217108i
\(197\) 241.180i 1.22426i −0.790756 0.612131i \(-0.790312\pi\)
0.790756 0.612131i \(-0.209688\pi\)
\(198\) −33.3241 + 2.89007i −0.168303 + 0.0145963i
\(199\) −234.885 −1.18033 −0.590163 0.807284i \(-0.700936\pi\)
−0.590163 + 0.807284i \(0.700936\pi\)
\(200\) −13.8296 + 7.98455i −0.0691482 + 0.0399228i
\(201\) 57.2805 + 89.9876i 0.284978 + 0.447699i
\(202\) 18.0752 31.3072i 0.0894812 0.154986i
\(203\) 127.114 + 73.3895i 0.626179 + 0.361525i
\(204\) 38.1099 24.2584i 0.186813 0.118914i
\(205\) 113.793 + 197.096i 0.555089 + 0.961442i
\(206\) 104.763i 0.508557i
\(207\) −22.2419 256.461i −0.107449 1.23894i
\(208\) 15.5485 0.0747526
\(209\) 141.190 81.5160i 0.675550 0.390029i
\(210\) 48.8188 2.11297i 0.232470 0.0100618i
\(211\) 44.2130 76.5792i 0.209540 0.362935i −0.742029 0.670367i \(-0.766137\pi\)
0.951570 + 0.307433i \(0.0994699\pi\)
\(212\) −73.2790 42.3076i −0.345656 0.199564i
\(213\) −320.488 166.990i −1.50464 0.783989i
\(214\) 33.1813 + 57.4716i 0.155053 + 0.268559i
\(215\) 178.482i 0.830147i
\(216\) −15.7665 120.818i −0.0729932 0.559344i
\(217\) −86.7466 −0.399754
\(218\) 60.2683 34.7959i 0.276460 0.159614i
\(219\) 32.6346 62.6326i 0.149016 0.285994i
\(220\) 53.3152 92.3446i 0.242342 0.419748i
\(221\) −4.64688 2.68287i −0.0210266 0.0121397i
\(222\) 2.77995 + 64.2289i 0.0125223 + 0.289320i
\(223\) 17.7739 + 30.7853i 0.0797037 + 0.138051i 0.903122 0.429384i \(-0.141269\pi\)
−0.823418 + 0.567435i \(0.807936\pi\)
\(224\) 149.627i 0.667979i
\(225\) −13.4816 + 28.8543i −0.0599180 + 0.128241i
\(226\) −69.5998 −0.307964
\(227\) −198.204 + 114.433i −0.873145 + 0.504110i −0.868392 0.495878i \(-0.834846\pi\)
−0.00475276 + 0.999989i \(0.501513\pi\)
\(228\) 152.200 + 239.106i 0.667545 + 1.04871i
\(229\) −163.964 + 283.995i −0.716002 + 1.24015i 0.246570 + 0.969125i \(0.420697\pi\)
−0.962572 + 0.271027i \(0.912637\pi\)
\(230\) −67.6725 39.0707i −0.294228 0.169873i
\(231\) 95.0927 60.5302i 0.411657 0.262035i
\(232\) −55.5485 96.2129i −0.239433 0.414711i
\(233\) 401.760i 1.72429i −0.506659 0.862147i \(-0.669120\pi\)
0.506659 0.862147i \(-0.330880\pi\)
\(234\) −5.66096 + 3.95747i −0.0241922 + 0.0169123i
\(235\) −74.0266 −0.315007
\(236\) −28.8108 + 16.6340i −0.122080 + 0.0704828i
\(237\) −406.072 + 17.5756i −1.71338 + 0.0741585i
\(238\) 7.24834 12.5545i 0.0304552 0.0527500i
\(239\) 216.725 + 125.126i 0.906800 + 0.523541i 0.879400 0.476083i \(-0.157944\pi\)
0.0274001 + 0.999625i \(0.491277\pi\)
\(240\) 147.257 + 76.7280i 0.613571 + 0.319700i
\(241\) −52.4860 90.9085i −0.217784 0.377214i 0.736346 0.676605i \(-0.236550\pi\)
−0.954130 + 0.299392i \(0.903216\pi\)
\(242\) 47.9336i 0.198073i
\(243\) −163.829 179.469i −0.674194 0.738554i
\(244\) −247.334 −1.01367
\(245\) 53.9762 31.1632i 0.220311 0.127197i
\(246\) 40.1614 77.0780i 0.163258 0.313325i
\(247\) 16.8327 29.1551i 0.0681485 0.118037i
\(248\) 56.8620 + 32.8293i 0.229282 + 0.132376i
\(249\) 7.76314 + 179.362i 0.0311773 + 0.720331i
\(250\) 38.9834 + 67.5212i 0.155934 + 0.270085i
\(251\) 405.400i 1.61514i 0.589772 + 0.807570i \(0.299218\pi\)
−0.589772 + 0.807570i \(0.700782\pi\)
\(252\) 112.284 + 160.617i 0.445572 + 0.637369i
\(253\) −180.261 −0.712493
\(254\) −63.4009 + 36.6045i −0.249610 + 0.144112i
\(255\) −30.7703 48.3401i −0.120668 0.189569i
\(256\) −30.6448 + 53.0783i −0.119706 + 0.207337i
\(257\) −101.311 58.4917i −0.394205 0.227594i 0.289776 0.957095i \(-0.406419\pi\)
−0.683980 + 0.729500i \(0.739753\pi\)
\(258\) 57.5000 36.6010i 0.222868 0.141864i
\(259\) −108.327 187.627i −0.418249 0.724429i
\(260\) 22.0187i 0.0846873i
\(261\) −200.739 93.7912i −0.769116 0.359353i
\(262\) 17.5829 0.0671105
\(263\) −108.686 + 62.7498i −0.413254 + 0.238592i −0.692187 0.721718i \(-0.743353\pi\)
0.278933 + 0.960311i \(0.410019\pi\)
\(264\) −85.2404 + 3.68937i −0.322880 + 0.0139749i
\(265\) −53.6647 + 92.9500i −0.202508 + 0.350755i
\(266\) 78.7685 + 45.4770i 0.296122 + 0.170966i
\(267\) 191.523 + 99.7928i 0.717316 + 0.373756i
\(268\) 64.9315 + 112.465i 0.242282 + 0.419644i
\(269\) 139.837i 0.519841i 0.965630 + 0.259920i \(0.0836963\pi\)
−0.965630 + 0.259920i \(0.916304\pi\)
\(270\) −73.1429 + 9.54501i −0.270900 + 0.0353519i
\(271\) −121.908 −0.449844 −0.224922 0.974377i \(-0.572213\pi\)
−0.224922 + 0.974377i \(0.572213\pi\)
\(272\) 42.6617 24.6308i 0.156845 0.0905543i
\(273\) 10.7559 20.6427i 0.0393987 0.0756144i
\(274\) −61.5051 + 106.530i −0.224471 + 0.388795i
\(275\) 19.3139 + 11.1509i 0.0702325 + 0.0405488i
\(276\) −13.5514 313.097i −0.0490994 1.13441i
\(277\) −100.411 173.916i −0.362493 0.627856i 0.625877 0.779921i \(-0.284741\pi\)
−0.988370 + 0.152065i \(0.951408\pi\)
\(278\) 160.161i 0.576120i
\(279\) 130.458 11.3141i 0.467592 0.0405525i
\(280\) 124.641 0.445146
\(281\) 57.9445 33.4543i 0.206208 0.119054i −0.393340 0.919393i \(-0.628680\pi\)
0.599548 + 0.800339i \(0.295347\pi\)
\(282\) 15.1805 + 23.8486i 0.0538317 + 0.0845694i
\(283\) −38.4213 + 66.5477i −0.135764 + 0.235151i −0.925889 0.377795i \(-0.876682\pi\)
0.790125 + 0.612946i \(0.210016\pi\)
\(284\) −381.009 219.976i −1.34158 0.774563i
\(285\) 303.292 193.057i 1.06418 0.677393i
\(286\) 2.41835 + 4.18870i 0.00845576 + 0.0146458i
\(287\) 292.897i 1.02055i
\(288\) −19.5155 225.024i −0.0677622 0.781335i
\(289\) −17.0000 −0.0588235
\(290\) −58.2470 + 33.6289i −0.200852 + 0.115962i
\(291\) 462.807 20.0312i 1.59040 0.0688356i
\(292\) 42.9896 74.4602i 0.147225 0.255001i
\(293\) −74.6572 43.1034i −0.254803 0.147111i 0.367159 0.930158i \(-0.380331\pi\)
−0.621961 + 0.783048i \(0.713664\pi\)
\(294\) −21.1084 10.9985i −0.0717974 0.0374099i
\(295\) 21.0992 + 36.5448i 0.0715226 + 0.123881i
\(296\) 163.985i 0.554003i
\(297\) −135.115 + 103.434i −0.454933 + 0.348262i
\(298\) 9.44493 0.0316944
\(299\) −32.2361 + 18.6115i −0.107813 + 0.0622459i
\(300\) −17.9162 + 34.3849i −0.0597206 + 0.114616i
\(301\) −114.850 + 198.927i −0.381562 + 0.660885i
\(302\) −69.3132 40.0180i −0.229514 0.132510i
\(303\) −7.95219 183.730i −0.0262448 0.606370i
\(304\) 154.537 + 267.665i 0.508344 + 0.880477i
\(305\) 313.729i 1.02862i
\(306\) −9.26332 + 19.8261i −0.0302723 + 0.0647911i
\(307\) −49.1563 −0.160118 −0.0800591 0.996790i \(-0.525511\pi\)
−0.0800591 + 0.996790i \(0.525511\pi\)
\(308\) 118.845 68.6151i 0.385860 0.222776i
\(309\) −286.180 449.588i −0.926149 1.45498i
\(310\) 19.8747 34.4240i 0.0641120 0.111045i
\(311\) 516.584 + 298.250i 1.66104 + 0.959002i 0.972219 + 0.234072i \(0.0752050\pi\)
0.688822 + 0.724931i \(0.258128\pi\)
\(312\) −14.8627 + 9.46065i −0.0476367 + 0.0303226i
\(313\) −48.4462 83.9113i −0.154780 0.268087i 0.778199 0.628018i \(-0.216134\pi\)
−0.932979 + 0.359931i \(0.882800\pi\)
\(314\) 118.891i 0.378634i
\(315\) 203.733 142.426i 0.646772 0.452145i
\(316\) −494.819 −1.56588
\(317\) −357.768 + 206.558i −1.12861 + 0.651601i −0.943584 0.331133i \(-0.892569\pi\)
−0.185022 + 0.982734i \(0.559236\pi\)
\(318\) 40.9500 1.77239i 0.128773 0.00557356i
\(319\) −77.5769 + 134.367i −0.243188 + 0.421214i
\(320\) 132.358 + 76.4169i 0.413619 + 0.238803i
\(321\) 299.392 + 155.998i 0.932685 + 0.485974i
\(322\) −50.2829 87.0925i −0.156158 0.270474i
\(323\) 106.660i 0.330217i
\(324\) −189.813 226.907i −0.585842 0.700330i
\(325\) 4.60523 0.0141699
\(326\) 6.62407 3.82441i 0.0203192 0.0117313i
\(327\) 163.588 313.961i 0.500271 0.960124i
\(328\) 110.847 191.993i 0.337948 0.585343i
\(329\) −82.5063 47.6350i −0.250779 0.144787i
\(330\) 2.23353 + 51.6043i 0.00676827 + 0.156377i
\(331\) −203.844 353.069i −0.615844 1.06667i −0.990236 0.139402i \(-0.955482\pi\)
0.374392 0.927271i \(-0.377851\pi\)
\(332\) 218.562i 0.658319i
\(333\) 187.384 + 268.044i 0.562715 + 0.804936i
\(334\) −0.673908 −0.00201769
\(335\) 142.655 82.3617i 0.425835 0.245856i
\(336\) 114.752 + 180.275i 0.341524 + 0.536532i
\(337\) −249.846 + 432.746i −0.741383 + 1.28411i 0.210483 + 0.977598i \(0.432496\pi\)
−0.951866 + 0.306515i \(0.900837\pi\)
\(338\) −85.4458 49.3322i −0.252798 0.145953i
\(339\) −298.686 + 190.125i −0.881080 + 0.560842i
\(340\) −34.8803 60.4145i −0.102589 0.177690i
\(341\) 91.6961i 0.268904i
\(342\) −124.391 58.1192i −0.363717 0.169939i
\(343\) 372.353 1.08558
\(344\) 150.568 86.9302i 0.437696 0.252704i
\(345\) −397.145 + 17.1892i −1.15114 + 0.0498237i
\(346\) −2.59615 + 4.49666i −0.00750332 + 0.0129961i
\(347\) 109.261 + 63.0821i 0.314875 + 0.181793i 0.649106 0.760698i \(-0.275143\pi\)
−0.334231 + 0.942491i \(0.608477\pi\)
\(348\) −239.216 124.643i −0.687401 0.358169i
\(349\) −99.6434 172.587i −0.285511 0.494520i 0.687222 0.726448i \(-0.258830\pi\)
−0.972733 + 0.231928i \(0.925497\pi\)
\(350\) 12.4420i 0.0355485i
\(351\) −13.4833 + 32.4474i −0.0384141 + 0.0924429i
\(352\) −158.165 −0.449332
\(353\) 393.252 227.044i 1.11403 0.643184i 0.174158 0.984718i \(-0.444280\pi\)
0.939869 + 0.341534i \(0.110946\pi\)
\(354\) 7.44659 14.2916i 0.0210356 0.0403716i
\(355\) −279.026 + 483.288i −0.785989 + 1.36137i
\(356\) 227.691 + 131.457i 0.639581 + 0.369262i
\(357\) −3.18891 73.6777i −0.00893252 0.206380i
\(358\) 75.0636 + 130.014i 0.209675 + 0.363167i
\(359\) 642.000i 1.78830i −0.447768 0.894150i \(-0.647781\pi\)
0.447768 0.894150i \(-0.352219\pi\)
\(360\) −187.447 + 16.2566i −0.520686 + 0.0451572i
\(361\) 308.199 0.853737
\(362\) −168.905 + 97.5173i −0.466588 + 0.269385i
\(363\) −130.940 205.706i −0.360716 0.566684i
\(364\) 14.1687 24.5409i 0.0389250 0.0674202i
\(365\) −94.4484 54.5298i −0.258763 0.149397i
\(366\) 101.072 64.3360i 0.276152 0.175781i
\(367\) −210.331 364.304i −0.573109 0.992654i −0.996244 0.0865873i \(-0.972404\pi\)
0.423135 0.906067i \(-0.360929\pi\)
\(368\) 341.735i 0.928628i
\(369\) −38.2019 440.488i −0.103528 1.19373i
\(370\) 99.2759 0.268313
\(371\) −119.624 + 69.0650i −0.322437 + 0.186159i
\(372\) 159.268 6.89342i 0.428140 0.0185307i
\(373\) 155.037 268.532i 0.415649 0.719925i −0.579848 0.814725i \(-0.696888\pi\)
0.995496 + 0.0948003i \(0.0302212\pi\)
\(374\) 13.2708 + 7.66191i 0.0354835 + 0.0204864i
\(375\) 351.744 + 183.276i 0.937984 + 0.488735i
\(376\) 36.0550 + 62.4490i 0.0958909 + 0.166088i
\(377\) 32.0386i 0.0849830i
\(378\) −87.6635 36.4280i −0.231914 0.0963705i
\(379\) 128.343 0.338636 0.169318 0.985561i \(-0.445843\pi\)
0.169318 + 0.985561i \(0.445843\pi\)
\(380\) 379.048 218.843i 0.997494 0.575904i
\(381\) −172.092 + 330.280i −0.451684 + 0.866876i
\(382\) −76.2128 + 132.005i −0.199510 + 0.345562i
\(383\) 249.226 + 143.891i 0.650721 + 0.375694i 0.788732 0.614737i \(-0.210738\pi\)
−0.138012 + 0.990431i \(0.544071\pi\)
\(384\) −15.5464 359.189i −0.0404853 0.935387i
\(385\) −87.0342 150.748i −0.226063 0.391552i
\(386\) 5.02817i 0.0130264i
\(387\) 146.778 314.145i 0.379271 0.811744i
\(388\) 563.953 1.45349
\(389\) 324.022 187.074i 0.832961 0.480910i −0.0219046 0.999760i \(-0.506973\pi\)
0.854865 + 0.518850i \(0.173640\pi\)
\(390\) 5.72745 + 8.99780i 0.0146858 + 0.0230713i
\(391\) −58.9658 + 102.132i −0.150808 + 0.261207i
\(392\) −52.5787 30.3564i −0.134129 0.0774397i
\(393\) 75.4569 48.0312i 0.192002 0.122217i
\(394\) 71.1145 + 123.174i 0.180494 + 0.312624i
\(395\) 627.648i 1.58898i
\(396\) −169.781 + 118.691i −0.428741 + 0.299724i
\(397\) 459.061 1.15632 0.578162 0.815922i \(-0.303770\pi\)
0.578162 + 0.815922i \(0.303770\pi\)
\(398\) 119.959 69.2584i 0.301405 0.174016i
\(399\) 462.263 20.0076i 1.15855 0.0501444i
\(400\) −21.1397 + 36.6150i −0.0528492 + 0.0915375i
\(401\) 112.197 + 64.7768i 0.279792 + 0.161538i 0.633329 0.773882i \(-0.281688\pi\)
−0.353537 + 0.935421i \(0.615021\pi\)
\(402\) −55.7878 29.0681i −0.138776 0.0723088i
\(403\) −9.46742 16.3981i −0.0234924 0.0406900i
\(404\) 223.884i 0.554169i
\(405\) −287.818 + 240.766i −0.710661 + 0.594485i
\(406\) −86.5589 −0.213199
\(407\) 198.333 114.507i 0.487304 0.281345i
\(408\) −25.7930 + 49.5022i −0.0632182 + 0.121329i
\(409\) −301.422 + 522.078i −0.736972 + 1.27647i 0.216881 + 0.976198i \(0.430412\pi\)
−0.953853 + 0.300275i \(0.902922\pi\)
\(410\) −116.232 67.1064i −0.283492 0.163674i
\(411\) 27.0592 + 625.185i 0.0658374 + 1.52113i
\(412\) −324.405 561.886i −0.787390 1.36380i
\(413\) 54.3081i 0.131497i
\(414\) 86.9796 + 124.420i 0.210096 + 0.300532i
\(415\) 277.233 0.668030
\(416\) −28.2847 + 16.3302i −0.0679920 + 0.0392552i
\(417\) 437.512 + 687.330i 1.04919 + 1.64827i
\(418\) −48.0718 + 83.2628i −0.115004 + 0.199193i
\(419\) 547.793 + 316.268i 1.30738 + 0.754817i 0.981658 0.190649i \(-0.0610592\pi\)
0.325722 + 0.945465i \(0.394393\pi\)
\(420\) 255.292 162.503i 0.607839 0.386913i
\(421\) 83.3334 + 144.338i 0.197941 + 0.342845i 0.947861 0.318685i \(-0.103241\pi\)
−0.749919 + 0.661529i \(0.769908\pi\)
\(422\) 52.1468i 0.123571i
\(423\) 130.294 + 60.8772i 0.308024 + 0.143918i
\(424\) 104.551 0.246582
\(425\) 12.6357 7.29524i 0.0297311 0.0171653i
\(426\) 212.917 9.21543i 0.499804 0.0216325i
\(427\) −201.880 + 349.667i −0.472787 + 0.818891i
\(428\) 355.929 + 205.496i 0.831611 + 0.480131i
\(429\) 21.8206 + 11.3696i 0.0508638 + 0.0265025i
\(430\) −52.6273 91.1531i −0.122389 0.211984i
\(431\) 387.881i 0.899955i −0.893040 0.449978i \(-0.851432\pi\)
0.893040 0.449978i \(-0.148568\pi\)
\(432\) −196.088 256.148i −0.453908 0.592936i
\(433\) 556.386 1.28496 0.642478 0.766304i \(-0.277906\pi\)
0.642478 + 0.766304i \(0.277906\pi\)
\(434\) 44.3027 25.5782i 0.102080 0.0589360i
\(435\) −158.102 + 303.431i −0.363453 + 0.697542i
\(436\) 215.496 373.249i 0.494256 0.856076i
\(437\) −640.788 369.959i −1.46633 0.846588i
\(438\) 1.80096 + 41.6101i 0.00411179 + 0.0950001i
\(439\) −184.332 319.273i −0.419892 0.727274i 0.576037 0.817424i \(-0.304599\pi\)
−0.995928 + 0.0901504i \(0.971265\pi\)
\(440\) 131.752i 0.299437i
\(441\) −120.631 + 10.4619i −0.273540 + 0.0237231i
\(442\) 3.16430 0.00715905
\(443\) −228.655 + 132.014i −0.516152 + 0.298000i −0.735359 0.677678i \(-0.762986\pi\)
0.219207 + 0.975678i \(0.429653\pi\)
\(444\) 213.799 + 335.878i 0.481530 + 0.756482i
\(445\) 166.746 288.812i 0.374710 0.649016i
\(446\) −18.1548 10.4817i −0.0407058 0.0235015i
\(447\) 40.5328 25.8007i 0.0906773 0.0577196i
\(448\) 98.3464 + 170.341i 0.219523 + 0.380225i
\(449\) 140.395i 0.312684i −0.987703 0.156342i \(-0.950030\pi\)
0.987703 0.156342i \(-0.0499702\pi\)
\(450\) −1.62278 18.7115i −0.00360617 0.0415810i
\(451\) −309.609 −0.686495
\(452\) −373.292 + 215.520i −0.825867 + 0.476815i
\(453\) −406.774 + 17.6059i −0.897955 + 0.0388652i
\(454\) 67.4837 116.885i 0.148643 0.257456i
\(455\) −31.1287 17.9722i −0.0684148 0.0394993i
\(456\) −310.583 161.829i −0.681103 0.354887i
\(457\) −45.2544 78.3830i −0.0990250 0.171516i 0.812256 0.583301i \(-0.198239\pi\)
−0.911281 + 0.411784i \(0.864906\pi\)
\(458\) 193.387i 0.422242i
\(459\) 14.4054 + 110.388i 0.0313843 + 0.240496i
\(460\) −483.940 −1.05204
\(461\) −284.835 + 164.450i −0.617864 + 0.356724i −0.776037 0.630687i \(-0.782773\pi\)
0.158173 + 0.987411i \(0.449440\pi\)
\(462\) −30.7172 + 58.9528i −0.0664875 + 0.127603i
\(463\) 130.500 226.033i 0.281858 0.488192i −0.689984 0.723824i \(-0.742383\pi\)
0.971842 + 0.235632i \(0.0757160\pi\)
\(464\) −254.731 147.069i −0.548989 0.316959i
\(465\) −8.74389 202.022i −0.0188041 0.434456i
\(466\) 118.464 + 205.185i 0.254214 + 0.440311i
\(467\) 422.063i 0.903775i 0.892075 + 0.451887i \(0.149249\pi\)
−0.892075 + 0.451887i \(0.850751\pi\)
\(468\) −18.1075 + 38.7551i −0.0386912 + 0.0828100i
\(469\) 211.994 0.452013
\(470\) 37.8064 21.8276i 0.0804392 0.0464416i
\(471\) 324.774 + 510.220i 0.689542 + 1.08327i
\(472\) 20.5529 35.5987i 0.0435443 0.0754209i
\(473\) −210.277 121.403i −0.444560 0.256667i
\(474\) 202.204 128.711i 0.426592 0.271542i
\(475\) 45.7712 + 79.2781i 0.0963605 + 0.166901i
\(476\) 89.7799i 0.188613i
\(477\) 170.894 119.469i 0.358269 0.250459i
\(478\) −147.580 −0.308744
\(479\) −590.179 + 340.740i −1.23211 + 0.711357i −0.967469 0.252990i \(-0.918586\pi\)
−0.264638 + 0.964348i \(0.585253\pi\)
\(480\) −348.463 + 15.0822i −0.725965 + 0.0314211i
\(481\) 23.6453 40.9548i 0.0491586 0.0851451i
\(482\) 53.6108 + 30.9522i 0.111226 + 0.0642162i
\(483\) −453.698 236.399i −0.939334 0.489438i
\(484\) −148.430 257.088i −0.306673 0.531173i
\(485\) 715.341i 1.47493i
\(486\) 136.588 + 43.3504i 0.281046 + 0.0891983i
\(487\) 81.6117 0.167580 0.0837902 0.996483i \(-0.473297\pi\)
0.0837902 + 0.996483i \(0.473297\pi\)
\(488\) 264.663 152.803i 0.542342 0.313121i
\(489\) 17.9800 34.5074i 0.0367689 0.0705672i
\(490\) −18.3776 + 31.8310i −0.0375054 + 0.0649612i
\(491\) −572.031 330.262i −1.16503 0.672632i −0.212528 0.977155i \(-0.568170\pi\)
−0.952505 + 0.304523i \(0.901503\pi\)
\(492\) −23.2754 537.763i −0.0473078 1.09301i
\(493\) 50.7530 + 87.9068i 0.102947 + 0.178310i
\(494\) 19.8532i 0.0401887i
\(495\) 150.552 + 215.358i 0.304146 + 0.435066i
\(496\) 173.836 0.350475
\(497\) −621.977 + 359.099i −1.25146 + 0.722533i
\(498\) −56.8517 89.3139i −0.114160 0.179345i
\(499\) 63.6779 110.293i 0.127611 0.221029i −0.795140 0.606427i \(-0.792602\pi\)
0.922751 + 0.385398i \(0.125936\pi\)
\(500\) 418.168 + 241.429i 0.836336 + 0.482859i
\(501\) −2.89207 + 1.84091i −0.00577259 + 0.00367447i
\(502\) −119.537 207.044i −0.238121 0.412438i
\(503\) 394.016i 0.783332i −0.920107 0.391666i \(-0.871899\pi\)
0.920107 0.391666i \(-0.128101\pi\)
\(504\) −219.380 102.501i −0.435278 0.203374i
\(505\) −283.984 −0.562344
\(506\) 92.0618 53.1519i 0.181940 0.105043i
\(507\) −501.450 + 21.7037i −0.989053 + 0.0428081i
\(508\) −226.697 + 392.650i −0.446253 + 0.772934i
\(509\) −12.9844 7.49656i −0.0255097 0.0147280i 0.487191 0.873295i \(-0.338022\pi\)
−0.512701 + 0.858567i \(0.671355\pi\)
\(510\) 29.9685 + 15.6150i 0.0587617 + 0.0306177i
\(511\) −70.1783 121.552i −0.137335 0.237872i
\(512\) 515.510i 1.00686i
\(513\) −692.587 + 90.3812i −1.35007 + 0.176182i
\(514\) 68.9877 0.134217
\(515\) −712.718 + 411.488i −1.38392 + 0.799006i
\(516\) 195.059 374.359i 0.378021 0.725501i
\(517\) 50.3530 87.2139i 0.0973945 0.168692i
\(518\) 110.648 + 63.8826i 0.213606 + 0.123326i
\(519\) 1.14218 + 26.3892i 0.00220072 + 0.0508463i
\(520\) 13.6031 + 23.5613i 0.0261599 + 0.0453103i
\(521\) 736.434i 1.41350i 0.707463 + 0.706751i \(0.249840\pi\)
−0.707463 + 0.706751i \(0.750160\pi\)
\(522\) 130.176 11.2897i 0.249379 0.0216277i
\(523\) −644.391 −1.23211 −0.616053 0.787705i \(-0.711269\pi\)
−0.616053 + 0.787705i \(0.711269\pi\)
\(524\) 94.3045 54.4467i 0.179970 0.103906i
\(525\) 33.9877 + 53.3945i 0.0647384 + 0.101704i
\(526\) 37.0049 64.0944i 0.0703516 0.121853i
\(527\) −51.9530 29.9951i −0.0985826 0.0569167i
\(528\) −190.561 + 121.299i −0.360911 + 0.229734i
\(529\) 144.555 + 250.377i 0.273261 + 0.473302i
\(530\) 63.2946i 0.119424i
\(531\) −7.08326 81.6738i −0.0133395 0.153811i
\(532\) 563.290 1.05882
\(533\) −55.3675 + 31.9665i −0.103879 + 0.0599746i
\(534\) −127.239 + 5.50713i −0.238275 + 0.0103130i
\(535\) 260.659 451.475i 0.487214 0.843879i
\(536\) −138.961 80.2293i −0.259256 0.149681i
\(537\) 677.293 + 352.902i 1.26125 + 0.657173i
\(538\) −41.2326 71.4169i −0.0766404 0.132745i
\(539\) 84.7890i 0.157308i
\(540\) −362.739 + 277.686i −0.671738 + 0.514233i
\(541\) 793.511 1.46675 0.733374 0.679825i \(-0.237944\pi\)
0.733374 + 0.679825i \(0.237944\pi\)
\(542\) 62.2600 35.9458i 0.114871 0.0663207i
\(543\) −458.465 + 879.890i −0.844319 + 1.62042i
\(544\) −51.7379 + 89.6127i −0.0951064 + 0.164729i
\(545\) −473.444 273.343i −0.868705 0.501547i
\(546\) 0.593569 + 13.7140i 0.00108712 + 0.0251173i
\(547\) −311.893 540.214i −0.570188 0.987595i −0.996546 0.0830405i \(-0.973537\pi\)
0.426358 0.904555i \(-0.359796\pi\)
\(548\) 761.818i 1.39018i
\(549\) 258.001 552.194i 0.469947 1.00582i
\(550\) −13.1519 −0.0239125
\(551\) −551.538 + 318.431i −1.00098 + 0.577914i
\(552\) 207.932 + 326.660i 0.376688 + 0.591776i
\(553\) −403.882 + 699.545i −0.730348 + 1.26500i
\(554\) 102.562 + 59.2144i 0.185130 + 0.106885i
\(555\) 426.041 271.191i 0.767641 0.488633i
\(556\) 495.950 + 859.011i 0.891997 + 1.54498i
\(557\) 309.291i 0.555281i −0.960685 0.277640i \(-0.910448\pi\)
0.960685 0.277640i \(-0.0895524\pi\)
\(558\) −63.2907 + 44.2453i −0.113424 + 0.0792927i
\(559\) −50.1385 −0.0896932
\(560\) 285.785 164.998i 0.510330 0.294639i
\(561\) 77.8815 3.37086i 0.138826 0.00600866i
\(562\) −19.7287 + 34.1712i −0.0351045 + 0.0608028i
\(563\) −878.564 507.239i −1.56050 0.900958i −0.997206 0.0747045i \(-0.976199\pi\)
−0.563299 0.826253i \(-0.690468\pi\)
\(564\) 155.268 + 80.9021i 0.275298 + 0.143443i
\(565\) 273.375 + 473.499i 0.483849 + 0.838051i
\(566\) 45.3158i 0.0800633i
\(567\) −475.717 + 83.1396i −0.839007 + 0.146631i
\(568\) 543.604 0.957049
\(569\) 559.185 322.845i 0.982750 0.567391i 0.0796507 0.996823i \(-0.474620\pi\)
0.903099 + 0.429432i \(0.141286\pi\)
\(570\) −97.9705 + 188.026i −0.171878 + 0.329870i
\(571\) 344.959 597.487i 0.604132 1.04639i −0.388056 0.921636i \(-0.626853\pi\)
0.992188 0.124751i \(-0.0398132\pi\)
\(572\) 25.9412 + 14.9771i 0.0453517 + 0.0261838i
\(573\) 33.5299 + 774.686i 0.0585163 + 1.35198i
\(574\) −86.3640 149.587i −0.150460 0.260604i
\(575\) 101.216i 0.176029i
\(576\) −170.120 243.348i −0.295347 0.422480i
\(577\) 646.917 1.12117 0.560587 0.828096i \(-0.310576\pi\)
0.560587 + 0.828096i \(0.310576\pi\)
\(578\) 8.68215 5.01264i 0.0150210 0.00867239i
\(579\) 13.7354 + 21.5783i 0.0237227 + 0.0372683i
\(580\) −208.268 + 360.731i −0.359083 + 0.621950i
\(581\) 308.990 + 178.395i 0.531824 + 0.307049i
\(582\) −230.456 + 146.694i −0.395972 + 0.252052i
\(583\) −73.0056 126.449i −0.125224 0.216894i
\(584\) 106.236i 0.181911i
\(585\) 49.1585 + 22.9683i 0.0840316 + 0.0392620i
\(586\) 50.8381 0.0867544
\(587\) −89.8988 + 51.9031i −0.153150 + 0.0884210i −0.574616 0.818423i \(-0.694849\pi\)
0.421467 + 0.906844i \(0.361515\pi\)
\(588\) −147.271 + 6.37416i −0.250461 + 0.0108404i
\(589\) 188.193 325.960i 0.319513 0.553412i
\(590\) −21.5513 12.4427i −0.0365276 0.0210892i
\(591\) 641.660 + 334.336i 1.08572 + 0.565712i
\(592\) 217.081 + 375.995i 0.366691 + 0.635127i
\(593\) 845.095i 1.42512i −0.701612 0.712559i \(-0.747536\pi\)
0.701612 0.712559i \(-0.252464\pi\)
\(594\) 38.5065 92.6654i 0.0648258 0.156002i
\(595\) −113.880 −0.191396
\(596\) 50.6570 29.2468i 0.0849950 0.0490719i
\(597\) 325.610 624.913i 0.545410 1.04676i
\(598\) 10.9756 19.0103i 0.0183539 0.0317899i
\(599\) 191.695 + 110.675i 0.320024 + 0.184766i 0.651403 0.758732i \(-0.274181\pi\)
−0.331379 + 0.943498i \(0.607514\pi\)
\(600\) −2.07158 47.8625i −0.00345263 0.0797708i
\(601\) −301.006 521.358i −0.500842 0.867483i −1.00000 0.000972310i \(-0.999691\pi\)
0.499158 0.866511i \(-0.333643\pi\)
\(602\) 135.460i 0.225016i
\(603\) −318.818 + 27.6499i −0.528720 + 0.0458539i
\(604\) −495.674 −0.820652
\(605\) −326.100 + 188.274i −0.539009 + 0.311197i
\(606\) 58.2362 + 91.4888i 0.0960993 + 0.150972i
\(607\) −319.749 + 553.821i −0.526769 + 0.912390i 0.472745 + 0.881199i \(0.343263\pi\)
−0.999513 + 0.0311909i \(0.990070\pi\)
\(608\) −562.241 324.610i −0.924739 0.533898i
\(609\) −371.466 + 236.452i −0.609961 + 0.388263i
\(610\) −92.5065 160.226i −0.151650 0.262665i
\(611\) 20.7953i 0.0340349i
\(612\) 11.7098 + 135.020i 0.0191336 + 0.220621i
\(613\) 771.938 1.25928 0.629640 0.776887i \(-0.283202\pi\)
0.629640 + 0.776887i \(0.283202\pi\)
\(614\) 25.1048 14.4943i 0.0408873 0.0236063i
\(615\) −682.121 + 29.5235i −1.10914 + 0.0480057i
\(616\) −84.7808 + 146.845i −0.137631 + 0.238384i
\(617\) 971.077 + 560.651i 1.57387 + 0.908673i 0.995688 + 0.0927638i \(0.0295701\pi\)
0.578180 + 0.815909i \(0.303763\pi\)
\(618\) 278.722 + 145.228i 0.451007 + 0.234996i
\(619\) −138.162 239.303i −0.223201 0.386596i 0.732577 0.680684i \(-0.238317\pi\)
−0.955778 + 0.294088i \(0.904984\pi\)
\(620\) 246.174i 0.397054i
\(621\) 713.149 + 296.345i 1.14839 + 0.477206i
\(622\) −351.769 −0.565545
\(623\) 371.693 214.597i 0.596618 0.344458i
\(624\) −21.5542 + 41.3670i −0.0345420 + 0.0662933i
\(625\) 262.005 453.806i 0.419208 0.726089i
\(626\) 49.4843 + 28.5698i 0.0790485 + 0.0456387i
\(627\) 21.1492 + 488.639i 0.0337308 + 0.779328i
\(628\) 368.154 + 637.662i 0.586233 + 1.01539i
\(629\) 149.828i 0.238200i
\(630\) −62.0536 + 132.812i −0.0984978 + 0.210813i
\(631\) −443.016 −0.702085 −0.351043 0.936360i \(-0.614173\pi\)
−0.351043 + 0.936360i \(0.614173\pi\)
\(632\) 529.486 305.699i 0.837794 0.483700i
\(633\) 142.449 + 223.787i 0.225038 + 0.353534i
\(634\) 121.812 210.984i 0.192132 0.332782i
\(635\) 498.053 + 287.551i 0.784336 + 0.452837i
\(636\) 214.143 136.310i 0.336703 0.214324i
\(637\) 8.75427 + 15.1628i 0.0137430 + 0.0238035i
\(638\) 91.4977i 0.143413i
\(639\) 888.554 621.171i 1.39054 0.972099i
\(640\) −555.182 −0.867472
\(641\) 454.358 262.324i 0.708826 0.409241i −0.101800 0.994805i \(-0.532460\pi\)
0.810626 + 0.585564i \(0.199127\pi\)
\(642\) −198.901 + 8.60883i −0.309815 + 0.0134094i
\(643\) 152.628 264.359i 0.237368 0.411134i −0.722590 0.691277i \(-0.757049\pi\)
0.959958 + 0.280143i \(0.0903819\pi\)
\(644\) −539.375 311.409i −0.837540 0.483554i
\(645\) −474.852 247.420i −0.736204 0.383598i
\(646\) 31.4499 + 54.4729i 0.0486841 + 0.0843233i
\(647\) 23.8292i 0.0368303i 0.999830 + 0.0184152i \(0.00586206\pi\)
−0.999830 + 0.0184152i \(0.994138\pi\)
\(648\) 343.294 + 125.538i 0.529775 + 0.193731i
\(649\) −57.4067 −0.0884541
\(650\) −2.35196 + 1.35790i −0.00361839 + 0.00208908i
\(651\) 120.253 230.790i 0.184720 0.354516i
\(652\) 23.6851 41.0238i 0.0363268 0.0629199i
\(653\) −876.400 505.990i −1.34211 0.774869i −0.354996 0.934868i \(-0.615518\pi\)
−0.987117 + 0.159998i \(0.948851\pi\)
\(654\) 9.02774 + 208.580i 0.0138039 + 0.318930i
\(655\) −69.0625 119.620i −0.105439 0.182625i
\(656\) 586.951i 0.894743i
\(657\) 121.395 + 173.649i 0.184771 + 0.264306i
\(658\) 56.1829 0.0853843
\(659\) −530.036 + 306.016i −0.804304 + 0.464365i −0.844974 0.534808i \(-0.820384\pi\)
0.0406702 + 0.999173i \(0.487051\pi\)
\(660\) 171.775 + 269.858i 0.260266 + 0.408876i
\(661\) 253.353 438.820i 0.383287 0.663873i −0.608243 0.793751i \(-0.708125\pi\)
0.991530 + 0.129878i \(0.0414585\pi\)
\(662\) 208.212 + 120.212i 0.314520 + 0.181588i
\(663\) 13.5796 8.64391i 0.0204820 0.0130376i
\(664\) −135.027 233.874i −0.203354 0.352220i
\(665\) 714.500i 1.07444i
\(666\) −174.735 81.6415i −0.262365 0.122585i
\(667\) 704.163 1.05572
\(668\) −3.61444 + 2.08680i −0.00541085 + 0.00312395i
\(669\) −106.544 + 4.61142i −0.159258 + 0.00689300i
\(670\) −48.5705 + 84.1266i −0.0724933 + 0.125562i
\(671\) −369.618 213.399i −0.550846 0.318031i
\(672\) −398.085 207.421i −0.592388 0.308663i
\(673\) 447.234 + 774.632i 0.664538 + 1.15101i 0.979410 + 0.201879i \(0.0647049\pi\)
−0.314873 + 0.949134i \(0.601962\pi\)
\(674\) 294.680i 0.437210i
\(675\) −58.0782 75.8671i −0.0860417 0.112396i
\(676\) −611.041 −0.903907
\(677\) 424.595 245.140i 0.627171 0.362097i −0.152485 0.988306i \(-0.548727\pi\)
0.779656 + 0.626208i \(0.215394\pi\)
\(678\) 96.4828 185.171i 0.142305 0.273113i
\(679\) 460.311 797.283i 0.677926 1.17420i
\(680\) 74.6480 + 43.0981i 0.109777 + 0.0633795i
\(681\) −29.6895 685.956i −0.0435969 1.00728i
\(682\) 27.0376 + 46.8305i 0.0396446 + 0.0686665i
\(683\) 916.941i 1.34252i 0.741222 + 0.671260i \(0.234247\pi\)
−0.741222 + 0.671260i \(0.765753\pi\)
\(684\) −847.131 + 73.4685i −1.23850 + 0.107410i
\(685\) 966.321 1.41069
\(686\) −190.166 + 109.793i −0.277210 + 0.160047i
\(687\) −528.274 829.917i −0.768958 1.20803i
\(688\) 230.154 398.639i 0.334526 0.579417i
\(689\) −26.1112 15.0753i −0.0378973 0.0218800i
\(690\) 197.759 125.881i 0.286607 0.182437i
\(691\) −305.481 529.109i −0.442086 0.765715i 0.555758 0.831344i \(-0.312428\pi\)
−0.997844 + 0.0656288i \(0.979095\pi\)
\(692\) 32.1566i 0.0464691i
\(693\) 29.2185 + 336.905i 0.0421623 + 0.486154i
\(694\) −74.4019 −0.107207
\(695\) 1089.60 629.083i 1.56778 0.905156i
\(696\) 332.980 14.4120i 0.478419 0.0207069i
\(697\) −101.278 + 175.418i −0.145305 + 0.251675i
\(698\) 101.779 + 58.7619i 0.145815 + 0.0841861i
\(699\) 1068.89 + 556.941i 1.52917 + 0.796769i
\(700\) 38.5274 + 66.7314i 0.0550391 + 0.0953306i
\(701\) 1271.46i 1.81378i 0.421364 + 0.906891i \(0.361551\pi\)
−0.421364 + 0.906891i \(0.638449\pi\)
\(702\) −2.68135 20.5471i −0.00381959 0.0292694i
\(703\) 940.039 1.33718
\(704\) −180.060 + 103.958i −0.255767 + 0.147667i
\(705\) 102.620 196.948i 0.145560 0.279359i
\(706\) −133.893 + 231.909i −0.189650 + 0.328483i
\(707\) −316.514 182.739i −0.447686 0.258472i
\(708\) −4.31565 99.7104i −0.00609555 0.140834i
\(709\) 150.111 + 259.999i 0.211722 + 0.366713i 0.952253 0.305309i \(-0.0987596\pi\)
−0.740532 + 0.672021i \(0.765426\pi\)
\(710\) 329.096i 0.463515i
\(711\) 516.158 1104.72i 0.725961 1.55376i
\(712\) −324.857 −0.456260
\(713\) −360.406 + 208.081i −0.505479 + 0.291838i
\(714\) 23.3533 + 36.6880i 0.0327077 + 0.0513837i
\(715\) 18.9976 32.9048i 0.0265701 0.0460207i
\(716\) 805.193 + 464.879i 1.12457 + 0.649272i
\(717\) −633.336 + 403.143i −0.883314 + 0.562263i
\(718\) 189.301 + 327.879i 0.263650 + 0.456655i
\(719\) 1307.21i 1.81809i 0.416694 + 0.909047i \(0.363189\pi\)
−0.416694 + 0.909047i \(0.636811\pi\)
\(720\) −408.271 + 285.414i −0.567043 + 0.396409i
\(721\) −1059.15 −1.46900
\(722\) −157.402 + 90.8759i −0.218008 + 0.125867i
\(723\) 314.622 13.6174i 0.435161 0.0188346i
\(724\) −603.937 + 1046.05i −0.834168 + 1.44482i
\(725\) −75.4472 43.5594i −0.104065 0.0600820i
\(726\) 127.528 + 66.4481i 0.175658 + 0.0915263i
\(727\) −48.8430 84.5985i −0.0671843 0.116367i 0.830477 0.557054i \(-0.188068\pi\)
−0.897661 + 0.440687i \(0.854735\pi\)
\(728\) 35.0137i 0.0480957i
\(729\) 704.586 187.080i 0.966511 0.256626i
\(730\) 64.3149 0.0881026
\(731\) −137.569 + 79.4255i −0.188193 + 0.108653i
\(732\) 342.868 658.035i 0.468399 0.898955i
\(733\) −705.781 + 1222.45i −0.962866 + 1.66773i −0.247625 + 0.968856i \(0.579650\pi\)
−0.715241 + 0.698878i \(0.753683\pi\)
\(734\) 214.838 + 124.037i 0.292695 + 0.168988i
\(735\) 8.08524 + 186.804i 0.0110003 + 0.254156i
\(736\) 358.914 + 621.657i 0.487655 + 0.844643i
\(737\) 224.090i 0.304057i
\(738\) 149.393 + 213.699i 0.202430 + 0.289565i
\(739\) −1202.00 −1.62652 −0.813258 0.581903i \(-0.802308\pi\)
−0.813258 + 0.581903i \(0.802308\pi\)
\(740\) 532.457 307.414i 0.719537 0.415425i
\(741\) 54.2330 + 85.1998i 0.0731889 + 0.114979i
\(742\) 40.7291 70.5450i 0.0548910 0.0950741i
\(743\) 440.339 + 254.230i 0.592650 + 0.342167i 0.766145 0.642668i \(-0.222173\pi\)
−0.173495 + 0.984835i \(0.555506\pi\)
\(744\) −166.168 + 105.772i −0.223343 + 0.142167i
\(745\) −37.0979 64.2554i −0.0497958 0.0862488i
\(746\) 182.858i 0.245117i
\(747\) −487.957 227.988i −0.653222 0.305204i
\(748\) 94.9025 0.126875
\(749\) 581.036 335.461i 0.775749 0.447879i
\(750\) −233.682 + 10.1142i −0.311576 + 0.0134856i
\(751\) 372.391 645.000i 0.495860 0.858855i −0.504129 0.863629i \(-0.668186\pi\)
0.999989 + 0.00477387i \(0.00151957\pi\)
\(752\) 165.338 + 95.4582i 0.219865 + 0.126939i
\(753\) −1078.57 561.987i −1.43236 0.746331i
\(754\) −9.44693 16.3626i −0.0125291 0.0217010i
\(755\) 628.733i 0.832758i
\(756\) −582.977 + 76.0773i −0.771134 + 0.100631i
\(757\) 29.6534 0.0391723 0.0195862 0.999808i \(-0.493765\pi\)
0.0195862 + 0.999808i \(0.493765\pi\)
\(758\) −65.5467 + 37.8434i −0.0864732 + 0.0499253i
\(759\) 249.887 479.585i 0.329232 0.631865i
\(760\) −270.403 + 468.351i −0.355793 + 0.616251i
\(761\) 876.214 + 505.883i 1.15140 + 0.664760i 0.949228 0.314590i \(-0.101867\pi\)
0.202171 + 0.979350i \(0.435200\pi\)
\(762\) −9.49699 219.422i −0.0124632 0.287955i
\(763\) −351.785 609.309i −0.461055 0.798570i
\(764\) 943.992i 1.23559i
\(765\) 171.265 14.8531i 0.223875 0.0194159i
\(766\) −169.711 −0.221555
\(767\) −10.2661 + 5.92712i −0.0133847 + 0.00772766i
\(768\) −98.7338 155.111i −0.128560 0.201967i
\(769\) 409.591 709.432i 0.532628 0.922539i −0.466646 0.884444i \(-0.654538\pi\)
0.999274 0.0380947i \(-0.0121288\pi\)
\(770\) 88.8992 + 51.3260i 0.115454 + 0.0666571i
\(771\) 296.060 188.453i 0.383994 0.244427i
\(772\) 15.5701 + 26.9681i 0.0201685 + 0.0349328i
\(773\) 327.256i 0.423359i 0.977339 + 0.211679i \(0.0678932\pi\)
−0.977339 + 0.211679i \(0.932107\pi\)
\(774\) 17.6676 + 203.717i 0.0228264 + 0.263201i
\(775\) 51.4874 0.0664353
\(776\) −603.464 + 348.410i −0.777659 + 0.448982i
\(777\) 649.352 28.1052i 0.835716 0.0361714i
\(778\) −110.322 + 191.083i −0.141802 + 0.245608i
\(779\) −1100.59 635.428i −1.41283 0.815697i
\(780\) 58.5809 + 30.5235i 0.0751038 + 0.0391327i
\(781\) −379.588 657.466i −0.486028 0.841825i
\(782\) 69.5469i 0.0889347i
\(783\) 527.807 404.050i 0.674084 0.516028i
\(784\) −160.741 −0.205027
\(785\) 808.836 466.982i 1.03036 0.594881i
\(786\) −24.3744 + 46.7796i −0.0310107 + 0.0595160i
\(787\) 130.205 225.522i 0.165445 0.286559i −0.771368 0.636389i \(-0.780427\pi\)
0.936813 + 0.349830i \(0.113761\pi\)
\(788\) 762.832 + 440.421i 0.968061 + 0.558911i
\(789\) −16.2803 376.147i −0.0206341 0.476738i
\(790\) −185.069 320.549i −0.234265 0.405758i
\(791\) 703.650i 0.889571i
\(792\) 108.349 231.897i 0.136804 0.292800i
\(793\) −88.1318 −0.111137
\(794\) −234.449 + 135.359i −0.295276 + 0.170477i
\(795\) −172.901 271.628i −0.217486 0.341670i
\(796\) 428.926 742.922i 0.538852 0.933319i
\(797\) −100.761 58.1742i −0.126425 0.0729915i 0.435454 0.900211i \(-0.356588\pi\)
−0.561879 + 0.827220i \(0.689921\pi\)
\(798\) −230.185 + 146.522i −0.288452 + 0.183611i
\(799\) −32.9423 57.0578i −0.0412294 0.0714115i
\(800\) 88.8095i 0.111012i
\(801\) −530.999 + 371.211i −0.662920 + 0.463435i
\(802\) −76.4007 −0.0952627
\(803\) 128.488 74.1825i 0.160010 0.0923816i
\(804\) −389.224 + 16.8464i −0.484110 + 0.0209532i
\(805\) −395.003 + 684.166i −0.490687 + 0.849895i
\(806\) 9.67030 + 5.58315i 0.0119979 + 0.00692698i
\(807\) −372.038 193.850i −0.461014 0.240210i
\(808\) 138.316 + 239.569i 0.171183 + 0.296497i
\(809\) 805.359i 0.995500i −0.867321 0.497750i \(-0.834160\pi\)
0.867321 0.497750i \(-0.165840\pi\)
\(810\) 76.0000 207.829i 0.0938272 0.256579i
\(811\) −1320.90 −1.62873 −0.814363 0.580356i \(-0.802913\pi\)
−0.814363 + 0.580356i \(0.802913\pi\)
\(812\) −464.251 + 268.035i −0.571737 + 0.330093i
\(813\) 168.995 324.336i 0.207866 0.398938i
\(814\) −67.5276 + 116.961i −0.0829577 + 0.143687i
\(815\) −52.0362 30.0431i −0.0638481 0.0368627i
\(816\) 6.39041 + 147.646i 0.00783139 + 0.180939i
\(817\) −498.325 863.125i −0.609945 1.05646i
\(818\) 355.510i 0.434609i
\(819\) 40.0098 + 57.2321i 0.0488521 + 0.0698804i
\(820\) −831.198 −1.01366
\(821\) −120.460 + 69.5474i −0.146723 + 0.0847106i −0.571564 0.820557i \(-0.693663\pi\)
0.424841 + 0.905268i \(0.360330\pi\)
\(822\) −198.162 311.312i −0.241073 0.378725i
\(823\) 197.219 341.593i 0.239634 0.415059i −0.720975 0.692961i \(-0.756306\pi\)
0.960609 + 0.277902i \(0.0896392\pi\)
\(824\) 694.265 + 400.834i 0.842555 + 0.486449i
\(825\) −56.4411 + 35.9269i −0.0684134 + 0.0435478i
\(826\) −16.0133 27.7359i −0.0193866 0.0335786i
\(827\) 560.889i 0.678221i −0.940746 0.339111i \(-0.889874\pi\)
0.940746 0.339111i \(-0.110126\pi\)
\(828\) 851.782 + 397.978i 1.02872 + 0.480649i
\(829\) 164.585 0.198534 0.0992672 0.995061i \(-0.468350\pi\)
0.0992672 + 0.995061i \(0.468350\pi\)
\(830\) −141.587 + 81.7451i −0.170586 + 0.0984881i
\(831\) 601.900 26.0514i 0.724308 0.0313494i
\(832\) −21.4668 + 37.1816i −0.0258015 + 0.0446894i
\(833\) 48.0396 + 27.7357i 0.0576706 + 0.0332961i
\(834\) −426.111 222.024i −0.510924 0.266216i
\(835\) 2.64698 + 4.58471i 0.00317004 + 0.00549067i
\(836\) 595.430i 0.712237i
\(837\) −150.747 + 362.769i −0.180103 + 0.433416i
\(838\) −373.021 −0.445132
\(839\) −1050.16 + 606.312i −1.25168 + 0.722660i −0.971444 0.237269i \(-0.923748\pi\)
−0.280241 + 0.959930i \(0.590414\pi\)
\(840\) −172.784 + 331.608i −0.205695 + 0.394771i
\(841\) −117.457 + 203.441i −0.139663 + 0.241904i
\(842\) −85.1191 49.1435i −0.101092 0.0583652i
\(843\) 8.67966 + 200.538i 0.0102962 + 0.237886i
\(844\) 161.476 + 279.685i 0.191322 + 0.331380i
\(845\) 775.069i 0.917242i
\(846\) −84.4934 + 7.32779i −0.0998740 + 0.00866169i
\(847\) −484.607 −0.572145
\(848\) 239.720 138.403i 0.282689 0.163211i
\(849\) −123.789 194.472i −0.145806 0.229060i
\(850\) −4.30217 + 7.45157i −0.00506137 + 0.00876655i
\(851\) −900.129 519.690i −1.05773 0.610682i
\(852\) 1113.42 708.736i 1.30683 0.831850i
\(853\) −116.955 202.571i −0.137110 0.237481i 0.789292 0.614018i \(-0.210448\pi\)
−0.926401 + 0.376537i \(0.877115\pi\)
\(854\) 238.106i 0.278813i
\(855\) 93.1904 + 1074.54i 0.108995 + 1.25677i
\(856\) −507.821 −0.593249
\(857\) 182.672 105.466i 0.213153 0.123064i −0.389623 0.920975i \(-0.627395\pi\)
0.602776 + 0.797911i \(0.294061\pi\)
\(858\) −14.4965 + 0.627436i −0.0168957 + 0.000731278i
\(859\) −561.542 + 972.620i −0.653716 + 1.13227i 0.328497 + 0.944505i \(0.393458\pi\)
−0.982214 + 0.187765i \(0.939876\pi\)
\(860\) −564.523 325.928i −0.656422 0.378986i
\(861\) −779.255 406.030i −0.905059 0.471579i
\(862\) 114.371 + 198.096i 0.132681 + 0.229810i
\(863\) 1634.86i 1.89440i −0.320650 0.947198i \(-0.603901\pi\)
0.320650 0.947198i \(-0.396099\pi\)
\(864\) 625.733 + 260.019i 0.724228 + 0.300948i
\(865\) 40.7887 0.0471546
\(866\) −284.154 + 164.057i −0.328123 + 0.189442i
\(867\) 23.5663 45.2286i 0.0271814 0.0521668i
\(868\) 158.409 274.373i 0.182499 0.316098i
\(869\) −739.459 426.927i −0.850931 0.491285i
\(870\) −8.72497 201.585i −0.0100287 0.231707i
\(871\) 23.1368 + 40.0741i 0.0265635 + 0.0460093i
\(872\) 532.532i 0.610702i
\(873\) −588.274 + 1259.07i −0.673854 + 1.44223i
\(874\) 436.346 0.499252
\(875\) 682.637 394.120i 0.780156 0.450423i
\(876\) 138.508 + 217.595i 0.158114 + 0.248396i
\(877\) −774.726 + 1341.86i −0.883382 + 1.53006i −0.0358252 + 0.999358i \(0.511406\pi\)
−0.847557 + 0.530705i \(0.821927\pi\)
\(878\) 188.282 + 108.705i 0.214445 + 0.123810i
\(879\) 218.171 138.874i 0.248203 0.157991i
\(880\) 174.412 + 302.091i 0.198196 + 0.343285i
\(881\) 1054.82i 1.19729i 0.801013 + 0.598647i \(0.204295\pi\)
−0.801013 + 0.598647i \(0.795705\pi\)
\(882\) 58.5233 40.9125i 0.0663529 0.0463860i
\(883\) −1522.09 −1.72377 −0.861884 0.507105i \(-0.830716\pi\)
−0.861884 + 0.507105i \(0.830716\pi\)
\(884\) 16.9714 9.79847i 0.0191985 0.0110842i
\(885\) −126.477 + 5.47415i −0.142911 + 0.00618548i
\(886\) 77.8517 134.843i 0.0878687 0.152193i
\(887\) 746.281 + 430.866i 0.841354 + 0.485756i 0.857724 0.514110i \(-0.171878\pi\)
−0.0163701 + 0.999866i \(0.505211\pi\)
\(888\) −436.283 227.324i −0.491310 0.255996i
\(889\) 370.070 + 640.980i 0.416277 + 0.721013i
\(890\) 196.667i 0.220975i
\(891\) −87.8833 502.860i −0.0986345 0.564377i
\(892\) −129.829 −0.145548
\(893\) 357.988 206.684i 0.400882 0.231449i
\(894\) −13.0931 + 25.1283i −0.0146455 + 0.0281077i
\(895\) 589.671 1021.34i 0.658850 1.14116i
\(896\) −618.778 357.252i −0.690601 0.398719i
\(897\) −4.82873 111.565i −0.00538320 0.124375i
\(898\) 41.3971 + 71.7018i 0.0460992 + 0.0798461i
\(899\) 358.198i 0.398440i
\(900\) −66.6449 95.3322i −0.0740499 0.105925i
\(901\) −95.5247 −0.106021
\(902\) 158.122 91.2917i 0.175301 0.101210i
\(903\) −370.034 581.323i −0.409783 0.643768i
\(904\) 266.297 461.239i 0.294576 0.510220i
\(905\) 1326.85 + 766.058i 1.46613 + 0.846473i
\(906\) 202.554 128.933i 0.223569 0.142311i
\(907\) 599.812 + 1038.90i 0.661314 + 1.14543i 0.980271 + 0.197660i \(0.0633342\pi\)
−0.318957 + 0.947769i \(0.603332\pi\)
\(908\) 835.871i 0.920563i
\(909\) 499.839 + 233.539i 0.549878 + 0.256919i
\(910\) 21.1972 0.0232936
\(911\) 30.9758 17.8839i 0.0340019 0.0196310i −0.482903 0.875674i \(-0.660418\pi\)
0.516905 + 0.856043i \(0.327084\pi\)
\(912\) −926.352 + 40.0943i −1.01574 + 0.0439630i
\(913\) −188.574 + 326.620i −0.206543 + 0.357743i
\(914\) 46.2242 + 26.6875i 0.0505735 + 0.0291986i
\(915\) −834.679 434.908i −0.912217 0.475309i
\(916\) −598.836 1037.21i −0.653751 1.13233i
\(917\) 177.763i 0.193853i
\(918\) −39.9061 52.1291i −0.0434707 0.0567855i
\(919\) −379.603 −0.413061 −0.206530 0.978440i \(-0.566217\pi\)
−0.206530 + 0.978440i \(0.566217\pi\)
\(920\) 517.845 298.978i 0.562875 0.324976i
\(921\) 68.1430 130.781i 0.0739881 0.141999i
\(922\) 96.9797 167.974i 0.105184 0.182184i
\(923\) −135.764 78.3832i −0.147090 0.0849222i
\(924\) 17.8021 + 411.306i 0.0192663 + 0.445136i
\(925\) 64.2959 + 111.364i 0.0695091 + 0.120393i
\(926\) 153.918i 0.166218i
\(927\) 1592.85 138.142i 1.71828 0.149020i
\(928\) 617.848 0.665784
\(929\) 193.270 111.585i 0.208041 0.120113i −0.392360 0.919812i \(-0.628341\pi\)
0.600401 + 0.799699i \(0.295008\pi\)
\(930\) 64.0340 + 100.597i 0.0688538 + 0.108169i
\(931\) −174.017 + 301.406i −0.186914 + 0.323745i
\(932\) 1270.74 + 733.660i 1.36345 + 0.787189i
\(933\) −1509.61 + 960.926i −1.61802 + 1.02993i
\(934\) −124.450 215.554i −0.133244 0.230785i
\(935\) 120.378i 0.128747i
\(936\) −4.56675 52.6571i −0.00487901 0.0562576i
\(937\) −1195.68 −1.27608 −0.638038 0.770005i \(-0.720254\pi\)
−0.638038 + 0.770005i \(0.720254\pi\)
\(938\) −108.269 + 62.5089i −0.115425 + 0.0666406i
\(939\) 290.405 12.5693i 0.309271 0.0133858i
\(940\) 135.181 234.140i 0.143810 0.249085i
\(941\) −36.2350 20.9203i −0.0385069 0.0222320i 0.480623 0.876927i \(-0.340411\pi\)
−0.519130 + 0.854695i \(0.673744\pi\)
\(942\) −316.311 164.813i −0.335787 0.174961i
\(943\) 702.578 + 1216.90i 0.745046 + 1.29046i
\(944\) 108.831i 0.115287i
\(945\) 96.4996 + 739.472i 0.102116 + 0.782510i
\(946\) 143.188 0.151362
\(947\) 460.512 265.877i 0.486285 0.280757i −0.236747 0.971571i \(-0.576081\pi\)
0.723032 + 0.690815i \(0.242748\pi\)
\(948\) 685.944 1316.47i 0.723569 1.38868i
\(949\) 15.3183 26.5322i 0.0161416 0.0279580i
\(950\) −46.7521 26.9923i −0.0492127 0.0284130i
\(951\) −53.5910 1238.19i −0.0563523 1.30198i
\(952\) 55.4660 + 96.0699i 0.0582626 + 0.100914i
\(953\) 1606.20i 1.68542i −0.538370 0.842709i \(-0.680960\pi\)
0.538370 0.842709i \(-0.319040\pi\)
\(954\) −52.0515 + 111.405i −0.0545613 + 0.116776i
\(955\) 1197.40 1.25382
\(956\) −791.530 + 456.990i −0.827960 + 0.478023i
\(957\) −249.944 392.661i −0.261174 0.410304i
\(958\) 200.942 348.042i 0.209752 0.363300i
\(959\) 1077.01 + 621.814i 1.12306 + 0.648398i
\(960\) −386.789 + 246.206i −0.402906 + 0.256465i
\(961\) 374.652 + 648.917i 0.389857 + 0.675252i
\(962\) 27.8883i 0.0289899i
\(963\) −830.066 + 580.283i −0.861958 + 0.602578i
\(964\) 383.382 0.397699
\(965\) 34.2075 19.7497i 0.0354482 0.0204660i
\(966\) 301.415 13.0458i 0.312024 0.0135050i
\(967\) −151.504 + 262.413i −0.156674 + 0.271368i −0.933667 0.358141i \(-0.883411\pi\)
0.776993 + 0.629509i \(0.216744\pi\)
\(968\) 317.657 + 183.400i 0.328158 + 0.189462i
\(969\) 283.770 + 147.858i 0.292848 + 0.152588i
\(970\) 210.926 + 365.335i 0.217450 + 0.376634i
\(971\) 970.362i 0.999343i −0.866215 0.499671i \(-0.833454\pi\)
0.866215 0.499671i \(-0.166546\pi\)
\(972\) 866.816 190.449i 0.891786 0.195935i
\(973\) 1619.22 1.66416
\(974\) −41.6803 + 24.0641i −0.0427929 + 0.0247065i
\(975\) −6.38401 + 12.2522i −0.00654770 + 0.0125664i
\(976\) 404.557 700.714i 0.414506 0.717945i
\(977\) −333.170 192.356i −0.341013 0.196884i 0.319707 0.947517i \(-0.396416\pi\)
−0.660720 + 0.750632i \(0.729749\pi\)
\(978\) 0.992237 + 22.9250i 0.00101456 + 0.0234407i
\(979\) 226.841 + 392.901i 0.231707 + 0.401329i
\(980\) 227.630i 0.232276i
\(981\) 608.520 + 870.457i 0.620305 + 0.887316i
\(982\) 389.526 0.396666
\(983\) −1046.54 + 604.222i −1.06464 + 0.614671i −0.926713 0.375771i \(-0.877378\pi\)
−0.137929 + 0.990442i \(0.544045\pi\)
\(984\) 357.136 + 561.060i 0.362943 + 0.570183i
\(985\) 558.648 967.607i 0.567156 0.982343i
\(986\) −51.8406 29.9302i −0.0525767 0.0303551i
\(987\) 241.108 153.475i 0.244284 0.155496i
\(988\) 61.4768 + 106.481i 0.0622235 + 0.107774i
\(989\) 1101.97i 1.11423i
\(990\) −140.390 65.5942i −0.141808 0.0662568i
\(991\) −942.890 −0.951453 −0.475726 0.879593i \(-0.657815\pi\)
−0.475726 + 0.879593i \(0.657815\pi\)
\(992\) −316.228 + 182.574i −0.318779 + 0.184047i
\(993\) 1221.92 52.8871i 1.23054 0.0532599i
\(994\) 211.769 366.794i 0.213047 0.369008i
\(995\) −942.353 544.068i −0.947088 0.546802i
\(996\) −581.485 302.982i −0.583821 0.304199i
\(997\) 73.5466 + 127.386i 0.0737679 + 0.127770i 0.900550 0.434753i \(-0.143164\pi\)
−0.826782 + 0.562523i \(0.809831\pi\)
\(998\) 75.1046i 0.0752551i
\(999\) −972.894 + 126.961i −0.973867 + 0.127088i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.3.j.a.86.14 64
3.2 odd 2 459.3.j.a.341.19 64
9.2 odd 6 inner 153.3.j.a.137.14 yes 64
9.7 even 3 459.3.j.a.35.19 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.j.a.86.14 64 1.1 even 1 trivial
153.3.j.a.137.14 yes 64 9.2 odd 6 inner
459.3.j.a.35.19 64 9.7 even 3
459.3.j.a.341.19 64 3.2 odd 2