Properties

Label 2-153-9.5-c2-0-5
Degree $2$
Conductor $153$
Sign $-0.965 - 0.259i$
Analytic cond. $4.16894$
Root an. cond. $2.04180$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.510 + 0.294i)2-s + (−1.38 + 2.66i)3-s + (−1.82 + 3.16i)4-s + (4.01 + 2.31i)5-s + (−0.0765 − 1.76i)6-s + (2.98 + 5.16i)7-s − 4.51i·8-s + (−5.15 − 7.37i)9-s − 2.73·10-s + (−5.45 + 3.15i)11-s + (−5.88 − 9.24i)12-s + (−0.650 + 1.12i)13-s + (−3.04 − 1.75i)14-s + (−11.7 + 7.46i)15-s + (−5.97 − 10.3i)16-s + 4.12i·17-s + ⋯
L(s)  = 1  + (−0.255 + 0.147i)2-s + (−0.462 + 0.886i)3-s + (−0.456 + 0.790i)4-s + (0.802 + 0.463i)5-s + (−0.0127 − 0.294i)6-s + (0.425 + 0.737i)7-s − 0.564i·8-s + (−0.572 − 0.819i)9-s − 0.273·10-s + (−0.496 + 0.286i)11-s + (−0.490 − 0.770i)12-s + (−0.0500 + 0.0866i)13-s + (−0.217 − 0.125i)14-s + (−0.781 + 0.497i)15-s + (−0.373 − 0.646i)16-s + 0.242i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 - 0.259i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.965 - 0.259i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $-0.965 - 0.259i$
Analytic conductor: \(4.16894\)
Root analytic conductor: \(2.04180\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{153} (86, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 153,\ (\ :1),\ -0.965 - 0.259i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.119121 + 0.902182i\)
\(L(\frac12)\) \(\approx\) \(0.119121 + 0.902182i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.38 - 2.66i)T \)
17 \( 1 - 4.12iT \)
good2 \( 1 + (0.510 - 0.294i)T + (2 - 3.46i)T^{2} \)
5 \( 1 + (-4.01 - 2.31i)T + (12.5 + 21.6i)T^{2} \)
7 \( 1 + (-2.98 - 5.16i)T + (-24.5 + 42.4i)T^{2} \)
11 \( 1 + (5.45 - 3.15i)T + (60.5 - 104. i)T^{2} \)
13 \( 1 + (0.650 - 1.12i)T + (-84.5 - 146. i)T^{2} \)
19 \( 1 + 25.8T + 361T^{2} \)
23 \( 1 + (-24.7 - 14.3i)T + (264.5 + 458. i)T^{2} \)
29 \( 1 + (-21.3 + 12.3i)T + (420.5 - 728. i)T^{2} \)
31 \( 1 + (7.27 - 12.6i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + 36.3T + 1.36e3T^{2} \)
41 \( 1 + (-42.5 - 24.5i)T + (840.5 + 1.45e3i)T^{2} \)
43 \( 1 + (-19.2 - 33.3i)T + (-924.5 + 1.60e3i)T^{2} \)
47 \( 1 + (13.8 - 7.98i)T + (1.10e3 - 1.91e3i)T^{2} \)
53 \( 1 - 23.1iT - 2.80e3T^{2} \)
59 \( 1 + (-7.88 - 4.55i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (-33.8 - 58.6i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (-17.7 + 30.7i)T + (-2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 - 120. iT - 5.04e3T^{2} \)
73 \( 1 + 23.5T + 5.32e3T^{2} \)
79 \( 1 + (-67.7 - 117. i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 + (-51.8 + 29.9i)T + (3.44e3 - 5.96e3i)T^{2} \)
89 \( 1 + 71.9iT - 7.92e3T^{2} \)
97 \( 1 + (77.2 + 133. i)T + (-4.70e3 + 8.14e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08585803062640169626496884495, −12.18174344621761578202341875180, −11.04631489873259832546391147103, −10.07526003783509229092931169136, −9.150384258339305534084068602158, −8.277926362154737923056296551072, −6.71153123975541271558981321672, −5.48682117960995915859923746732, −4.32373235896141920244835764218, −2.71773170227929291937056496818, 0.67707741634051250928819369732, 2.03178704243290884822064016597, 4.76881375173715851994675769536, 5.65655064854318940417544600757, 6.80294737994824564710002729918, 8.192998349727191133991941227227, 9.155816782293191898843681242523, 10.55532934598926797366022812461, 10.91876925208366732698011650904, 12.47247678970647031975319052340

Graph of the $Z$-function along the critical line