Properties

Label 152.2.c.b.77.1
Level $152$
Weight $2$
Character 152.77
Analytic conductor $1.214$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [152,2,Mod(77,152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(152, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("152.77"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 152.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.21372611072\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 3 x^{14} - 4 x^{13} + 4 x^{12} + 4 x^{11} - 10 x^{10} + 24 x^{9} - 40 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 77.1
Root \(-0.182898 - 1.40234i\) of defining polynomial
Character \(\chi\) \(=\) 152.77
Dual form 152.2.c.b.77.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40234 - 0.182898i) q^{2} -0.840428i q^{3} +(1.93310 + 0.512969i) q^{4} +4.04855i q^{5} +(-0.153712 + 1.17856i) q^{6} -3.59283 q^{7} +(-2.61703 - 1.07291i) q^{8} +2.29368 q^{9} +(0.740472 - 5.67744i) q^{10} +4.29368i q^{11} +(0.431113 - 1.62463i) q^{12} +1.77186i q^{13} +(5.03836 + 0.657121i) q^{14} +3.40252 q^{15} +(3.47373 + 1.98324i) q^{16} +2.86953 q^{17} +(-3.21651 - 0.419509i) q^{18} -1.00000i q^{19} +(-2.07678 + 7.82625i) q^{20} +3.01952i q^{21} +(0.785305 - 6.02119i) q^{22} +2.74118 q^{23} +(-0.901707 + 2.19943i) q^{24} -11.3908 q^{25} +(0.324069 - 2.48474i) q^{26} -4.44896i q^{27} +(-6.94529 - 1.84301i) q^{28} +2.29074i q^{29} +(-4.77148 - 0.622313i) q^{30} +2.33021 q^{31} +(-4.50860 - 3.41650i) q^{32} +3.60853 q^{33} +(-4.02404 - 0.524830i) q^{34} -14.5458i q^{35} +(4.43391 + 1.17659i) q^{36} -8.06260i q^{37} +(-0.182898 + 1.40234i) q^{38} +1.48912 q^{39} +(4.34375 - 10.5952i) q^{40} -2.85960 q^{41} +(0.552263 - 4.23438i) q^{42} +0.241806i q^{43} +(-2.20252 + 8.30010i) q^{44} +9.28609i q^{45} +(-3.84405 - 0.501355i) q^{46} -0.191993 q^{47} +(1.66677 - 2.91942i) q^{48} +5.90844 q^{49} +(15.9737 + 2.08335i) q^{50} -2.41163i q^{51} +(-0.908908 + 3.42517i) q^{52} +8.10207i q^{53} +(-0.813705 + 6.23894i) q^{54} -17.3832 q^{55} +(9.40255 + 3.85480i) q^{56} -0.840428 q^{57} +(0.418972 - 3.21239i) q^{58} -4.36599i q^{59} +(6.57740 + 1.74539i) q^{60} -15.3277i q^{61} +(-3.26774 - 0.426191i) q^{62} -8.24081 q^{63} +(5.69771 + 5.61570i) q^{64} -7.17346 q^{65} +(-5.06037 - 0.659992i) q^{66} +13.2749i q^{67} +(5.54707 + 1.47198i) q^{68} -2.30376i q^{69} +(-2.66039 + 20.3981i) q^{70} +7.44693 q^{71} +(-6.00264 - 2.46092i) q^{72} +9.20686 q^{73} +(-1.47463 + 11.3065i) q^{74} +9.57314i q^{75} +(0.512969 - 1.93310i) q^{76} -15.4265i q^{77} +(-2.08825 - 0.272357i) q^{78} +8.96281 q^{79} +(-8.02924 + 14.0636i) q^{80} +3.14202 q^{81} +(4.01012 + 0.523014i) q^{82} -1.94813i q^{83} +(-1.54892 + 5.83702i) q^{84} +11.6174i q^{85} +(0.0442258 - 0.339094i) q^{86} +1.92520 q^{87} +(4.60675 - 11.2367i) q^{88} -3.24415 q^{89} +(1.69841 - 13.0222i) q^{90} -6.36599i q^{91} +(5.29896 + 1.40614i) q^{92} -1.95838i q^{93} +(0.269239 + 0.0351151i) q^{94} +4.04855 q^{95} +(-2.87132 + 3.78916i) q^{96} +17.6954 q^{97} +(-8.28562 - 1.08064i) q^{98} +9.84833i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{4} + 6 q^{6} - 8 q^{7} - 12 q^{8} - 24 q^{9} - 8 q^{10} + 4 q^{12} + 4 q^{14} + 2 q^{16} - 8 q^{17} + 20 q^{18} + 8 q^{20} + 20 q^{22} + 6 q^{24} - 24 q^{25} - 10 q^{26} - 14 q^{28} + 4 q^{30}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40234 0.182898i −0.991602 0.129328i
\(3\) 0.840428i 0.485221i −0.970124 0.242611i \(-0.921996\pi\)
0.970124 0.242611i \(-0.0780037\pi\)
\(4\) 1.93310 + 0.512969i 0.966548 + 0.256484i
\(5\) 4.04855i 1.81057i 0.424806 + 0.905284i \(0.360342\pi\)
−0.424806 + 0.905284i \(0.639658\pi\)
\(6\) −0.153712 + 1.17856i −0.0627528 + 0.481146i
\(7\) −3.59283 −1.35796 −0.678981 0.734156i \(-0.737578\pi\)
−0.678981 + 0.734156i \(0.737578\pi\)
\(8\) −2.61703 1.07291i −0.925260 0.379332i
\(9\) 2.29368 0.764560
\(10\) 0.740472 5.67744i 0.234158 1.79536i
\(11\) 4.29368i 1.29459i 0.762238 + 0.647297i \(0.224101\pi\)
−0.762238 + 0.647297i \(0.775899\pi\)
\(12\) 0.431113 1.62463i 0.124452 0.468990i
\(13\) 1.77186i 0.491425i 0.969343 + 0.245712i \(0.0790219\pi\)
−0.969343 + 0.245712i \(0.920978\pi\)
\(14\) 5.03836 + 0.657121i 1.34656 + 0.175623i
\(15\) 3.40252 0.878526
\(16\) 3.47373 + 1.98324i 0.868432 + 0.495809i
\(17\) 2.86953 0.695963 0.347981 0.937501i \(-0.386867\pi\)
0.347981 + 0.937501i \(0.386867\pi\)
\(18\) −3.21651 0.419509i −0.758139 0.0988793i
\(19\) 1.00000i 0.229416i
\(20\) −2.07678 + 7.82625i −0.464382 + 1.75000i
\(21\) 3.01952i 0.658912i
\(22\) 0.785305 6.02119i 0.167428 1.28372i
\(23\) 2.74118 0.571575 0.285787 0.958293i \(-0.407745\pi\)
0.285787 + 0.958293i \(0.407745\pi\)
\(24\) −0.901707 + 2.19943i −0.184060 + 0.448956i
\(25\) −11.3908 −2.27816
\(26\) 0.324069 2.48474i 0.0635551 0.487298i
\(27\) 4.44896i 0.856202i
\(28\) −6.94529 1.84301i −1.31254 0.348296i
\(29\) 2.29074i 0.425380i 0.977120 + 0.212690i \(0.0682225\pi\)
−0.977120 + 0.212690i \(0.931778\pi\)
\(30\) −4.77148 0.622313i −0.871148 0.113618i
\(31\) 2.33021 0.418519 0.209259 0.977860i \(-0.432895\pi\)
0.209259 + 0.977860i \(0.432895\pi\)
\(32\) −4.50860 3.41650i −0.797016 0.603958i
\(33\) 3.60853 0.628164
\(34\) −4.02404 0.524830i −0.690118 0.0900077i
\(35\) 14.5458i 2.45868i
\(36\) 4.43391 + 1.17659i 0.738985 + 0.196098i
\(37\) 8.06260i 1.32548i −0.748848 0.662742i \(-0.769393\pi\)
0.748848 0.662742i \(-0.230607\pi\)
\(38\) −0.182898 + 1.40234i −0.0296699 + 0.227489i
\(39\) 1.48912 0.238450
\(40\) 4.34375 10.5952i 0.686807 1.67525i
\(41\) −2.85960 −0.446594 −0.223297 0.974750i \(-0.571682\pi\)
−0.223297 + 0.974750i \(0.571682\pi\)
\(42\) 0.552263 4.23438i 0.0852160 0.653379i
\(43\) 0.241806i 0.0368751i 0.999830 + 0.0184375i \(0.00586918\pi\)
−0.999830 + 0.0184375i \(0.994131\pi\)
\(44\) −2.20252 + 8.30010i −0.332043 + 1.25129i
\(45\) 9.28609i 1.38429i
\(46\) −3.84405 0.501355i −0.566775 0.0739208i
\(47\) −0.191993 −0.0280050 −0.0140025 0.999902i \(-0.504457\pi\)
−0.0140025 + 0.999902i \(0.504457\pi\)
\(48\) 1.66677 2.91942i 0.240577 0.421381i
\(49\) 5.90844 0.844062
\(50\) 15.9737 + 2.08335i 2.25903 + 0.294630i
\(51\) 2.41163i 0.337696i
\(52\) −0.908908 + 3.42517i −0.126043 + 0.474986i
\(53\) 8.10207i 1.11291i 0.830879 + 0.556453i \(0.187838\pi\)
−0.830879 + 0.556453i \(0.812162\pi\)
\(54\) −0.813705 + 6.23894i −0.110731 + 0.849012i
\(55\) −17.3832 −2.34395
\(56\) 9.40255 + 3.85480i 1.25647 + 0.515119i
\(57\) −0.840428 −0.111317
\(58\) 0.418972 3.21239i 0.0550137 0.421808i
\(59\) 4.36599i 0.568403i −0.958765 0.284201i \(-0.908272\pi\)
0.958765 0.284201i \(-0.0917284\pi\)
\(60\) 6.57740 + 1.74539i 0.849138 + 0.225328i
\(61\) 15.3277i 1.96251i −0.192707 0.981256i \(-0.561727\pi\)
0.192707 0.981256i \(-0.438273\pi\)
\(62\) −3.26774 0.426191i −0.415004 0.0541263i
\(63\) −8.24081 −1.03824
\(64\) 5.69771 + 5.61570i 0.712214 + 0.701963i
\(65\) −7.17346 −0.889758
\(66\) −5.06037 0.659992i −0.622889 0.0812394i
\(67\) 13.2749i 1.62178i 0.585197 + 0.810891i \(0.301017\pi\)
−0.585197 + 0.810891i \(0.698983\pi\)
\(68\) 5.54707 + 1.47198i 0.672682 + 0.178504i
\(69\) 2.30376i 0.277340i
\(70\) −2.66039 + 20.3981i −0.317977 + 2.43804i
\(71\) 7.44693 0.883788 0.441894 0.897067i \(-0.354307\pi\)
0.441894 + 0.897067i \(0.354307\pi\)
\(72\) −6.00264 2.46092i −0.707417 0.290023i
\(73\) 9.20686 1.07758 0.538791 0.842440i \(-0.318881\pi\)
0.538791 + 0.842440i \(0.318881\pi\)
\(74\) −1.47463 + 11.3065i −0.171423 + 1.31435i
\(75\) 9.57314i 1.10541i
\(76\) 0.512969 1.93310i 0.0588415 0.221741i
\(77\) 15.4265i 1.75801i
\(78\) −2.08825 0.272357i −0.236447 0.0308383i
\(79\) 8.96281 1.00839 0.504197 0.863588i \(-0.331788\pi\)
0.504197 + 0.863588i \(0.331788\pi\)
\(80\) −8.02924 + 14.0636i −0.897696 + 1.57235i
\(81\) 3.14202 0.349113
\(82\) 4.01012 + 0.523014i 0.442844 + 0.0577573i
\(83\) 1.94813i 0.213835i −0.994268 0.106917i \(-0.965902\pi\)
0.994268 0.106917i \(-0.0340980\pi\)
\(84\) −1.54892 + 5.83702i −0.169001 + 0.636871i
\(85\) 11.6174i 1.26009i
\(86\) 0.0442258 0.339094i 0.00476899 0.0365654i
\(87\) 1.92520 0.206404
\(88\) 4.60675 11.2367i 0.491081 1.19784i
\(89\) −3.24415 −0.343879 −0.171940 0.985107i \(-0.555003\pi\)
−0.171940 + 0.985107i \(0.555003\pi\)
\(90\) 1.69841 13.0222i 0.179028 1.37266i
\(91\) 6.36599i 0.667337i
\(92\) 5.29896 + 1.40614i 0.552455 + 0.146600i
\(93\) 1.95838i 0.203074i
\(94\) 0.269239 + 0.0351151i 0.0277698 + 0.00362184i
\(95\) 4.04855 0.415373
\(96\) −2.87132 + 3.78916i −0.293053 + 0.386729i
\(97\) 17.6954 1.79670 0.898349 0.439283i \(-0.144768\pi\)
0.898349 + 0.439283i \(0.144768\pi\)
\(98\) −8.28562 1.08064i −0.836974 0.109161i
\(99\) 9.84833i 0.989795i
\(100\) −22.0195 5.84312i −2.20195 0.584312i
\(101\) 0.559270i 0.0556494i 0.999613 + 0.0278247i \(0.00885802\pi\)
−0.999613 + 0.0278247i \(0.991142\pi\)
\(102\) −0.441082 + 3.38192i −0.0436736 + 0.334860i
\(103\) 15.0529 1.48321 0.741603 0.670839i \(-0.234066\pi\)
0.741603 + 0.670839i \(0.234066\pi\)
\(104\) 1.90105 4.63701i 0.186413 0.454696i
\(105\) −12.2247 −1.19301
\(106\) 1.48185 11.3618i 0.143930 1.10356i
\(107\) 7.69697i 0.744094i −0.928214 0.372047i \(-0.878656\pi\)
0.928214 0.372047i \(-0.121344\pi\)
\(108\) 2.28218 8.60026i 0.219602 0.827561i
\(109\) 3.20547i 0.307029i −0.988146 0.153514i \(-0.950941\pi\)
0.988146 0.153514i \(-0.0490591\pi\)
\(110\) 24.3771 + 3.17935i 2.32427 + 0.303139i
\(111\) −6.77603 −0.643153
\(112\) −12.4805 7.12543i −1.17930 0.673290i
\(113\) −13.2002 −1.24177 −0.620885 0.783902i \(-0.713227\pi\)
−0.620885 + 0.783902i \(0.713227\pi\)
\(114\) 1.17856 + 0.153712i 0.110383 + 0.0143965i
\(115\) 11.0978i 1.03488i
\(116\) −1.17508 + 4.42823i −0.109103 + 0.411151i
\(117\) 4.06408i 0.375724i
\(118\) −0.798529 + 6.12258i −0.0735106 + 0.563629i
\(119\) −10.3097 −0.945091
\(120\) −8.90450 3.65061i −0.812866 0.333253i
\(121\) −7.43570 −0.675972
\(122\) −2.80341 + 21.4946i −0.253808 + 1.94603i
\(123\) 2.40329i 0.216697i
\(124\) 4.50453 + 1.19533i 0.404519 + 0.107343i
\(125\) 25.8735i 2.31419i
\(126\) 11.5564 + 1.50723i 1.02952 + 0.134274i
\(127\) −12.0428 −1.06862 −0.534311 0.845288i \(-0.679429\pi\)
−0.534311 + 0.845288i \(0.679429\pi\)
\(128\) −6.96301 8.91720i −0.615449 0.788177i
\(129\) 0.203221 0.0178926
\(130\) 10.0596 + 1.31201i 0.882286 + 0.115071i
\(131\) 2.21935i 0.193906i −0.995289 0.0969529i \(-0.969090\pi\)
0.995289 0.0969529i \(-0.0309096\pi\)
\(132\) 6.97564 + 1.85106i 0.607151 + 0.161114i
\(133\) 3.59283i 0.311538i
\(134\) 2.42794 18.6158i 0.209742 1.60816i
\(135\) 18.0118 1.55021
\(136\) −7.50964 3.07876i −0.643947 0.264001i
\(137\) 7.14461 0.610405 0.305203 0.952287i \(-0.401276\pi\)
0.305203 + 0.952287i \(0.401276\pi\)
\(138\) −0.421353 + 3.23065i −0.0358680 + 0.275011i
\(139\) 6.74884i 0.572429i 0.958166 + 0.286215i \(0.0923970\pi\)
−0.958166 + 0.286215i \(0.907603\pi\)
\(140\) 7.46153 28.1184i 0.630614 2.37644i
\(141\) 0.161356i 0.0135886i
\(142\) −10.4431 1.36203i −0.876366 0.114299i
\(143\) −7.60779 −0.636195
\(144\) 7.96762 + 4.54891i 0.663968 + 0.379076i
\(145\) −9.27419 −0.770180
\(146\) −12.9111 1.68391i −1.06853 0.139362i
\(147\) 4.96561i 0.409557i
\(148\) 4.13586 15.5858i 0.339966 1.28114i
\(149\) 11.1371i 0.912387i 0.889880 + 0.456194i \(0.150788\pi\)
−0.889880 + 0.456194i \(0.849212\pi\)
\(150\) 1.75091 13.4248i 0.142961 1.09613i
\(151\) −9.26456 −0.753939 −0.376970 0.926226i \(-0.623034\pi\)
−0.376970 + 0.926226i \(0.623034\pi\)
\(152\) −1.07291 + 2.61703i −0.0870248 + 0.212269i
\(153\) 6.58178 0.532105
\(154\) −2.82147 + 21.6331i −0.227360 + 1.74325i
\(155\) 9.43399i 0.757757i
\(156\) 2.87861 + 0.763871i 0.230473 + 0.0611586i
\(157\) 11.1900i 0.893062i −0.894768 0.446531i \(-0.852659\pi\)
0.894768 0.446531i \(-0.147341\pi\)
\(158\) −12.5689 1.63928i −0.999926 0.130414i
\(159\) 6.80921 0.540005
\(160\) 13.8319 18.2533i 1.09351 1.44305i
\(161\) −9.84859 −0.776177
\(162\) −4.40616 0.574668i −0.346181 0.0451502i
\(163\) 16.2002i 1.26890i 0.772964 + 0.634449i \(0.218773\pi\)
−0.772964 + 0.634449i \(0.781227\pi\)
\(164\) −5.52788 1.46688i −0.431655 0.114544i
\(165\) 14.6093i 1.13733i
\(166\) −0.356308 + 2.73193i −0.0276549 + 0.212039i
\(167\) −11.8527 −0.917192 −0.458596 0.888645i \(-0.651648\pi\)
−0.458596 + 0.888645i \(0.651648\pi\)
\(168\) 3.23968 7.90217i 0.249947 0.609665i
\(169\) 9.86052 0.758502
\(170\) 2.12480 16.2916i 0.162965 1.24951i
\(171\) 2.29368i 0.175402i
\(172\) −0.124039 + 0.467435i −0.00945788 + 0.0356416i
\(173\) 0.725489i 0.0551579i −0.999620 0.0275790i \(-0.991220\pi\)
0.999620 0.0275790i \(-0.00877977\pi\)
\(174\) −2.69978 0.352116i −0.204670 0.0266938i
\(175\) 40.9252 3.09365
\(176\) −8.51538 + 14.9151i −0.641871 + 1.12427i
\(177\) −3.66930 −0.275801
\(178\) 4.54939 + 0.593348i 0.340991 + 0.0444733i
\(179\) 19.7681i 1.47753i 0.673961 + 0.738767i \(0.264592\pi\)
−0.673961 + 0.738767i \(0.735408\pi\)
\(180\) −4.76347 + 17.9509i −0.355048 + 1.33798i
\(181\) 8.74694i 0.650155i −0.945687 0.325077i \(-0.894610\pi\)
0.945687 0.325077i \(-0.105390\pi\)
\(182\) −1.16432 + 8.92726i −0.0863055 + 0.661732i
\(183\) −12.8818 −0.952253
\(184\) −7.17375 2.94105i −0.528856 0.216817i
\(185\) 32.6419 2.39988
\(186\) −0.358183 + 2.74630i −0.0262632 + 0.201369i
\(187\) 12.3208i 0.900989i
\(188\) −0.371141 0.0984863i −0.0270682 0.00718285i
\(189\) 15.9844i 1.16269i
\(190\) −5.67744 0.740472i −0.411884 0.0537195i
\(191\) −10.9487 −0.792218 −0.396109 0.918204i \(-0.629640\pi\)
−0.396109 + 0.918204i \(0.629640\pi\)
\(192\) 4.71959 4.78851i 0.340607 0.345581i
\(193\) −9.94917 −0.716157 −0.358078 0.933692i \(-0.616568\pi\)
−0.358078 + 0.933692i \(0.616568\pi\)
\(194\) −24.8149 3.23645i −1.78161 0.232364i
\(195\) 6.02878i 0.431730i
\(196\) 11.4216 + 3.03084i 0.815827 + 0.216489i
\(197\) 9.99431i 0.712065i −0.934474 0.356032i \(-0.884129\pi\)
0.934474 0.356032i \(-0.115871\pi\)
\(198\) 1.80124 13.8107i 0.128008 0.981482i
\(199\) 8.57990 0.608213 0.304106 0.952638i \(-0.401642\pi\)
0.304106 + 0.952638i \(0.401642\pi\)
\(200\) 29.8101 + 12.2213i 2.10789 + 0.864179i
\(201\) 11.1566 0.786924
\(202\) 0.102289 0.784284i 0.00719704 0.0551820i
\(203\) 8.23025i 0.577650i
\(204\) 1.23709 4.66192i 0.0866137 0.326399i
\(205\) 11.5772i 0.808589i
\(206\) −21.1092 2.75314i −1.47075 0.191821i
\(207\) 6.28739 0.437004
\(208\) −3.51401 + 6.15495i −0.243653 + 0.426769i
\(209\) 4.29368 0.297000
\(210\) 17.1431 + 2.23587i 1.18299 + 0.154289i
\(211\) 22.7140i 1.56370i −0.623468 0.781849i \(-0.714277\pi\)
0.623468 0.781849i \(-0.285723\pi\)
\(212\) −4.15611 + 15.6621i −0.285443 + 1.07568i
\(213\) 6.25861i 0.428833i
\(214\) −1.40776 + 10.7937i −0.0962324 + 0.737845i
\(215\) −0.978965 −0.0667649
\(216\) −4.77335 + 11.6431i −0.324785 + 0.792210i
\(217\) −8.37206 −0.568333
\(218\) −0.586274 + 4.49515i −0.0397075 + 0.304450i
\(219\) 7.73770i 0.522865i
\(220\) −33.6034 8.91704i −2.26554 0.601187i
\(221\) 5.08439i 0.342013i
\(222\) 9.50228 + 1.23932i 0.637751 + 0.0831778i
\(223\) −16.0203 −1.07280 −0.536400 0.843964i \(-0.680216\pi\)
−0.536400 + 0.843964i \(0.680216\pi\)
\(224\) 16.1987 + 12.2749i 1.08232 + 0.820152i
\(225\) −26.1268 −1.74179
\(226\) 18.5111 + 2.41429i 1.23134 + 0.160596i
\(227\) 1.36137i 0.0903570i −0.998979 0.0451785i \(-0.985614\pi\)
0.998979 0.0451785i \(-0.0143857\pi\)
\(228\) −1.62463 0.431113i −0.107594 0.0285512i
\(229\) 10.7387i 0.709634i 0.934936 + 0.354817i \(0.115457\pi\)
−0.934936 + 0.354817i \(0.884543\pi\)
\(230\) 2.02976 15.5629i 0.133839 1.02618i
\(231\) −12.9648 −0.853024
\(232\) 2.45777 5.99495i 0.161361 0.393587i
\(233\) 14.4853 0.948964 0.474482 0.880265i \(-0.342635\pi\)
0.474482 + 0.880265i \(0.342635\pi\)
\(234\) 0.743311 5.69920i 0.0485917 0.372569i
\(235\) 0.777293i 0.0507050i
\(236\) 2.23961 8.43987i 0.145786 0.549389i
\(237\) 7.53259i 0.489295i
\(238\) 14.4577 + 1.88563i 0.937154 + 0.122227i
\(239\) −0.861343 −0.0557156 −0.0278578 0.999612i \(-0.508869\pi\)
−0.0278578 + 0.999612i \(0.508869\pi\)
\(240\) 11.8194 + 6.74800i 0.762940 + 0.435581i
\(241\) 10.3858 0.669007 0.334503 0.942395i \(-0.391431\pi\)
0.334503 + 0.942395i \(0.391431\pi\)
\(242\) 10.4274 + 1.35997i 0.670295 + 0.0874224i
\(243\) 15.9875i 1.02560i
\(244\) 7.86264 29.6300i 0.503354 1.89686i
\(245\) 23.9206i 1.52823i
\(246\) 0.439556 3.37022i 0.0280251 0.214877i
\(247\) 1.77186 0.112741
\(248\) −6.09824 2.50012i −0.387239 0.158758i
\(249\) −1.63726 −0.103757
\(250\) −4.73220 + 36.2833i −0.299291 + 2.29476i
\(251\) 16.7981i 1.06029i −0.847908 0.530144i \(-0.822138\pi\)
0.847908 0.530144i \(-0.177862\pi\)
\(252\) −15.9303 4.22728i −1.00351 0.266293i
\(253\) 11.7697i 0.739957i
\(254\) 16.8880 + 2.20260i 1.05965 + 0.138203i
\(255\) 9.76362 0.611421
\(256\) 8.13355 + 13.7784i 0.508347 + 0.861153i
\(257\) −20.8724 −1.30198 −0.650991 0.759085i \(-0.725646\pi\)
−0.650991 + 0.759085i \(0.725646\pi\)
\(258\) −0.284984 0.0371686i −0.0177423 0.00231402i
\(259\) 28.9676i 1.79996i
\(260\) −13.8670 3.67976i −0.859994 0.228209i
\(261\) 5.25423i 0.325229i
\(262\) −0.405915 + 3.11228i −0.0250775 + 0.192277i
\(263\) 23.0366 1.42050 0.710248 0.703952i \(-0.248583\pi\)
0.710248 + 0.703952i \(0.248583\pi\)
\(264\) −9.44364 3.87164i −0.581216 0.238283i
\(265\) −32.8017 −2.01499
\(266\) 0.657121 5.03836i 0.0402907 0.308922i
\(267\) 2.72648i 0.166858i
\(268\) −6.80959 + 25.6616i −0.415962 + 1.56753i
\(269\) 10.5023i 0.640337i −0.947361 0.320169i \(-0.896260\pi\)
0.947361 0.320169i \(-0.103740\pi\)
\(270\) −25.2587 3.29433i −1.53719 0.200486i
\(271\) −11.4478 −0.695403 −0.347702 0.937605i \(-0.613038\pi\)
−0.347702 + 0.937605i \(0.613038\pi\)
\(272\) 9.96795 + 5.69095i 0.604396 + 0.345065i
\(273\) −5.35015 −0.323806
\(274\) −10.0191 1.30673i −0.605279 0.0789427i
\(275\) 48.9084i 2.94929i
\(276\) 1.18176 4.45339i 0.0711335 0.268063i
\(277\) 24.1899i 1.45343i 0.686940 + 0.726715i \(0.258954\pi\)
−0.686940 + 0.726715i \(0.741046\pi\)
\(278\) 1.23435 9.46415i 0.0740313 0.567622i
\(279\) 5.34477 0.319983
\(280\) −15.6064 + 38.0667i −0.932659 + 2.27492i
\(281\) −1.48823 −0.0887804 −0.0443902 0.999014i \(-0.514134\pi\)
−0.0443902 + 0.999014i \(0.514134\pi\)
\(282\) 0.0295117 0.226276i 0.00175740 0.0134745i
\(283\) 11.7331i 0.697459i 0.937223 + 0.348730i \(0.113387\pi\)
−0.937223 + 0.348730i \(0.886613\pi\)
\(284\) 14.3956 + 3.82004i 0.854224 + 0.226678i
\(285\) 3.40252i 0.201548i
\(286\) 10.6687 + 1.39145i 0.630853 + 0.0822781i
\(287\) 10.2741 0.606458
\(288\) −10.3413 7.83637i −0.609367 0.461762i
\(289\) −8.76581 −0.515636
\(290\) 13.0055 + 1.69623i 0.763712 + 0.0996061i
\(291\) 14.8717i 0.871796i
\(292\) 17.7977 + 4.72283i 1.04153 + 0.276383i
\(293\) 0.520490i 0.0304073i 0.999884 + 0.0152037i \(0.00483966\pi\)
−0.999884 + 0.0152037i \(0.995160\pi\)
\(294\) −0.908200 + 6.96346i −0.0529673 + 0.406117i
\(295\) 17.6759 1.02913
\(296\) −8.65048 + 21.1001i −0.502799 + 1.22642i
\(297\) 19.1024 1.10843
\(298\) 2.03695 15.6180i 0.117998 0.904725i
\(299\) 4.85698i 0.280886i
\(300\) −4.91072 + 18.5058i −0.283521 + 1.06843i
\(301\) 0.868768i 0.0500750i
\(302\) 12.9920 + 1.69447i 0.747607 + 0.0975057i
\(303\) 0.470026 0.0270023
\(304\) 1.98324 3.47373i 0.113746 0.199232i
\(305\) 62.0551 3.55326
\(306\) −9.22987 1.20379i −0.527637 0.0688163i
\(307\) 11.5355i 0.658364i −0.944267 0.329182i \(-0.893227\pi\)
0.944267 0.329182i \(-0.106773\pi\)
\(308\) 7.91330 29.8209i 0.450902 1.69920i
\(309\) 12.6509i 0.719683i
\(310\) 1.72546 13.2296i 0.0979994 0.751393i
\(311\) −23.2072 −1.31596 −0.657981 0.753034i \(-0.728589\pi\)
−0.657981 + 0.753034i \(0.728589\pi\)
\(312\) −3.89707 1.59770i −0.220628 0.0904517i
\(313\) 0.924930 0.0522801 0.0261401 0.999658i \(-0.491678\pi\)
0.0261401 + 0.999658i \(0.491678\pi\)
\(314\) −2.04663 + 15.6922i −0.115498 + 0.885562i
\(315\) 33.3634i 1.87981i
\(316\) 17.3260 + 4.59764i 0.974662 + 0.258637i
\(317\) 14.4924i 0.813975i −0.913434 0.406987i \(-0.866579\pi\)
0.913434 0.406987i \(-0.133421\pi\)
\(318\) −9.54880 1.24539i −0.535470 0.0698380i
\(319\) −9.83572 −0.550694
\(320\) −22.7355 + 23.0675i −1.27095 + 1.28951i
\(321\) −6.46875 −0.361050
\(322\) 13.8110 + 1.80129i 0.769659 + 0.100382i
\(323\) 2.86953i 0.159665i
\(324\) 6.07382 + 1.61176i 0.337434 + 0.0895420i
\(325\) 20.1829i 1.11954i
\(326\) 2.96298 22.7182i 0.164105 1.25824i
\(327\) −2.69397 −0.148977
\(328\) 7.48366 + 3.06810i 0.413216 + 0.169408i
\(329\) 0.689798 0.0380298
\(330\) 2.67201 20.4872i 0.147090 1.12778i
\(331\) 18.7836i 1.03244i −0.856456 0.516220i \(-0.827339\pi\)
0.856456 0.516220i \(-0.172661\pi\)
\(332\) 0.999327 3.76591i 0.0548452 0.206681i
\(333\) 18.4930i 1.01341i
\(334\) 16.6215 + 2.16784i 0.909490 + 0.118619i
\(335\) −53.7440 −2.93635
\(336\) −5.98841 + 10.4890i −0.326695 + 0.572220i
\(337\) −18.2695 −0.995202 −0.497601 0.867406i \(-0.665786\pi\)
−0.497601 + 0.867406i \(0.665786\pi\)
\(338\) −13.8278 1.80347i −0.752132 0.0980957i
\(339\) 11.0938i 0.602533i
\(340\) −5.95938 + 22.4576i −0.323193 + 1.21794i
\(341\) 10.0052i 0.541812i
\(342\) −0.419509 + 3.21651i −0.0226845 + 0.173929i
\(343\) 3.92180 0.211758
\(344\) 0.259437 0.632814i 0.0139879 0.0341191i
\(345\) 9.32690 0.502144
\(346\) −0.132690 + 1.01738i −0.00713348 + 0.0546947i
\(347\) 0.376993i 0.0202380i −0.999949 0.0101190i \(-0.996779\pi\)
0.999949 0.0101190i \(-0.00322104\pi\)
\(348\) 3.72161 + 0.987569i 0.199499 + 0.0529393i
\(349\) 2.06216i 0.110385i −0.998476 0.0551925i \(-0.982423\pi\)
0.998476 0.0551925i \(-0.0175773\pi\)
\(350\) −57.3909 7.48513i −3.06767 0.400097i
\(351\) 7.88292 0.420759
\(352\) 14.6694 19.3585i 0.781880 1.03181i
\(353\) −13.2220 −0.703735 −0.351867 0.936050i \(-0.614453\pi\)
−0.351867 + 0.936050i \(0.614453\pi\)
\(354\) 5.14559 + 0.671106i 0.273485 + 0.0356689i
\(355\) 30.1493i 1.60016i
\(356\) −6.27126 1.66415i −0.332376 0.0881997i
\(357\) 8.66458i 0.458578i
\(358\) 3.61554 27.7215i 0.191087 1.46513i
\(359\) −6.30805 −0.332926 −0.166463 0.986048i \(-0.553235\pi\)
−0.166463 + 0.986048i \(0.553235\pi\)
\(360\) 9.96318 24.3020i 0.525106 1.28083i
\(361\) −1.00000 −0.0526316
\(362\) −1.59980 + 12.2662i −0.0840834 + 0.644695i
\(363\) 6.24917i 0.327996i
\(364\) 3.26555 12.3061i 0.171161 0.645013i
\(365\) 37.2745i 1.95103i
\(366\) 18.0647 + 2.35606i 0.944256 + 0.123153i
\(367\) −17.6676 −0.922241 −0.461121 0.887337i \(-0.652552\pi\)
−0.461121 + 0.887337i \(0.652552\pi\)
\(368\) 9.52210 + 5.43640i 0.496374 + 0.283392i
\(369\) −6.55901 −0.341448
\(370\) −45.7749 5.97013i −2.37972 0.310372i
\(371\) 29.1094i 1.51128i
\(372\) 1.00459 3.78573i 0.0520853 0.196281i
\(373\) 9.50368i 0.492082i 0.969259 + 0.246041i \(0.0791297\pi\)
−0.969259 + 0.246041i \(0.920870\pi\)
\(374\) 2.25345 17.2780i 0.116523 0.893422i
\(375\) −21.7448 −1.12290
\(376\) 0.502451 + 0.205992i 0.0259119 + 0.0106232i
\(377\) −4.05887 −0.209042
\(378\) 2.92350 22.4154i 0.150369 1.15293i
\(379\) 19.8431i 1.01927i −0.860390 0.509636i \(-0.829780\pi\)
0.860390 0.509636i \(-0.170220\pi\)
\(380\) 7.82625 + 2.07678i 0.401478 + 0.106537i
\(381\) 10.1211i 0.518518i
\(382\) 15.3537 + 2.00249i 0.785564 + 0.102456i
\(383\) 1.43333 0.0732395 0.0366198 0.999329i \(-0.488341\pi\)
0.0366198 + 0.999329i \(0.488341\pi\)
\(384\) −7.49427 + 5.85191i −0.382440 + 0.298629i
\(385\) 62.4549 3.18300
\(386\) 13.9521 + 1.81968i 0.710142 + 0.0926193i
\(387\) 0.554626i 0.0281932i
\(388\) 34.2069 + 9.07719i 1.73659 + 0.460825i
\(389\) 0.716818i 0.0363441i −0.999835 0.0181721i \(-0.994215\pi\)
0.999835 0.0181721i \(-0.00578466\pi\)
\(390\) 1.10265 8.45438i 0.0558349 0.428104i
\(391\) 7.86588 0.397795
\(392\) −15.4626 6.33924i −0.780977 0.320180i
\(393\) −1.86521 −0.0940872
\(394\) −1.82794 + 14.0154i −0.0920901 + 0.706085i
\(395\) 36.2864i 1.82577i
\(396\) −5.05189 + 19.0378i −0.253867 + 0.956685i
\(397\) 28.3452i 1.42260i −0.702887 0.711302i \(-0.748106\pi\)
0.702887 0.711302i \(-0.251894\pi\)
\(398\) −12.0319 1.56924i −0.603105 0.0786591i
\(399\) 3.01952 0.151165
\(400\) −39.5685 22.5906i −1.97842 1.12953i
\(401\) −12.4794 −0.623192 −0.311596 0.950215i \(-0.600864\pi\)
−0.311596 + 0.950215i \(0.600864\pi\)
\(402\) −15.6453 2.04051i −0.780315 0.101771i
\(403\) 4.12881i 0.205670i
\(404\) −0.286888 + 1.08112i −0.0142732 + 0.0537878i
\(405\) 12.7206i 0.632093i
\(406\) −1.50530 + 11.5416i −0.0747065 + 0.572799i
\(407\) 34.6182 1.71596
\(408\) −2.58747 + 6.31131i −0.128099 + 0.312457i
\(409\) −34.2772 −1.69490 −0.847449 0.530877i \(-0.821862\pi\)
−0.847449 + 0.530877i \(0.821862\pi\)
\(410\) −2.11745 + 16.2352i −0.104573 + 0.801799i
\(411\) 6.00453i 0.296182i
\(412\) 29.0987 + 7.72166i 1.43359 + 0.380419i
\(413\) 15.6862i 0.771870i
\(414\) −8.81703 1.14995i −0.433334 0.0565169i
\(415\) 7.88709 0.387162
\(416\) 6.05356 7.98860i 0.296800 0.391674i
\(417\) 5.67191 0.277755
\(418\) −6.02119 0.785305i −0.294506 0.0384105i
\(419\) 36.7958i 1.79759i −0.438366 0.898797i \(-0.644442\pi\)
0.438366 0.898797i \(-0.355558\pi\)
\(420\) −23.6315 6.27087i −1.15310 0.305987i
\(421\) 16.4467i 0.801564i 0.916173 + 0.400782i \(0.131261\pi\)
−0.916173 + 0.400782i \(0.868739\pi\)
\(422\) −4.15434 + 31.8527i −0.202230 + 1.55056i
\(423\) −0.440370 −0.0214115
\(424\) 8.69283 21.2034i 0.422161 1.02973i
\(425\) −32.6862 −1.58551
\(426\) −1.14469 + 8.77668i −0.0554602 + 0.425231i
\(427\) 55.0699i 2.66502i
\(428\) 3.94830 14.8790i 0.190848 0.719203i
\(429\) 6.39380i 0.308696i
\(430\) 1.37284 + 0.179051i 0.0662042 + 0.00863459i
\(431\) 40.3614 1.94414 0.972070 0.234690i \(-0.0754074\pi\)
0.972070 + 0.234690i \(0.0754074\pi\)
\(432\) 8.82333 15.4545i 0.424513 0.743553i
\(433\) 37.1588 1.78574 0.892868 0.450318i \(-0.148689\pi\)
0.892868 + 0.450318i \(0.148689\pi\)
\(434\) 11.7405 + 1.53123i 0.563560 + 0.0735015i
\(435\) 7.79429i 0.373708i
\(436\) 1.64431 6.19649i 0.0787480 0.296758i
\(437\) 2.74118i 0.131128i
\(438\) −1.41521 + 10.8509i −0.0676213 + 0.518474i
\(439\) 10.8753 0.519050 0.259525 0.965736i \(-0.416434\pi\)
0.259525 + 0.965736i \(0.416434\pi\)
\(440\) 45.4924 + 18.6507i 2.16876 + 0.889136i
\(441\) 13.5521 0.645337
\(442\) 0.929925 7.13003i 0.0442320 0.339141i
\(443\) 31.3210i 1.48811i 0.668120 + 0.744053i \(0.267099\pi\)
−0.668120 + 0.744053i \(0.732901\pi\)
\(444\) −13.0987 3.47589i −0.621638 0.164959i
\(445\) 13.1341i 0.622617i
\(446\) 22.4659 + 2.93008i 1.06379 + 0.138743i
\(447\) 9.35994 0.442710
\(448\) −20.4709 20.1763i −0.967160 0.953239i
\(449\) −17.7109 −0.835829 −0.417914 0.908486i \(-0.637239\pi\)
−0.417914 + 0.908486i \(0.637239\pi\)
\(450\) 36.6386 + 4.77854i 1.72716 + 0.225263i
\(451\) 12.2782i 0.578158i
\(452\) −25.5172 6.77129i −1.20023 0.318495i
\(453\) 7.78619i 0.365827i
\(454\) −0.248991 + 1.90909i −0.0116857 + 0.0895982i
\(455\) 25.7730 1.20826
\(456\) 2.19943 + 0.901707i 0.102998 + 0.0422263i
\(457\) −12.8520 −0.601190 −0.300595 0.953752i \(-0.597185\pi\)
−0.300595 + 0.953752i \(0.597185\pi\)
\(458\) 1.96409 15.0593i 0.0917758 0.703675i
\(459\) 12.7664i 0.595885i
\(460\) −5.69283 + 21.4531i −0.265429 + 1.00026i
\(461\) 20.3622i 0.948362i 0.880427 + 0.474181i \(0.157256\pi\)
−0.880427 + 0.474181i \(0.842744\pi\)
\(462\) 18.1811 + 2.37124i 0.845860 + 0.110320i
\(463\) 20.8316 0.968125 0.484062 0.875034i \(-0.339161\pi\)
0.484062 + 0.875034i \(0.339161\pi\)
\(464\) −4.54308 + 7.95741i −0.210907 + 0.369414i
\(465\) 7.92859 0.367680
\(466\) −20.3133 2.64933i −0.940994 0.122728i
\(467\) 14.1083i 0.652854i 0.945222 + 0.326427i \(0.105845\pi\)
−0.945222 + 0.326427i \(0.894155\pi\)
\(468\) −2.08474 + 7.85625i −0.0963673 + 0.363155i
\(469\) 47.6943i 2.20232i
\(470\) −0.142165 + 1.09003i −0.00655759 + 0.0502792i
\(471\) −9.40442 −0.433333
\(472\) −4.68433 + 11.4259i −0.215614 + 0.525921i
\(473\) −1.03824 −0.0477382
\(474\) −1.37770 + 10.5632i −0.0632796 + 0.485185i
\(475\) 11.3908i 0.522645i
\(476\) −19.9297 5.28857i −0.913476 0.242401i
\(477\) 18.5836i 0.850883i
\(478\) 1.20789 + 0.157538i 0.0552477 + 0.00720561i
\(479\) 3.58494 0.163800 0.0819001 0.996641i \(-0.473901\pi\)
0.0819001 + 0.996641i \(0.473901\pi\)
\(480\) −15.3406 11.6247i −0.700200 0.530593i
\(481\) 14.2858 0.651375
\(482\) −14.5644 1.89954i −0.663388 0.0865215i
\(483\) 8.27703i 0.376618i
\(484\) −14.3739 3.81428i −0.653360 0.173376i
\(485\) 71.6408i 3.25304i
\(486\) −2.92408 + 22.4199i −0.132639 + 1.01699i
\(487\) −22.5062 −1.01985 −0.509926 0.860219i \(-0.670327\pi\)
−0.509926 + 0.860219i \(0.670327\pi\)
\(488\) −16.4453 + 40.1131i −0.744445 + 1.81584i
\(489\) 13.6151 0.615697
\(490\) 4.37503 33.5448i 0.197644 1.51540i
\(491\) 5.13695i 0.231827i 0.993259 + 0.115914i \(0.0369796\pi\)
−0.993259 + 0.115914i \(0.963020\pi\)
\(492\) −1.23281 + 4.64578i −0.0555794 + 0.209448i
\(493\) 6.57335i 0.296049i
\(494\) −2.48474 0.324069i −0.111794 0.0145806i
\(495\) −39.8715 −1.79209
\(496\) 8.09452 + 4.62136i 0.363455 + 0.207505i
\(497\) −26.7556 −1.20015
\(498\) 2.29599 + 0.299451i 0.102886 + 0.0134187i
\(499\) 16.1056i 0.720986i −0.932762 0.360493i \(-0.882608\pi\)
0.932762 0.360493i \(-0.117392\pi\)
\(500\) 13.2723 50.0159i 0.593554 2.23678i
\(501\) 9.96137i 0.445041i
\(502\) −3.07234 + 23.5566i −0.137125 + 1.05138i
\(503\) 31.8839 1.42163 0.710816 0.703378i \(-0.248326\pi\)
0.710816 + 0.703378i \(0.248326\pi\)
\(504\) 21.5665 + 8.84168i 0.960646 + 0.393840i
\(505\) −2.26423 −0.100757
\(506\) 2.15266 16.5051i 0.0956974 0.733743i
\(507\) 8.28706i 0.368041i
\(508\) −23.2798 6.17756i −1.03288 0.274085i
\(509\) 32.3019i 1.43176i −0.698225 0.715878i \(-0.746027\pi\)
0.698225 0.715878i \(-0.253973\pi\)
\(510\) −13.6919 1.78574i −0.606287 0.0790741i
\(511\) −33.0787 −1.46331
\(512\) −8.88592 20.8096i −0.392706 0.919664i
\(513\) −4.44896 −0.196426
\(514\) 29.2701 + 3.81751i 1.29105 + 0.168383i
\(515\) 60.9425i 2.68545i
\(516\) 0.392845 + 0.104246i 0.0172940 + 0.00458917i
\(517\) 0.824356i 0.0362551i
\(518\) 5.29810 40.6223i 0.232785 1.78484i
\(519\) −0.609721 −0.0267638
\(520\) 18.7732 + 7.69651i 0.823258 + 0.337514i
\(521\) −23.7138 −1.03892 −0.519460 0.854495i \(-0.673867\pi\)
−0.519460 + 0.854495i \(0.673867\pi\)
\(522\) 0.960988 7.36820i 0.0420613 0.322498i
\(523\) 7.74931i 0.338854i 0.985543 + 0.169427i \(0.0541916\pi\)
−0.985543 + 0.169427i \(0.945808\pi\)
\(524\) 1.13846 4.29023i 0.0497338 0.187419i
\(525\) 34.3947i 1.50111i
\(526\) −32.3050 4.21334i −1.40857 0.183710i
\(527\) 6.68661 0.291273
\(528\) 12.5350 + 7.15657i 0.545518 + 0.311450i
\(529\) −15.4859 −0.673302
\(530\) 45.9990 + 5.99935i 1.99807 + 0.260595i
\(531\) 10.0142i 0.434578i
\(532\) −1.84301 + 6.94529i −0.0799046 + 0.301117i
\(533\) 5.06680i 0.219467i
\(534\) 0.498667 3.82344i 0.0215794 0.165456i
\(535\) 31.1616 1.34723
\(536\) 14.2428 34.7407i 0.615195 1.50057i
\(537\) 16.6136 0.716931
\(538\) −1.92085 + 14.7278i −0.0828137 + 0.634959i
\(539\) 25.3689i 1.09272i
\(540\) 34.8186 + 9.23951i 1.49836 + 0.397605i
\(541\) 7.57937i 0.325862i −0.986637 0.162931i \(-0.947905\pi\)
0.986637 0.162931i \(-0.0520949\pi\)
\(542\) 16.0536 + 2.09378i 0.689563 + 0.0899353i
\(543\) −7.35117 −0.315469
\(544\) −12.9376 9.80375i −0.554693 0.420332i
\(545\) 12.9775 0.555896
\(546\) 7.50271 + 0.978531i 0.321087 + 0.0418773i
\(547\) 34.8739i 1.49110i 0.666450 + 0.745549i \(0.267813\pi\)
−0.666450 + 0.745549i \(0.732187\pi\)
\(548\) 13.8112 + 3.66496i 0.589986 + 0.156559i
\(549\) 35.1569i 1.50046i
\(550\) −8.94524 + 68.5861i −0.381426 + 2.92452i
\(551\) 2.29074 0.0975889
\(552\) −2.47174 + 6.02902i −0.105204 + 0.256612i
\(553\) −32.2019 −1.36936
\(554\) 4.42428 33.9224i 0.187970 1.44122i
\(555\) 27.4331i 1.16447i
\(556\) −3.46194 + 13.0462i −0.146819 + 0.553281i
\(557\) 31.2771i 1.32525i −0.748950 0.662627i \(-0.769442\pi\)
0.748950 0.662627i \(-0.230558\pi\)
\(558\) −7.49516 0.977546i −0.317295 0.0413828i
\(559\) −0.428446 −0.0181213
\(560\) 28.8477 50.5280i 1.21904 2.13520i
\(561\) 10.3548 0.437179
\(562\) 2.08700 + 0.272194i 0.0880348 + 0.0114818i
\(563\) 26.6292i 1.12229i 0.827718 + 0.561144i \(0.189639\pi\)
−0.827718 + 0.561144i \(0.810361\pi\)
\(564\) −0.0827706 + 0.311917i −0.00348527 + 0.0131341i
\(565\) 53.4417i 2.24831i
\(566\) 2.14596 16.4537i 0.0902012 0.691602i
\(567\) −11.2887 −0.474082
\(568\) −19.4889 7.98992i −0.817734 0.335250i
\(569\) 6.61114 0.277154 0.138577 0.990352i \(-0.455747\pi\)
0.138577 + 0.990352i \(0.455747\pi\)
\(570\) −0.622313 + 4.77148i −0.0260658 + 0.199855i
\(571\) 14.0590i 0.588353i −0.955751 0.294176i \(-0.904955\pi\)
0.955751 0.294176i \(-0.0950453\pi\)
\(572\) −14.7066 3.90256i −0.614914 0.163174i
\(573\) 9.20156i 0.384401i
\(574\) −14.4077 1.87910i −0.601365 0.0784322i
\(575\) −31.2242 −1.30214
\(576\) 13.0687 + 12.8806i 0.544530 + 0.536693i
\(577\) 12.0687 0.502427 0.251214 0.967932i \(-0.419170\pi\)
0.251214 + 0.967932i \(0.419170\pi\)
\(578\) 12.2926 + 1.60325i 0.511306 + 0.0666863i
\(579\) 8.36156i 0.347495i
\(580\) −17.9279 4.75737i −0.744416 0.197539i
\(581\) 6.99928i 0.290379i
\(582\) −2.72001 + 20.8552i −0.112748 + 0.864474i
\(583\) −34.7877 −1.44076
\(584\) −24.0946 9.87817i −0.997043 0.408761i
\(585\) −16.4536 −0.680274
\(586\) 0.0951964 0.729902i 0.00393253 0.0301520i
\(587\) 28.7621i 1.18714i −0.804783 0.593569i \(-0.797718\pi\)
0.804783 0.593569i \(-0.202282\pi\)
\(588\) 2.54720 9.59901i 0.105045 0.395857i
\(589\) 2.33021i 0.0960148i
\(590\) −24.7876 3.23289i −1.02049 0.133096i
\(591\) −8.39949 −0.345509
\(592\) 15.9900 28.0073i 0.657187 1.15109i
\(593\) −18.3434 −0.753275 −0.376637 0.926361i \(-0.622920\pi\)
−0.376637 + 0.926361i \(0.622920\pi\)
\(594\) −26.7880 3.49379i −1.09912 0.143352i
\(595\) 41.7395i 1.71115i
\(596\) −5.71299 + 21.5291i −0.234013 + 0.881867i
\(597\) 7.21078i 0.295118i
\(598\) 0.888330 6.81112i 0.0363265 0.278527i
\(599\) −13.1215 −0.536130 −0.268065 0.963401i \(-0.586384\pi\)
−0.268065 + 0.963401i \(0.586384\pi\)
\(600\) 10.2712 25.0532i 0.419318 1.02279i
\(601\) 16.6052 0.677341 0.338670 0.940905i \(-0.390023\pi\)
0.338670 + 0.940905i \(0.390023\pi\)
\(602\) −0.158896 + 1.21831i −0.00647611 + 0.0496544i
\(603\) 30.4483i 1.23995i
\(604\) −17.9093 4.75243i −0.728719 0.193374i
\(605\) 30.1038i 1.22389i
\(606\) −0.659134 0.0859667i −0.0267755 0.00349216i
\(607\) 15.5782 0.632299 0.316149 0.948709i \(-0.397610\pi\)
0.316149 + 0.948709i \(0.397610\pi\)
\(608\) −3.41650 + 4.50860i −0.138557 + 0.182848i
\(609\) −6.91693 −0.280288
\(610\) −87.0221 11.3497i −3.52342 0.459538i
\(611\) 0.340184i 0.0137624i
\(612\) 12.7232 + 3.37625i 0.514306 + 0.136477i
\(613\) 26.0508i 1.05218i −0.850428 0.526091i \(-0.823657\pi\)
0.850428 0.526091i \(-0.176343\pi\)
\(614\) −2.10981 + 16.1766i −0.0851451 + 0.652835i
\(615\) −9.72983 −0.392345
\(616\) −16.5513 + 40.3716i −0.666870 + 1.62662i
\(617\) 30.7470 1.23783 0.618913 0.785460i \(-0.287573\pi\)
0.618913 + 0.785460i \(0.287573\pi\)
\(618\) −2.31382 + 17.7408i −0.0930754 + 0.713639i
\(619\) 39.6939i 1.59543i −0.603032 0.797717i \(-0.706041\pi\)
0.603032 0.797717i \(-0.293959\pi\)
\(620\) −4.83934 + 18.2368i −0.194353 + 0.732408i
\(621\) 12.1954i 0.489384i
\(622\) 32.5444 + 4.24456i 1.30491 + 0.170191i
\(623\) 11.6557 0.466975
\(624\) 5.17279 + 2.95327i 0.207077 + 0.118226i
\(625\) 47.7961 1.91185
\(626\) −1.29706 0.169168i −0.0518411 0.00676130i
\(627\) 3.60853i 0.144111i
\(628\) 5.74014 21.6314i 0.229056 0.863188i
\(629\) 23.1359i 0.922487i
\(630\) −6.10209 + 46.7867i −0.243113 + 1.86403i
\(631\) 20.1050 0.800368 0.400184 0.916435i \(-0.368946\pi\)
0.400184 + 0.916435i \(0.368946\pi\)
\(632\) −23.4560 9.61632i −0.933028 0.382517i
\(633\) −19.0895 −0.758739
\(634\) −2.65063 + 20.3232i −0.105270 + 0.807139i
\(635\) 48.7558i 1.93481i
\(636\) 13.1629 + 3.49291i 0.521941 + 0.138503i
\(637\) 10.4689i 0.414793i
\(638\) 13.7930 + 1.79893i 0.546070 + 0.0712204i
\(639\) 17.0809 0.675709
\(640\) 36.1018 28.1901i 1.42705 1.11431i
\(641\) 36.4567 1.43995 0.719976 0.693998i \(-0.244153\pi\)
0.719976 + 0.693998i \(0.244153\pi\)
\(642\) 9.07136 + 1.18312i 0.358018 + 0.0466940i
\(643\) 22.3779i 0.882498i −0.897385 0.441249i \(-0.854536\pi\)
0.897385 0.441249i \(-0.145464\pi\)
\(644\) −19.0383 5.05202i −0.750213 0.199077i
\(645\) 0.822749i 0.0323957i
\(646\) −0.524830 + 4.02404i −0.0206492 + 0.158324i
\(647\) −47.9816 −1.88635 −0.943175 0.332297i \(-0.892176\pi\)
−0.943175 + 0.332297i \(0.892176\pi\)
\(648\) −8.22275 3.37111i −0.323020 0.132430i
\(649\) 18.7461 0.735851
\(650\) −3.69140 + 28.3032i −0.144789 + 1.11014i
\(651\) 7.03611i 0.275767i
\(652\) −8.31020 + 31.3166i −0.325453 + 1.22645i
\(653\) 14.9823i 0.586304i 0.956066 + 0.293152i \(0.0947041\pi\)
−0.956066 + 0.293152i \(0.905296\pi\)
\(654\) 3.77785 + 0.492721i 0.147726 + 0.0192669i
\(655\) 8.98517 0.351080
\(656\) −9.93346 5.67126i −0.387836 0.221425i
\(657\) 21.1176 0.823876
\(658\) −0.967329 0.126163i −0.0377104 0.00491833i
\(659\) 39.2286i 1.52813i 0.645140 + 0.764064i \(0.276799\pi\)
−0.645140 + 0.764064i \(0.723201\pi\)
\(660\) −7.49413 + 28.2412i −0.291708 + 1.09929i
\(661\) 34.8438i 1.35527i 0.735400 + 0.677634i \(0.236995\pi\)
−0.735400 + 0.677634i \(0.763005\pi\)
\(662\) −3.43548 + 26.3409i −0.133524 + 1.02377i
\(663\) 4.27307 0.165952
\(664\) −2.09017 + 5.09831i −0.0811144 + 0.197853i
\(665\) −14.5458 −0.564061
\(666\) −3.38234 + 25.9335i −0.131063 + 1.00490i
\(667\) 6.27933i 0.243137i
\(668\) −22.9125 6.08008i −0.886511 0.235246i
\(669\) 13.4639i 0.520545i
\(670\) 75.3672 + 9.82966i 2.91169 + 0.379753i
\(671\) 65.8123 2.54066
\(672\) 10.3162 13.6138i 0.397955 0.525164i
\(673\) 0.379432 0.0146260 0.00731301 0.999973i \(-0.497672\pi\)
0.00731301 + 0.999973i \(0.497672\pi\)
\(674\) 25.6200 + 3.34145i 0.986844 + 0.128708i
\(675\) 50.6771i 1.95056i
\(676\) 19.0613 + 5.05814i 0.733128 + 0.194544i
\(677\) 0.0782626i 0.00300788i −0.999999 0.00150394i \(-0.999521\pi\)
0.999999 0.00150394i \(-0.000478719\pi\)
\(678\) 2.02903 15.5573i 0.0779246 0.597473i
\(679\) −63.5766 −2.43985
\(680\) 12.4645 30.4032i 0.477992 1.16591i
\(681\) −1.14413 −0.0438432
\(682\) 1.82993 14.0306i 0.0700716 0.537261i
\(683\) 31.3208i 1.19846i 0.800578 + 0.599229i \(0.204526\pi\)
−0.800578 + 0.599229i \(0.795474\pi\)
\(684\) 1.17659 4.43391i 0.0449879 0.169535i
\(685\) 28.9253i 1.10518i
\(686\) −5.49969 0.717290i −0.209979 0.0273862i
\(687\) 9.02512 0.344330
\(688\) −0.479559 + 0.839968i −0.0182830 + 0.0320235i
\(689\) −14.3557 −0.546909
\(690\) −13.0795 1.70587i −0.497927 0.0649414i
\(691\) 25.8372i 0.982892i −0.870908 0.491446i \(-0.836469\pi\)
0.870908 0.491446i \(-0.163531\pi\)
\(692\) 0.372153 1.40244i 0.0141471 0.0533128i
\(693\) 35.3834i 1.34410i
\(694\) −0.0689512 + 0.528671i −0.00261735 + 0.0200681i
\(695\) −27.3230 −1.03642
\(696\) −5.03832 2.06558i −0.190977 0.0782955i
\(697\) −8.20569 −0.310813
\(698\) −0.377165 + 2.89185i −0.0142759 + 0.109458i
\(699\) 12.1739i 0.460457i
\(700\) 79.1123 + 20.9933i 2.99017 + 0.793474i
\(701\) 3.90849i 0.147622i 0.997272 + 0.0738108i \(0.0235161\pi\)
−0.997272 + 0.0738108i \(0.976484\pi\)
\(702\) −11.0545 1.44177i −0.417225 0.0544161i
\(703\) −8.06260 −0.304087
\(704\) −24.1120 + 24.4642i −0.908756 + 0.922027i
\(705\) −0.653259 −0.0246032
\(706\) 18.5417 + 2.41827i 0.697825 + 0.0910128i
\(707\) 2.00936i 0.0755698i
\(708\) −7.09310 1.88223i −0.266575 0.0707387i
\(709\) 1.94801i 0.0731592i 0.999331 + 0.0365796i \(0.0116462\pi\)
−0.999331 + 0.0365796i \(0.988354\pi\)
\(710\) 5.51424 42.2795i 0.206946 1.58672i
\(711\) 20.5578 0.770979
\(712\) 8.49005 + 3.48070i 0.318178 + 0.130445i
\(713\) 6.38753 0.239215
\(714\) 1.58473 12.1507i 0.0593072 0.454727i
\(715\) 30.8006i 1.15188i
\(716\) −10.1404 + 38.2136i −0.378965 + 1.42811i
\(717\) 0.723897i 0.0270344i
\(718\) 8.84602 + 1.15373i 0.330130 + 0.0430568i
\(719\) 10.0969 0.376553 0.188276 0.982116i \(-0.439710\pi\)
0.188276 + 0.982116i \(0.439710\pi\)
\(720\) −18.4165 + 32.2573i −0.686343 + 1.20216i
\(721\) −54.0825 −2.01414
\(722\) 1.40234 + 0.182898i 0.0521896 + 0.00680675i
\(723\) 8.72850i 0.324616i
\(724\) 4.48691 16.9087i 0.166755 0.628406i
\(725\) 26.0934i 0.969083i
\(726\) 1.14296 8.76344i 0.0424192 0.325242i
\(727\) 22.5683 0.837011 0.418505 0.908214i \(-0.362554\pi\)
0.418505 + 0.908214i \(0.362554\pi\)
\(728\) −6.83016 + 16.6600i −0.253142 + 0.617460i
\(729\) −4.01030 −0.148530
\(730\) 6.81742 52.2713i 0.252324 1.93465i
\(731\) 0.693869i 0.0256637i
\(732\) −24.9018 6.60798i −0.920399 0.244238i
\(733\) 26.6129i 0.982968i 0.870887 + 0.491484i \(0.163545\pi\)
−0.870887 + 0.491484i \(0.836455\pi\)
\(734\) 24.7759 + 3.23137i 0.914496 + 0.119272i
\(735\) 20.1036 0.741531
\(736\) −12.3589 9.36524i −0.455554 0.345207i
\(737\) −56.9980 −2.09955
\(738\) 9.19793 + 1.19963i 0.338581 + 0.0441589i
\(739\) 31.7755i 1.16888i 0.811436 + 0.584441i \(0.198686\pi\)
−0.811436 + 0.584441i \(0.801314\pi\)
\(740\) 63.0999 + 16.7443i 2.31960 + 0.615531i
\(741\) 1.48912i 0.0547041i
\(742\) −5.32404 + 40.8211i −0.195452 + 1.49859i
\(743\) 5.02428 0.184323 0.0921615 0.995744i \(-0.470622\pi\)
0.0921615 + 0.995744i \(0.470622\pi\)
\(744\) −2.10117 + 5.12513i −0.0770326 + 0.187896i
\(745\) −45.0892 −1.65194
\(746\) 1.73820 13.3274i 0.0636401 0.487949i
\(747\) 4.46838i 0.163489i
\(748\) −6.32020 + 23.8174i −0.231090 + 0.870849i
\(749\) 27.6539i 1.01045i
\(750\) 30.4935 + 3.97707i 1.11346 + 0.145222i
\(751\) 0.0361898 0.00132058 0.000660292 1.00000i \(-0.499790\pi\)
0.000660292 1.00000i \(0.499790\pi\)
\(752\) −0.666930 0.380767i −0.0243204 0.0138851i
\(753\) −14.1176 −0.514474
\(754\) 5.69190 + 0.742359i 0.207287 + 0.0270351i
\(755\) 37.5081i 1.36506i
\(756\) −8.19947 + 30.8993i −0.298212 + 1.12380i
\(757\) 35.1099i 1.27609i −0.769999 0.638045i \(-0.779743\pi\)
0.769999 0.638045i \(-0.220257\pi\)
\(758\) −3.62926 + 27.8267i −0.131821 + 1.01071i
\(759\) 9.89162 0.359043
\(760\) −10.5952 4.34375i −0.384328 0.157564i
\(761\) −21.2359 −0.769800 −0.384900 0.922958i \(-0.625764\pi\)
−0.384900 + 0.922958i \(0.625764\pi\)
\(762\) 1.85112 14.1932i 0.0670591 0.514164i
\(763\) 11.5167i 0.416933i
\(764\) −21.1648 5.61632i −0.765717 0.203191i
\(765\) 26.6467i 0.963413i
\(766\) −2.01000 0.262152i −0.0726244 0.00947194i
\(767\) 7.73590 0.279327
\(768\) 11.5798 6.83566i 0.417850 0.246661i
\(769\) −45.2697 −1.63247 −0.816233 0.577722i \(-0.803942\pi\)
−0.816233 + 0.577722i \(0.803942\pi\)
\(770\) −87.5828 11.4229i −3.15627 0.411652i
\(771\) 17.5417i 0.631749i
\(772\) −19.2327 5.10361i −0.692200 0.183683i
\(773\) 16.7218i 0.601441i 0.953712 + 0.300721i \(0.0972271\pi\)
−0.953712 + 0.300721i \(0.902773\pi\)
\(774\) 0.101440 0.777772i 0.00364618 0.0279565i
\(775\) −26.5430 −0.953451
\(776\) −46.3095 18.9857i −1.66241 0.681545i
\(777\) 24.3451 0.873377
\(778\) −0.131104 + 1.00522i −0.00470032 + 0.0360389i
\(779\) 2.85960i 0.102456i
\(780\) −3.09257 + 11.6542i −0.110732 + 0.417288i
\(781\) 31.9748i 1.14415i
\(782\) −11.0306 1.43865i −0.394454 0.0514461i
\(783\) 10.1914 0.364211
\(784\) 20.5243 + 11.7178i 0.733010 + 0.418494i
\(785\) 45.3035 1.61695
\(786\) 2.61565 + 0.341142i 0.0932971 + 0.0121681i
\(787\) 21.8519i 0.778937i 0.921040 + 0.389468i \(0.127341\pi\)
−0.921040 + 0.389468i \(0.872659\pi\)
\(788\) 5.12677 19.3200i 0.182634 0.688245i
\(789\) 19.3606i 0.689255i
\(790\) 6.63671 50.8858i 0.236123 1.81043i
\(791\) 47.4261 1.68628
\(792\) 10.5664 25.7734i 0.375461 0.915818i
\(793\) 27.1585 0.964428
\(794\) −5.18427 + 39.7495i −0.183983 + 1.41066i
\(795\) 27.5674i 0.977716i
\(796\) 16.5858 + 4.40122i 0.587867 + 0.155997i
\(797\) 32.9426i 1.16689i −0.812154 0.583443i \(-0.801705\pi\)
0.812154 0.583443i \(-0.198295\pi\)
\(798\) −4.23438 0.552263i −0.149895 0.0195499i
\(799\) −0.550929 −0.0194905
\(800\) 51.3566 + 38.9167i 1.81573 + 1.37591i
\(801\) −7.44105 −0.262917
\(802\) 17.5003 + 2.28246i 0.617959 + 0.0805964i
\(803\) 39.5313i 1.39503i
\(804\) 21.5667 + 5.72297i 0.760600 + 0.201834i
\(805\) 39.8725i 1.40532i
\(806\) 0.755150 5.78998i 0.0265990 0.203943i
\(807\) −8.82643 −0.310705
\(808\) 0.600048 1.46363i 0.0211096 0.0514902i
\(809\) 48.5465 1.70680 0.853402 0.521253i \(-0.174535\pi\)
0.853402 + 0.521253i \(0.174535\pi\)
\(810\) 2.32657 17.8386i 0.0817475 0.626784i
\(811\) 51.3558i 1.80335i −0.432419 0.901673i \(-0.642340\pi\)
0.432419 0.901673i \(-0.357660\pi\)
\(812\) 4.22186 15.9099i 0.148158 0.558327i
\(813\) 9.62104i 0.337425i
\(814\) −48.5464 6.33160i −1.70155 0.221922i
\(815\) −65.5874 −2.29743
\(816\) 4.78283 8.37735i 0.167433 0.293266i
\(817\) 0.241806 0.00845972
\(818\) 48.0681 + 6.26922i 1.68066 + 0.219198i
\(819\) 14.6015i 0.510219i
\(820\) 5.93876 22.3799i 0.207391 0.781541i
\(821\) 21.7904i 0.760488i 0.924886 + 0.380244i \(0.124160\pi\)
−0.924886 + 0.380244i \(0.875840\pi\)
\(822\) −1.09822 + 8.42037i −0.0383047 + 0.293694i
\(823\) 10.1987 0.355505 0.177752 0.984075i \(-0.443117\pi\)
0.177752 + 0.984075i \(0.443117\pi\)
\(824\) −39.3939 16.1505i −1.37235 0.562628i
\(825\) −41.1040 −1.43106
\(826\) 2.86898 21.9974i 0.0998246 0.765388i
\(827\) 44.9735i 1.56388i −0.623352 0.781942i \(-0.714229\pi\)
0.623352 0.781942i \(-0.285771\pi\)
\(828\) 12.1541 + 3.22523i 0.422385 + 0.112085i
\(829\) 34.9629i 1.21431i 0.794583 + 0.607156i \(0.207690\pi\)
−0.794583 + 0.607156i \(0.792310\pi\)
\(830\) −11.0604 1.44253i −0.383911 0.0500710i
\(831\) 20.3299 0.705235
\(832\) −9.95022 + 10.0955i −0.344962 + 0.350000i
\(833\) 16.9544 0.587436
\(834\) −7.95393 1.03738i −0.275422 0.0359216i
\(835\) 47.9865i 1.66064i
\(836\) 8.30010 + 2.20252i 0.287065 + 0.0761759i
\(837\) 10.3670i 0.358337i
\(838\) −6.72988 + 51.6001i −0.232480 + 1.78250i
\(839\) 49.9301 1.72378 0.861889 0.507098i \(-0.169282\pi\)
0.861889 + 0.507098i \(0.169282\pi\)
\(840\) 31.9924 + 13.1160i 1.10384 + 0.452546i
\(841\) 23.7525 0.819052
\(842\) 3.00807 23.0638i 0.103665 0.794832i
\(843\) 1.25075i 0.0430782i
\(844\) 11.6516 43.9084i 0.401064 1.51139i
\(845\) 39.9208i 1.37332i
\(846\) 0.617547 + 0.0805428i 0.0212317 + 0.00276912i
\(847\) 26.7152 0.917945
\(848\) −16.0683 + 28.1444i −0.551788 + 0.966482i
\(849\) 9.86081 0.338422
\(850\) 45.8370 + 5.97823i 1.57220 + 0.205052i
\(851\) 22.1010i 0.757613i
\(852\) 3.21047 12.0985i 0.109989 0.414488i
\(853\) 27.5836i 0.944443i 0.881480 + 0.472222i \(0.156548\pi\)
−0.881480 + 0.472222i \(0.843452\pi\)
\(854\) 10.0722 77.2265i 0.344662 2.64264i
\(855\) 9.28609 0.317578
\(856\) −8.25818 + 20.1432i −0.282259 + 0.688481i
\(857\) 11.7397 0.401021 0.200510 0.979692i \(-0.435740\pi\)
0.200510 + 0.979692i \(0.435740\pi\)
\(858\) 1.16941 8.96626i 0.0399231 0.306103i
\(859\) 14.0409i 0.479070i −0.970888 0.239535i \(-0.923005\pi\)
0.970888 0.239535i \(-0.0769950\pi\)
\(860\) −1.89243 0.502178i −0.0645315 0.0171241i
\(861\) 8.63460i 0.294266i
\(862\) −56.6003 7.38201i −1.92781 0.251432i
\(863\) −9.95337 −0.338817 −0.169408 0.985546i \(-0.554186\pi\)
−0.169408 + 0.985546i \(0.554186\pi\)
\(864\) −15.1999 + 20.0586i −0.517110 + 0.682407i
\(865\) 2.93718 0.0998672
\(866\) −52.1091 6.79626i −1.77074 0.230946i
\(867\) 7.36703i 0.250198i
\(868\) −16.1840 4.29461i −0.549321 0.145768i
\(869\) 38.4834i 1.30546i
\(870\) 1.42556 10.9302i 0.0483310 0.370569i
\(871\) −23.5212 −0.796984
\(872\) −3.43920 + 8.38882i −0.116466 + 0.284081i
\(873\) 40.5876 1.37368
\(874\) −0.501355 + 3.84405i −0.0169586 + 0.130027i
\(875\) 92.9590i 3.14259i
\(876\) 3.96920 14.9577i 0.134107 0.505375i
\(877\) 11.6328i 0.392811i 0.980523 + 0.196405i \(0.0629268\pi\)
−0.980523 + 0.196405i \(0.937073\pi\)
\(878\) −15.2508 1.98907i −0.514691 0.0671279i
\(879\) 0.437434 0.0147543
\(880\) −60.3845 34.4750i −2.03556 1.16215i
\(881\) 6.68746 0.225306 0.112653 0.993634i \(-0.464065\pi\)
0.112653 + 0.993634i \(0.464065\pi\)
\(882\) −19.0046 2.47864i −0.639917 0.0834603i
\(883\) 33.4677i 1.12628i −0.826362 0.563139i \(-0.809593\pi\)
0.826362 0.563139i \(-0.190407\pi\)
\(884\) −2.60814 + 9.82863i −0.0877211 + 0.330572i
\(885\) 14.8553i 0.499357i
\(886\) 5.72855 43.9226i 0.192454 1.47561i
\(887\) −40.8377 −1.37120 −0.685598 0.727981i \(-0.740459\pi\)
−0.685598 + 0.727981i \(0.740459\pi\)
\(888\) 17.7331 + 7.27010i 0.595084 + 0.243969i
\(889\) 43.2676 1.45115
\(890\) −2.40220 + 18.4185i −0.0805220 + 0.617388i
\(891\) 13.4908i 0.451959i
\(892\) −30.9688 8.21792i −1.03691 0.275156i
\(893\) 0.191993i 0.00642479i
\(894\) −13.1258 1.71191i −0.438992 0.0572549i
\(895\) −80.0321 −2.67518
\(896\) 25.0169 + 32.0380i 0.835757 + 1.07031i
\(897\) 4.08194 0.136292
\(898\) 24.8366 + 3.23929i 0.828810 + 0.108096i
\(899\) 5.33792i 0.178030i
\(900\) −50.5057 13.4023i −1.68352 0.446742i
\(901\) 23.2491i 0.774540i
\(902\) −2.24566 + 17.2182i −0.0747722 + 0.573302i
\(903\) −0.730137 −0.0242974
\(904\) 34.5453 + 14.1627i 1.14896 + 0.471044i
\(905\) 35.4125 1.17715
\(906\) 1.42408 10.9189i 0.0473118 0.362755i
\(907\) 46.4030i 1.54079i 0.637569 + 0.770393i \(0.279940\pi\)
−0.637569 + 0.770393i \(0.720060\pi\)
\(908\) 0.698338 2.63165i 0.0231752 0.0873345i
\(909\) 1.28279i 0.0425473i
\(910\) −36.1425 4.71383i −1.19811 0.156262i
\(911\) −18.5958 −0.616105 −0.308053 0.951369i \(-0.599677\pi\)
−0.308053 + 0.951369i \(0.599677\pi\)
\(912\) −2.91942 1.66677i −0.0966715 0.0551922i
\(913\) 8.36463 0.276829
\(914\) 18.0228 + 2.35060i 0.596141 + 0.0777508i
\(915\) 52.1528i 1.72412i
\(916\) −5.50863 + 20.7590i −0.182010 + 0.685896i
\(917\) 7.97376i 0.263317i
\(918\) −2.33495 + 17.9028i −0.0770648 + 0.590880i
\(919\) 28.2952 0.933373 0.466686 0.884423i \(-0.345448\pi\)
0.466686 + 0.884423i \(0.345448\pi\)
\(920\) 11.9070 29.0433i 0.392562 0.957529i
\(921\) −9.69473 −0.319452
\(922\) 3.72420 28.5547i 0.122650 0.940398i
\(923\) 13.1949i 0.434316i
\(924\) −25.0623 6.65056i −0.824489 0.218787i
\(925\) 91.8394i 3.01966i
\(926\) −29.2129 3.81005i −0.959994 0.125206i
\(927\) 34.5265 1.13400
\(928\) 7.82633 10.3281i 0.256912 0.339035i
\(929\) 23.7582 0.779481 0.389740 0.920925i \(-0.372565\pi\)
0.389740 + 0.920925i \(0.372565\pi\)
\(930\) −11.1186 1.45012i −0.364592 0.0475514i
\(931\) 5.90844i 0.193641i
\(932\) 28.0015 + 7.43051i 0.917219 + 0.243394i
\(933\) 19.5040i 0.638533i
\(934\) 2.58037 19.7846i 0.0844324 0.647371i
\(935\) −49.8816 −1.63130
\(936\) 4.36040 10.6358i 0.142524 0.347643i
\(937\) −27.4926 −0.898145 −0.449073 0.893495i \(-0.648246\pi\)
−0.449073 + 0.893495i \(0.648246\pi\)
\(938\) −8.72319 + 66.8835i −0.284822 + 2.18382i
\(939\) 0.777337i 0.0253674i
\(940\) 0.398727 1.50258i 0.0130050 0.0490089i
\(941\) 24.8654i 0.810590i −0.914186 0.405295i \(-0.867169\pi\)
0.914186 0.405295i \(-0.132831\pi\)
\(942\) 13.1882 + 1.72005i 0.429694 + 0.0560422i
\(943\) −7.83866 −0.255262
\(944\) 8.65878 15.1662i 0.281819 0.493619i
\(945\) −64.7135 −2.10513
\(946\) 1.45596 + 0.189892i 0.0473373 + 0.00617391i
\(947\) 32.8465i 1.06737i −0.845684 0.533684i \(-0.820807\pi\)
0.845684 0.533684i \(-0.179193\pi\)
\(948\) 3.86399 14.5612i 0.125496 0.472927i
\(949\) 16.3132i 0.529550i
\(950\) 2.08335 15.9737i 0.0675928 0.518256i
\(951\) −12.1798 −0.394958
\(952\) 26.9809 + 11.0615i 0.874456 + 0.358504i
\(953\) 18.9330 0.613301 0.306650 0.951822i \(-0.400792\pi\)
0.306650 + 0.951822i \(0.400792\pi\)
\(954\) 3.39889 26.0604i 0.110043 0.843737i
\(955\) 44.3263i 1.43436i
\(956\) −1.66506 0.441842i −0.0538519 0.0142902i
\(957\) 8.26621i 0.267209i
\(958\) −5.02729 0.655678i −0.162424 0.0211840i
\(959\) −25.6694 −0.828907
\(960\) 19.3866 + 19.1075i 0.625699 + 0.616693i
\(961\) −25.5701 −0.824842
\(962\) −20.0335 2.61284i −0.645905 0.0842413i
\(963\) 17.6544i 0.568905i
\(964\) 20.0767 + 5.32758i 0.646627 + 0.171590i
\(965\) 40.2797i 1.29665i
\(966\) 1.51385 11.6072i 0.0487073 0.373455i
\(967\) 49.1555 1.58073 0.790367 0.612634i \(-0.209890\pi\)
0.790367 + 0.612634i \(0.209890\pi\)
\(968\) 19.4595 + 7.97786i 0.625451 + 0.256418i
\(969\) −2.41163 −0.0774727
\(970\) 13.1030 100.465i 0.420711 3.22572i
\(971\) 32.1742i 1.03252i −0.856432 0.516260i \(-0.827324\pi\)
0.856432 0.516260i \(-0.172676\pi\)
\(972\) 8.20109 30.9054i 0.263050 0.991291i
\(973\) 24.2474i 0.777338i
\(974\) 31.5612 + 4.11633i 1.01129 + 0.131896i
\(975\) −16.9622 −0.543226
\(976\) 30.3985 53.2443i 0.973032 1.70431i
\(977\) −53.1734 −1.70117 −0.850583 0.525840i \(-0.823751\pi\)
−0.850583 + 0.525840i \(0.823751\pi\)
\(978\) −19.0930 2.49017i −0.610526 0.0796270i
\(979\) 13.9294i 0.445184i
\(980\) −12.2705 + 46.2409i −0.391968 + 1.47711i
\(981\) 7.35233i 0.234742i
\(982\) 0.939536 7.20373i 0.0299818 0.229880i
\(983\) 24.9473 0.795696 0.397848 0.917451i \(-0.369757\pi\)
0.397848 + 0.917451i \(0.369757\pi\)
\(984\) 2.57852 6.28948i 0.0822002 0.200501i
\(985\) 40.4625 1.28924
\(986\) 1.20225 9.21805i 0.0382875 0.293562i
\(987\) 0.579725i 0.0184529i
\(988\) 3.42517 + 0.908908i 0.108969 + 0.0289162i
\(989\) 0.662833i 0.0210769i
\(990\) 55.9133 + 7.29241i 1.77704 + 0.231768i
\(991\) 0.298799 0.00949166 0.00474583 0.999989i \(-0.498489\pi\)
0.00474583 + 0.999989i \(0.498489\pi\)
\(992\) −10.5060 7.96118i −0.333566 0.252768i
\(993\) −15.7863 −0.500962
\(994\) 37.5203 + 4.89354i 1.19007 + 0.155214i
\(995\) 34.7362i 1.10121i
\(996\) −3.16498 0.839862i −0.100286 0.0266121i
\(997\) 16.5705i 0.524793i −0.964960 0.262396i \(-0.915487\pi\)
0.964960 0.262396i \(-0.0845128\pi\)
\(998\) −2.94568 + 22.5855i −0.0932439 + 0.714931i
\(999\) −35.8702 −1.13488
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.2.c.b.77.1 16
3.2 odd 2 1368.2.g.b.685.16 16
4.3 odd 2 608.2.c.b.305.10 16
8.3 odd 2 608.2.c.b.305.7 16
8.5 even 2 inner 152.2.c.b.77.2 yes 16
12.11 even 2 5472.2.g.b.2737.1 16
16.3 odd 4 4864.2.a.bp.1.4 8
16.5 even 4 4864.2.a.bo.1.4 8
16.11 odd 4 4864.2.a.bn.1.5 8
16.13 even 4 4864.2.a.bq.1.5 8
24.5 odd 2 1368.2.g.b.685.15 16
24.11 even 2 5472.2.g.b.2737.16 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.c.b.77.1 16 1.1 even 1 trivial
152.2.c.b.77.2 yes 16 8.5 even 2 inner
608.2.c.b.305.7 16 8.3 odd 2
608.2.c.b.305.10 16 4.3 odd 2
1368.2.g.b.685.15 16 24.5 odd 2
1368.2.g.b.685.16 16 3.2 odd 2
4864.2.a.bn.1.5 8 16.11 odd 4
4864.2.a.bo.1.4 8 16.5 even 4
4864.2.a.bp.1.4 8 16.3 odd 4
4864.2.a.bq.1.5 8 16.13 even 4
5472.2.g.b.2737.1 16 12.11 even 2
5472.2.g.b.2737.16 16 24.11 even 2