Properties

Label 1519.4.a.h.1.13
Level $1519$
Weight $4$
Character 1519.1
Self dual yes
Analytic conductor $89.624$
Analytic rank $1$
Dimension $23$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1519,4,Mod(1,1519)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1519, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1519.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1519 = 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1519.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [23,5,-6,91,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.6239012987\)
Analytic rank: \(1\)
Dimension: \(23\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Character \(\chi\) \(=\) 1519.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.06861 q^{2} -5.09781 q^{3} -6.85807 q^{4} +1.69042 q^{5} -5.44757 q^{6} -15.8775 q^{8} -1.01232 q^{9} +1.80640 q^{10} -11.3948 q^{11} +34.9612 q^{12} +63.5400 q^{13} -8.61743 q^{15} +37.8978 q^{16} -10.9774 q^{17} -1.08178 q^{18} -113.179 q^{19} -11.5930 q^{20} -12.1766 q^{22} -39.8450 q^{23} +80.9404 q^{24} -122.142 q^{25} +67.8994 q^{26} +142.802 q^{27} +278.148 q^{29} -9.20866 q^{30} -31.0000 q^{31} +167.518 q^{32} +58.0884 q^{33} -11.7305 q^{34} +6.94258 q^{36} -68.4809 q^{37} -120.944 q^{38} -323.915 q^{39} -26.8396 q^{40} +172.827 q^{41} +152.093 q^{43} +78.1462 q^{44} -1.71125 q^{45} -42.5787 q^{46} +440.422 q^{47} -193.196 q^{48} -130.523 q^{50} +55.9607 q^{51} -435.762 q^{52} +707.544 q^{53} +152.599 q^{54} -19.2619 q^{55} +576.966 q^{57} +297.232 q^{58} +9.06489 q^{59} +59.0990 q^{60} -616.443 q^{61} -33.1269 q^{62} -124.171 q^{64} +107.409 q^{65} +62.0738 q^{66} -29.5775 q^{67} +75.2838 q^{68} +203.122 q^{69} +779.280 q^{71} +16.0731 q^{72} -700.002 q^{73} -73.1793 q^{74} +622.659 q^{75} +776.191 q^{76} -346.138 q^{78} +988.243 q^{79} +64.0631 q^{80} -700.643 q^{81} +184.684 q^{82} -142.373 q^{83} -18.5564 q^{85} +162.528 q^{86} -1417.95 q^{87} +180.920 q^{88} -287.113 q^{89} -1.82865 q^{90} +273.260 q^{92} +158.032 q^{93} +470.639 q^{94} -191.320 q^{95} -853.974 q^{96} -1764.37 q^{97} +11.5352 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 23 q + 5 q^{2} - 6 q^{3} + 91 q^{4} - 40 q^{5} - 36 q^{6} + 39 q^{8} + 211 q^{9} - 40 q^{10} + 44 q^{11} - 414 q^{12} + 20 q^{13} + 523 q^{16} - 306 q^{17} + 51 q^{18} - 296 q^{19} - 400 q^{20} - 326 q^{22}+ \cdots - 3456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06861 0.377810 0.188905 0.981995i \(-0.439506\pi\)
0.188905 + 0.981995i \(0.439506\pi\)
\(3\) −5.09781 −0.981074 −0.490537 0.871420i \(-0.663199\pi\)
−0.490537 + 0.871420i \(0.663199\pi\)
\(4\) −6.85807 −0.857259
\(5\) 1.69042 0.151196 0.0755978 0.997138i \(-0.475914\pi\)
0.0755978 + 0.997138i \(0.475914\pi\)
\(6\) −5.44757 −0.370660
\(7\) 0 0
\(8\) −15.8775 −0.701692
\(9\) −1.01232 −0.0374934
\(10\) 1.80640 0.0571232
\(11\) −11.3948 −0.312332 −0.156166 0.987731i \(-0.549913\pi\)
−0.156166 + 0.987731i \(0.549913\pi\)
\(12\) 34.9612 0.841035
\(13\) 63.5400 1.35560 0.677801 0.735246i \(-0.262933\pi\)
0.677801 + 0.735246i \(0.262933\pi\)
\(14\) 0 0
\(15\) −8.61743 −0.148334
\(16\) 37.8978 0.592153
\(17\) −10.9774 −0.156612 −0.0783061 0.996929i \(-0.524951\pi\)
−0.0783061 + 0.996929i \(0.524951\pi\)
\(18\) −1.08178 −0.0141654
\(19\) −113.179 −1.36658 −0.683292 0.730145i \(-0.739452\pi\)
−0.683292 + 0.730145i \(0.739452\pi\)
\(20\) −11.5930 −0.129614
\(21\) 0 0
\(22\) −12.1766 −0.118002
\(23\) −39.8450 −0.361228 −0.180614 0.983554i \(-0.557809\pi\)
−0.180614 + 0.983554i \(0.557809\pi\)
\(24\) 80.9404 0.688412
\(25\) −122.142 −0.977140
\(26\) 67.8994 0.512160
\(27\) 142.802 1.01786
\(28\) 0 0
\(29\) 278.148 1.78106 0.890532 0.454921i \(-0.150332\pi\)
0.890532 + 0.454921i \(0.150332\pi\)
\(30\) −9.20866 −0.0560421
\(31\) −31.0000 −0.179605
\(32\) 167.518 0.925413
\(33\) 58.0884 0.306421
\(34\) −11.7305 −0.0591697
\(35\) 0 0
\(36\) 6.94258 0.0321416
\(37\) −68.4809 −0.304275 −0.152138 0.988359i \(-0.548616\pi\)
−0.152138 + 0.988359i \(0.548616\pi\)
\(38\) −120.944 −0.516309
\(39\) −323.915 −1.32995
\(40\) −26.8396 −0.106093
\(41\) 172.827 0.658316 0.329158 0.944275i \(-0.393235\pi\)
0.329158 + 0.944275i \(0.393235\pi\)
\(42\) 0 0
\(43\) 152.093 0.539393 0.269697 0.962945i \(-0.413077\pi\)
0.269697 + 0.962945i \(0.413077\pi\)
\(44\) 78.1462 0.267750
\(45\) −1.71125 −0.00566883
\(46\) −42.5787 −0.136476
\(47\) 440.422 1.36685 0.683427 0.730018i \(-0.260489\pi\)
0.683427 + 0.730018i \(0.260489\pi\)
\(48\) −193.196 −0.580946
\(49\) 0 0
\(50\) −130.523 −0.369174
\(51\) 55.9607 0.153648
\(52\) −435.762 −1.16210
\(53\) 707.544 1.83375 0.916874 0.399177i \(-0.130704\pi\)
0.916874 + 0.399177i \(0.130704\pi\)
\(54\) 152.599 0.384557
\(55\) −19.2619 −0.0472232
\(56\) 0 0
\(57\) 576.966 1.34072
\(58\) 297.232 0.672904
\(59\) 9.06489 0.0200025 0.0100013 0.999950i \(-0.496816\pi\)
0.0100013 + 0.999950i \(0.496816\pi\)
\(60\) 59.0990 0.127161
\(61\) −616.443 −1.29389 −0.646947 0.762535i \(-0.723954\pi\)
−0.646947 + 0.762535i \(0.723954\pi\)
\(62\) −33.1269 −0.0678567
\(63\) 0 0
\(64\) −124.171 −0.242522
\(65\) 107.409 0.204961
\(66\) 62.0738 0.115769
\(67\) −29.5775 −0.0539323 −0.0269662 0.999636i \(-0.508585\pi\)
−0.0269662 + 0.999636i \(0.508585\pi\)
\(68\) 75.2838 0.134257
\(69\) 203.122 0.354392
\(70\) 0 0
\(71\) 779.280 1.30258 0.651292 0.758827i \(-0.274227\pi\)
0.651292 + 0.758827i \(0.274227\pi\)
\(72\) 16.0731 0.0263088
\(73\) −700.002 −1.12232 −0.561158 0.827709i \(-0.689644\pi\)
−0.561158 + 0.827709i \(0.689644\pi\)
\(74\) −73.1793 −0.114958
\(75\) 622.659 0.958647
\(76\) 776.191 1.17152
\(77\) 0 0
\(78\) −346.138 −0.502467
\(79\) 988.243 1.40742 0.703709 0.710488i \(-0.251526\pi\)
0.703709 + 0.710488i \(0.251526\pi\)
\(80\) 64.0631 0.0895309
\(81\) −700.643 −0.961101
\(82\) 184.684 0.248719
\(83\) −142.373 −0.188282 −0.0941412 0.995559i \(-0.530011\pi\)
−0.0941412 + 0.995559i \(0.530011\pi\)
\(84\) 0 0
\(85\) −18.5564 −0.0236791
\(86\) 162.528 0.203788
\(87\) −1417.95 −1.74736
\(88\) 180.920 0.219161
\(89\) −287.113 −0.341954 −0.170977 0.985275i \(-0.554692\pi\)
−0.170977 + 0.985275i \(0.554692\pi\)
\(90\) −1.82865 −0.00214174
\(91\) 0 0
\(92\) 273.260 0.309666
\(93\) 158.032 0.176206
\(94\) 470.639 0.516412
\(95\) −191.320 −0.206621
\(96\) −853.974 −0.907899
\(97\) −1764.37 −1.84685 −0.923427 0.383775i \(-0.874624\pi\)
−0.923427 + 0.383775i \(0.874624\pi\)
\(98\) 0 0
\(99\) 11.5352 0.0117104
\(100\) 837.662 0.837662
\(101\) −972.472 −0.958066 −0.479033 0.877797i \(-0.659012\pi\)
−0.479033 + 0.877797i \(0.659012\pi\)
\(102\) 59.8001 0.0580499
\(103\) 389.777 0.372872 0.186436 0.982467i \(-0.440306\pi\)
0.186436 + 0.982467i \(0.440306\pi\)
\(104\) −1008.85 −0.951215
\(105\) 0 0
\(106\) 756.088 0.692809
\(107\) −1229.35 −1.11071 −0.555354 0.831614i \(-0.687417\pi\)
−0.555354 + 0.831614i \(0.687417\pi\)
\(108\) −979.344 −0.872568
\(109\) −1905.00 −1.67400 −0.837002 0.547200i \(-0.815694\pi\)
−0.837002 + 0.547200i \(0.815694\pi\)
\(110\) −20.5835 −0.0178414
\(111\) 349.103 0.298517
\(112\) 0 0
\(113\) −892.356 −0.742883 −0.371441 0.928456i \(-0.621136\pi\)
−0.371441 + 0.928456i \(0.621136\pi\)
\(114\) 616.551 0.506538
\(115\) −67.3547 −0.0546161
\(116\) −1907.56 −1.52683
\(117\) −64.3229 −0.0508261
\(118\) 9.68683 0.00755716
\(119\) 0 0
\(120\) 136.823 0.104085
\(121\) −1201.16 −0.902449
\(122\) −658.737 −0.488846
\(123\) −881.037 −0.645857
\(124\) 212.600 0.153968
\(125\) −417.774 −0.298935
\(126\) 0 0
\(127\) 492.761 0.344295 0.172147 0.985071i \(-0.444929\pi\)
0.172147 + 0.985071i \(0.444929\pi\)
\(128\) −1472.83 −1.01704
\(129\) −775.339 −0.529185
\(130\) 114.778 0.0774364
\(131\) 1025.67 0.684071 0.342036 0.939687i \(-0.388884\pi\)
0.342036 + 0.939687i \(0.388884\pi\)
\(132\) −398.375 −0.262682
\(133\) 0 0
\(134\) −31.6068 −0.0203762
\(135\) 241.394 0.153896
\(136\) 174.293 0.109894
\(137\) 1875.23 1.16943 0.584715 0.811238i \(-0.301206\pi\)
0.584715 + 0.811238i \(0.301206\pi\)
\(138\) 217.058 0.133893
\(139\) 796.182 0.485837 0.242918 0.970047i \(-0.421895\pi\)
0.242918 + 0.970047i \(0.421895\pi\)
\(140\) 0 0
\(141\) −2245.19 −1.34099
\(142\) 832.746 0.492130
\(143\) −724.024 −0.423398
\(144\) −38.3647 −0.0222018
\(145\) 470.187 0.269289
\(146\) −748.028 −0.424022
\(147\) 0 0
\(148\) 469.647 0.260843
\(149\) 744.054 0.409096 0.204548 0.978857i \(-0.434428\pi\)
0.204548 + 0.978857i \(0.434428\pi\)
\(150\) 665.379 0.362187
\(151\) 3699.06 1.99354 0.996772 0.0802822i \(-0.0255822\pi\)
0.996772 + 0.0802822i \(0.0255822\pi\)
\(152\) 1797.00 0.958920
\(153\) 11.1126 0.00587192
\(154\) 0 0
\(155\) −52.4029 −0.0271555
\(156\) 2221.43 1.14011
\(157\) 573.120 0.291337 0.145669 0.989333i \(-0.453467\pi\)
0.145669 + 0.989333i \(0.453467\pi\)
\(158\) 1056.05 0.531737
\(159\) −3606.92 −1.79904
\(160\) 283.175 0.139918
\(161\) 0 0
\(162\) −748.713 −0.363114
\(163\) −1222.94 −0.587655 −0.293827 0.955858i \(-0.594929\pi\)
−0.293827 + 0.955858i \(0.594929\pi\)
\(164\) −1185.26 −0.564348
\(165\) 98.1936 0.0463295
\(166\) −152.141 −0.0711350
\(167\) −1957.71 −0.907139 −0.453570 0.891221i \(-0.649850\pi\)
−0.453570 + 0.891221i \(0.649850\pi\)
\(168\) 0 0
\(169\) 1840.33 0.837656
\(170\) −19.8295 −0.00894620
\(171\) 114.574 0.0512378
\(172\) −1043.06 −0.462400
\(173\) −2739.84 −1.20408 −0.602041 0.798465i \(-0.705646\pi\)
−0.602041 + 0.798465i \(0.705646\pi\)
\(174\) −1515.23 −0.660169
\(175\) 0 0
\(176\) −431.837 −0.184948
\(177\) −46.2111 −0.0196240
\(178\) −306.812 −0.129194
\(179\) 4520.34 1.88752 0.943760 0.330632i \(-0.107262\pi\)
0.943760 + 0.330632i \(0.107262\pi\)
\(180\) 11.7359 0.00485966
\(181\) −4122.94 −1.69312 −0.846562 0.532290i \(-0.821332\pi\)
−0.846562 + 0.532290i \(0.821332\pi\)
\(182\) 0 0
\(183\) 3142.51 1.26941
\(184\) 632.638 0.253471
\(185\) −115.761 −0.0460051
\(186\) 168.875 0.0665725
\(187\) 125.085 0.0489150
\(188\) −3020.45 −1.17175
\(189\) 0 0
\(190\) −204.446 −0.0780637
\(191\) −2179.90 −0.825820 −0.412910 0.910772i \(-0.635488\pi\)
−0.412910 + 0.910772i \(0.635488\pi\)
\(192\) 633.002 0.237932
\(193\) −1806.85 −0.673884 −0.336942 0.941525i \(-0.609393\pi\)
−0.336942 + 0.941525i \(0.609393\pi\)
\(194\) −1885.42 −0.697760
\(195\) −547.551 −0.201082
\(196\) 0 0
\(197\) −3637.58 −1.31557 −0.657784 0.753207i \(-0.728506\pi\)
−0.657784 + 0.753207i \(0.728506\pi\)
\(198\) 12.3266 0.00442431
\(199\) −5283.43 −1.88207 −0.941036 0.338306i \(-0.890146\pi\)
−0.941036 + 0.338306i \(0.890146\pi\)
\(200\) 1939.31 0.685651
\(201\) 150.780 0.0529116
\(202\) −1039.19 −0.361967
\(203\) 0 0
\(204\) −383.782 −0.131716
\(205\) 292.149 0.0995345
\(206\) 416.519 0.140875
\(207\) 40.3359 0.0135437
\(208\) 2408.02 0.802723
\(209\) 1289.65 0.426828
\(210\) 0 0
\(211\) −2103.57 −0.686329 −0.343165 0.939275i \(-0.611499\pi\)
−0.343165 + 0.939275i \(0.611499\pi\)
\(212\) −4852.39 −1.57200
\(213\) −3972.62 −1.27793
\(214\) −1313.69 −0.419637
\(215\) 257.100 0.0815538
\(216\) −2267.33 −0.714223
\(217\) 0 0
\(218\) −2035.71 −0.632456
\(219\) 3568.48 1.10107
\(220\) 132.100 0.0404825
\(221\) −697.503 −0.212304
\(222\) 373.054 0.112783
\(223\) 4045.91 1.21495 0.607476 0.794338i \(-0.292182\pi\)
0.607476 + 0.794338i \(0.292182\pi\)
\(224\) 0 0
\(225\) 123.647 0.0366363
\(226\) −953.580 −0.280669
\(227\) −2816.86 −0.823619 −0.411810 0.911270i \(-0.635103\pi\)
−0.411810 + 0.911270i \(0.635103\pi\)
\(228\) −3956.88 −1.14934
\(229\) 5525.98 1.59462 0.797308 0.603572i \(-0.206256\pi\)
0.797308 + 0.603572i \(0.206256\pi\)
\(230\) −71.9758 −0.0206345
\(231\) 0 0
\(232\) −4416.29 −1.24976
\(233\) −1720.37 −0.483713 −0.241857 0.970312i \(-0.577756\pi\)
−0.241857 + 0.970312i \(0.577756\pi\)
\(234\) −68.7360 −0.0192026
\(235\) 744.497 0.206662
\(236\) −62.1677 −0.0171473
\(237\) −5037.88 −1.38078
\(238\) 0 0
\(239\) 1643.46 0.444798 0.222399 0.974956i \(-0.428611\pi\)
0.222399 + 0.974956i \(0.428611\pi\)
\(240\) −326.581 −0.0878364
\(241\) −4056.22 −1.08417 −0.542083 0.840325i \(-0.682364\pi\)
−0.542083 + 0.840325i \(0.682364\pi\)
\(242\) −1283.57 −0.340954
\(243\) −283.898 −0.0749467
\(244\) 4227.61 1.10920
\(245\) 0 0
\(246\) −941.484 −0.244012
\(247\) −7191.40 −1.85254
\(248\) 492.202 0.126028
\(249\) 725.789 0.184719
\(250\) −446.437 −0.112941
\(251\) −6943.08 −1.74599 −0.872995 0.487730i \(-0.837825\pi\)
−0.872995 + 0.487730i \(0.837825\pi\)
\(252\) 0 0
\(253\) 454.025 0.112823
\(254\) 526.569 0.130078
\(255\) 94.5969 0.0232309
\(256\) −580.511 −0.141726
\(257\) 5267.21 1.27844 0.639221 0.769023i \(-0.279257\pi\)
0.639221 + 0.769023i \(0.279257\pi\)
\(258\) −828.535 −0.199931
\(259\) 0 0
\(260\) −736.620 −0.175705
\(261\) −281.576 −0.0667781
\(262\) 1096.04 0.258449
\(263\) −2630.67 −0.616784 −0.308392 0.951259i \(-0.599791\pi\)
−0.308392 + 0.951259i \(0.599791\pi\)
\(264\) −922.297 −0.215013
\(265\) 1196.04 0.277254
\(266\) 0 0
\(267\) 1463.65 0.335482
\(268\) 202.845 0.0462340
\(269\) 5708.71 1.29393 0.646963 0.762522i \(-0.276039\pi\)
0.646963 + 0.762522i \(0.276039\pi\)
\(270\) 257.956 0.0581433
\(271\) 2226.99 0.499188 0.249594 0.968351i \(-0.419703\pi\)
0.249594 + 0.968351i \(0.419703\pi\)
\(272\) −416.019 −0.0927384
\(273\) 0 0
\(274\) 2003.89 0.441823
\(275\) 1391.79 0.305192
\(276\) −1393.03 −0.303806
\(277\) 4948.83 1.07345 0.536726 0.843757i \(-0.319661\pi\)
0.536726 + 0.843757i \(0.319661\pi\)
\(278\) 850.807 0.183554
\(279\) 31.3820 0.00673401
\(280\) 0 0
\(281\) −2871.94 −0.609699 −0.304850 0.952401i \(-0.598606\pi\)
−0.304850 + 0.952401i \(0.598606\pi\)
\(282\) −2399.23 −0.506638
\(283\) −6200.78 −1.30247 −0.651233 0.758878i \(-0.725748\pi\)
−0.651233 + 0.758878i \(0.725748\pi\)
\(284\) −5344.36 −1.11665
\(285\) 975.314 0.202711
\(286\) −773.698 −0.159964
\(287\) 0 0
\(288\) −169.582 −0.0346969
\(289\) −4792.50 −0.975473
\(290\) 502.446 0.101740
\(291\) 8994.43 1.81190
\(292\) 4800.66 0.962115
\(293\) −4001.17 −0.797784 −0.398892 0.916998i \(-0.630605\pi\)
−0.398892 + 0.916998i \(0.630605\pi\)
\(294\) 0 0
\(295\) 15.3235 0.00302429
\(296\) 1087.30 0.213508
\(297\) −1627.19 −0.317910
\(298\) 795.103 0.154561
\(299\) −2531.75 −0.489682
\(300\) −4270.24 −0.821809
\(301\) 0 0
\(302\) 3952.85 0.753182
\(303\) 4957.48 0.939933
\(304\) −4289.24 −0.809226
\(305\) −1042.05 −0.195631
\(306\) 11.8751 0.00221847
\(307\) −2011.05 −0.373866 −0.186933 0.982373i \(-0.559855\pi\)
−0.186933 + 0.982373i \(0.559855\pi\)
\(308\) 0 0
\(309\) −1987.01 −0.365815
\(310\) −55.9983 −0.0102596
\(311\) −4938.73 −0.900481 −0.450240 0.892907i \(-0.648662\pi\)
−0.450240 + 0.892907i \(0.648662\pi\)
\(312\) 5142.95 0.933212
\(313\) 3367.19 0.608066 0.304033 0.952661i \(-0.401667\pi\)
0.304033 + 0.952661i \(0.401667\pi\)
\(314\) 612.441 0.110070
\(315\) 0 0
\(316\) −6777.45 −1.20652
\(317\) −3010.50 −0.533397 −0.266698 0.963780i \(-0.585933\pi\)
−0.266698 + 0.963780i \(0.585933\pi\)
\(318\) −3854.39 −0.679697
\(319\) −3169.44 −0.556283
\(320\) −209.901 −0.0366683
\(321\) 6266.99 1.08969
\(322\) 0 0
\(323\) 1242.41 0.214024
\(324\) 4805.06 0.823913
\(325\) −7760.93 −1.32461
\(326\) −1306.84 −0.222022
\(327\) 9711.35 1.64232
\(328\) −2744.05 −0.461935
\(329\) 0 0
\(330\) 104.931 0.0175038
\(331\) 9031.19 1.49970 0.749848 0.661610i \(-0.230127\pi\)
0.749848 + 0.661610i \(0.230127\pi\)
\(332\) 976.403 0.161407
\(333\) 69.3247 0.0114083
\(334\) −2092.03 −0.342727
\(335\) −49.9983 −0.00815433
\(336\) 0 0
\(337\) 1908.11 0.308432 0.154216 0.988037i \(-0.450715\pi\)
0.154216 + 0.988037i \(0.450715\pi\)
\(338\) 1966.59 0.316475
\(339\) 4549.06 0.728823
\(340\) 127.261 0.0202991
\(341\) 353.238 0.0560965
\(342\) 122.435 0.0193582
\(343\) 0 0
\(344\) −2414.85 −0.378488
\(345\) 343.361 0.0535825
\(346\) −2927.82 −0.454915
\(347\) −7424.64 −1.14863 −0.574316 0.818634i \(-0.694732\pi\)
−0.574316 + 0.818634i \(0.694732\pi\)
\(348\) 9724.39 1.49794
\(349\) −4224.58 −0.647956 −0.323978 0.946065i \(-0.605020\pi\)
−0.323978 + 0.946065i \(0.605020\pi\)
\(350\) 0 0
\(351\) 9073.61 1.37981
\(352\) −1908.83 −0.289036
\(353\) 728.325 0.109815 0.0549077 0.998491i \(-0.482514\pi\)
0.0549077 + 0.998491i \(0.482514\pi\)
\(354\) −49.3816 −0.00741413
\(355\) 1317.31 0.196945
\(356\) 1969.04 0.293143
\(357\) 0 0
\(358\) 4830.47 0.713124
\(359\) −1968.81 −0.289443 −0.144721 0.989472i \(-0.546229\pi\)
−0.144721 + 0.989472i \(0.546229\pi\)
\(360\) 27.1703 0.00397777
\(361\) 5950.53 0.867550
\(362\) −4405.81 −0.639680
\(363\) 6123.28 0.885369
\(364\) 0 0
\(365\) −1183.30 −0.169689
\(366\) 3358.12 0.479595
\(367\) 9924.61 1.41161 0.705805 0.708407i \(-0.250586\pi\)
0.705805 + 0.708407i \(0.250586\pi\)
\(368\) −1510.04 −0.213902
\(369\) −174.956 −0.0246825
\(370\) −123.704 −0.0173812
\(371\) 0 0
\(372\) −1083.80 −0.151054
\(373\) −7273.60 −1.00968 −0.504842 0.863211i \(-0.668449\pi\)
−0.504842 + 0.863211i \(0.668449\pi\)
\(374\) 133.667 0.0184806
\(375\) 2129.73 0.293277
\(376\) −6992.79 −0.959111
\(377\) 17673.5 2.41441
\(378\) 0 0
\(379\) 6423.61 0.870603 0.435302 0.900285i \(-0.356642\pi\)
0.435302 + 0.900285i \(0.356642\pi\)
\(380\) 1312.09 0.177128
\(381\) −2512.00 −0.337779
\(382\) −2329.46 −0.312003
\(383\) 9574.31 1.27735 0.638674 0.769477i \(-0.279483\pi\)
0.638674 + 0.769477i \(0.279483\pi\)
\(384\) 7508.22 0.997792
\(385\) 0 0
\(386\) −1930.81 −0.254601
\(387\) −153.967 −0.0202237
\(388\) 12100.2 1.58323
\(389\) 4410.16 0.574817 0.287408 0.957808i \(-0.407206\pi\)
0.287408 + 0.957808i \(0.407206\pi\)
\(390\) −585.118 −0.0759708
\(391\) 437.394 0.0565728
\(392\) 0 0
\(393\) −5228.68 −0.671124
\(394\) −3887.15 −0.497035
\(395\) 1670.54 0.212795
\(396\) −79.1091 −0.0100388
\(397\) −11630.5 −1.47033 −0.735163 0.677890i \(-0.762895\pi\)
−0.735163 + 0.677890i \(0.762895\pi\)
\(398\) −5645.92 −0.711066
\(399\) 0 0
\(400\) −4628.93 −0.578616
\(401\) 5975.71 0.744172 0.372086 0.928198i \(-0.378643\pi\)
0.372086 + 0.928198i \(0.378643\pi\)
\(402\) 161.125 0.0199906
\(403\) −1969.74 −0.243473
\(404\) 6669.29 0.821311
\(405\) −1184.38 −0.145314
\(406\) 0 0
\(407\) 780.324 0.0950350
\(408\) −888.514 −0.107814
\(409\) −12641.1 −1.52827 −0.764133 0.645058i \(-0.776833\pi\)
−0.764133 + 0.645058i \(0.776833\pi\)
\(410\) 312.193 0.0376052
\(411\) −9559.59 −1.14730
\(412\) −2673.12 −0.319648
\(413\) 0 0
\(414\) 43.1033 0.00511694
\(415\) −240.669 −0.0284675
\(416\) 10644.1 1.25449
\(417\) −4058.79 −0.476642
\(418\) 1378.13 0.161260
\(419\) −16626.8 −1.93859 −0.969296 0.245896i \(-0.920918\pi\)
−0.969296 + 0.245896i \(0.920918\pi\)
\(420\) 0 0
\(421\) 7015.57 0.812157 0.406078 0.913838i \(-0.366896\pi\)
0.406078 + 0.913838i \(0.366896\pi\)
\(422\) −2247.89 −0.259302
\(423\) −445.849 −0.0512480
\(424\) −11234.0 −1.28673
\(425\) 1340.81 0.153032
\(426\) −4245.18 −0.482816
\(427\) 0 0
\(428\) 8430.97 0.952164
\(429\) 3690.94 0.415385
\(430\) 274.739 0.0308119
\(431\) −9018.86 −1.00794 −0.503971 0.863720i \(-0.668128\pi\)
−0.503971 + 0.863720i \(0.668128\pi\)
\(432\) 5411.86 0.602728
\(433\) −1858.88 −0.206310 −0.103155 0.994665i \(-0.532894\pi\)
−0.103155 + 0.994665i \(0.532894\pi\)
\(434\) 0 0
\(435\) −2396.92 −0.264192
\(436\) 13064.7 1.43505
\(437\) 4509.62 0.493649
\(438\) 3813.31 0.415997
\(439\) 6259.52 0.680525 0.340263 0.940330i \(-0.389484\pi\)
0.340263 + 0.940330i \(0.389484\pi\)
\(440\) 305.831 0.0331361
\(441\) 0 0
\(442\) −745.358 −0.0802106
\(443\) 11456.1 1.22866 0.614331 0.789048i \(-0.289426\pi\)
0.614331 + 0.789048i \(0.289426\pi\)
\(444\) −2394.17 −0.255906
\(445\) −485.341 −0.0517019
\(446\) 4323.50 0.459022
\(447\) −3793.05 −0.401353
\(448\) 0 0
\(449\) 13324.0 1.40045 0.700223 0.713924i \(-0.253084\pi\)
0.700223 + 0.713924i \(0.253084\pi\)
\(450\) 132.131 0.0138416
\(451\) −1969.32 −0.205613
\(452\) 6119.84 0.636843
\(453\) −18857.1 −1.95581
\(454\) −3010.12 −0.311172
\(455\) 0 0
\(456\) −9160.76 −0.940772
\(457\) −4740.07 −0.485189 −0.242594 0.970128i \(-0.577998\pi\)
−0.242594 + 0.970128i \(0.577998\pi\)
\(458\) 5905.12 0.602463
\(459\) −1567.59 −0.159409
\(460\) 461.923 0.0468202
\(461\) 6297.43 0.636226 0.318113 0.948053i \(-0.396951\pi\)
0.318113 + 0.948053i \(0.396951\pi\)
\(462\) 0 0
\(463\) −4769.45 −0.478737 −0.239368 0.970929i \(-0.576940\pi\)
−0.239368 + 0.970929i \(0.576940\pi\)
\(464\) 10541.2 1.05466
\(465\) 267.140 0.0266416
\(466\) −1838.40 −0.182752
\(467\) −523.918 −0.0519144 −0.0259572 0.999663i \(-0.508263\pi\)
−0.0259572 + 0.999663i \(0.508263\pi\)
\(468\) 441.131 0.0435711
\(469\) 0 0
\(470\) 795.577 0.0780792
\(471\) −2921.66 −0.285823
\(472\) −143.928 −0.0140356
\(473\) −1733.06 −0.168470
\(474\) −5383.52 −0.521674
\(475\) 13824.0 1.33534
\(476\) 0 0
\(477\) −716.262 −0.0687534
\(478\) 1756.22 0.168049
\(479\) 10734.2 1.02392 0.511960 0.859009i \(-0.328919\pi\)
0.511960 + 0.859009i \(0.328919\pi\)
\(480\) −1443.57 −0.137270
\(481\) −4351.28 −0.412476
\(482\) −4334.51 −0.409609
\(483\) 0 0
\(484\) 8237.64 0.773633
\(485\) −2982.52 −0.279236
\(486\) −303.376 −0.0283157
\(487\) −1537.61 −0.143071 −0.0715357 0.997438i \(-0.522790\pi\)
−0.0715357 + 0.997438i \(0.522790\pi\)
\(488\) 9787.56 0.907914
\(489\) 6234.30 0.576533
\(490\) 0 0
\(491\) −6701.98 −0.616000 −0.308000 0.951386i \(-0.599660\pi\)
−0.308000 + 0.951386i \(0.599660\pi\)
\(492\) 6042.22 0.553667
\(493\) −3053.34 −0.278936
\(494\) −7684.80 −0.699910
\(495\) 19.4993 0.00177056
\(496\) −1174.83 −0.106354
\(497\) 0 0
\(498\) 775.585 0.0697888
\(499\) 9529.20 0.854881 0.427440 0.904044i \(-0.359415\pi\)
0.427440 + 0.904044i \(0.359415\pi\)
\(500\) 2865.13 0.256265
\(501\) 9980.04 0.889971
\(502\) −7419.44 −0.659653
\(503\) 5089.01 0.451108 0.225554 0.974231i \(-0.427581\pi\)
0.225554 + 0.974231i \(0.427581\pi\)
\(504\) 0 0
\(505\) −1643.88 −0.144855
\(506\) 485.175 0.0426258
\(507\) −9381.65 −0.821803
\(508\) −3379.39 −0.295150
\(509\) 20343.6 1.77154 0.885769 0.464127i \(-0.153632\pi\)
0.885769 + 0.464127i \(0.153632\pi\)
\(510\) 101.087 0.00877689
\(511\) 0 0
\(512\) 11162.3 0.963495
\(513\) −16162.2 −1.39099
\(514\) 5628.59 0.483009
\(515\) 658.886 0.0563766
\(516\) 5317.33 0.453648
\(517\) −5018.51 −0.426913
\(518\) 0 0
\(519\) 13967.2 1.18129
\(520\) −1705.39 −0.143819
\(521\) 3059.55 0.257277 0.128638 0.991692i \(-0.458939\pi\)
0.128638 + 0.991692i \(0.458939\pi\)
\(522\) −300.894 −0.0252295
\(523\) −7266.06 −0.607500 −0.303750 0.952752i \(-0.598239\pi\)
−0.303750 + 0.952752i \(0.598239\pi\)
\(524\) −7034.13 −0.586426
\(525\) 0 0
\(526\) −2811.16 −0.233027
\(527\) 340.299 0.0281284
\(528\) 2201.42 0.181448
\(529\) −10579.4 −0.869514
\(530\) 1278.10 0.104750
\(531\) −9.17659 −0.000749962 0
\(532\) 0 0
\(533\) 10981.4 0.892415
\(534\) 1564.07 0.126749
\(535\) −2078.11 −0.167934
\(536\) 469.616 0.0378439
\(537\) −23043.8 −1.85180
\(538\) 6100.37 0.488858
\(539\) 0 0
\(540\) −1655.50 −0.131928
\(541\) −5752.04 −0.457116 −0.228558 0.973530i \(-0.573401\pi\)
−0.228558 + 0.973530i \(0.573401\pi\)
\(542\) 2379.78 0.188598
\(543\) 21018.0 1.66108
\(544\) −1838.91 −0.144931
\(545\) −3220.25 −0.253102
\(546\) 0 0
\(547\) −10824.1 −0.846075 −0.423037 0.906112i \(-0.639036\pi\)
−0.423037 + 0.906112i \(0.639036\pi\)
\(548\) −12860.5 −1.00251
\(549\) 624.039 0.0485124
\(550\) 1487.28 0.115305
\(551\) −31480.6 −2.43397
\(552\) −3225.07 −0.248674
\(553\) 0 0
\(554\) 5288.36 0.405561
\(555\) 590.129 0.0451344
\(556\) −5460.28 −0.416488
\(557\) −1717.55 −0.130656 −0.0653278 0.997864i \(-0.520809\pi\)
−0.0653278 + 0.997864i \(0.520809\pi\)
\(558\) 33.5351 0.00254418
\(559\) 9663.96 0.731202
\(560\) 0 0
\(561\) −637.659 −0.0479893
\(562\) −3068.98 −0.230351
\(563\) 7436.84 0.556706 0.278353 0.960479i \(-0.410212\pi\)
0.278353 + 0.960479i \(0.410212\pi\)
\(564\) 15397.7 1.14957
\(565\) −1508.45 −0.112321
\(566\) −6626.21 −0.492085
\(567\) 0 0
\(568\) −12373.0 −0.914013
\(569\) −10663.6 −0.785658 −0.392829 0.919611i \(-0.628504\pi\)
−0.392829 + 0.919611i \(0.628504\pi\)
\(570\) 1042.23 0.0765863
\(571\) 3526.22 0.258438 0.129219 0.991616i \(-0.458753\pi\)
0.129219 + 0.991616i \(0.458753\pi\)
\(572\) 4965.41 0.362962
\(573\) 11112.7 0.810191
\(574\) 0 0
\(575\) 4866.77 0.352971
\(576\) 125.701 0.00909298
\(577\) 8391.90 0.605476 0.302738 0.953074i \(-0.402099\pi\)
0.302738 + 0.953074i \(0.402099\pi\)
\(578\) −5121.31 −0.368544
\(579\) 9210.96 0.661131
\(580\) −3224.58 −0.230850
\(581\) 0 0
\(582\) 9611.53 0.684555
\(583\) −8062.30 −0.572738
\(584\) 11114.3 0.787519
\(585\) −108.733 −0.00768468
\(586\) −4275.68 −0.301411
\(587\) 6802.34 0.478301 0.239150 0.970983i \(-0.423131\pi\)
0.239150 + 0.970983i \(0.423131\pi\)
\(588\) 0 0
\(589\) 3508.55 0.245446
\(590\) 16.3748 0.00114261
\(591\) 18543.7 1.29067
\(592\) −2595.27 −0.180178
\(593\) −13527.4 −0.936771 −0.468385 0.883524i \(-0.655164\pi\)
−0.468385 + 0.883524i \(0.655164\pi\)
\(594\) −1738.83 −0.120110
\(595\) 0 0
\(596\) −5102.78 −0.350701
\(597\) 26933.9 1.84645
\(598\) −2705.45 −0.185007
\(599\) 10633.4 0.725323 0.362662 0.931921i \(-0.381868\pi\)
0.362662 + 0.931921i \(0.381868\pi\)
\(600\) −9886.26 −0.672675
\(601\) 14943.1 1.01421 0.507105 0.861884i \(-0.330716\pi\)
0.507105 + 0.861884i \(0.330716\pi\)
\(602\) 0 0
\(603\) 29.9419 0.00202211
\(604\) −25368.4 −1.70898
\(605\) −2030.46 −0.136446
\(606\) 5297.61 0.355117
\(607\) 2596.39 0.173615 0.0868076 0.996225i \(-0.472333\pi\)
0.0868076 + 0.996225i \(0.472333\pi\)
\(608\) −18959.5 −1.26465
\(609\) 0 0
\(610\) −1113.54 −0.0739114
\(611\) 27984.4 1.85291
\(612\) −76.2114 −0.00503376
\(613\) −6716.68 −0.442552 −0.221276 0.975211i \(-0.571022\pi\)
−0.221276 + 0.975211i \(0.571022\pi\)
\(614\) −2149.03 −0.141250
\(615\) −1489.32 −0.0976507
\(616\) 0 0
\(617\) 10466.6 0.682934 0.341467 0.939894i \(-0.389076\pi\)
0.341467 + 0.939894i \(0.389076\pi\)
\(618\) −2123.34 −0.138209
\(619\) −4068.02 −0.264148 −0.132074 0.991240i \(-0.542164\pi\)
−0.132074 + 0.991240i \(0.542164\pi\)
\(620\) 359.383 0.0232793
\(621\) −5689.92 −0.367679
\(622\) −5277.57 −0.340211
\(623\) 0 0
\(624\) −12275.7 −0.787531
\(625\) 14561.6 0.931942
\(626\) 3598.21 0.229734
\(627\) −6574.40 −0.418750
\(628\) −3930.50 −0.249751
\(629\) 751.742 0.0476533
\(630\) 0 0
\(631\) 4589.57 0.289553 0.144776 0.989464i \(-0.453754\pi\)
0.144776 + 0.989464i \(0.453754\pi\)
\(632\) −15690.8 −0.987574
\(633\) 10723.6 0.673340
\(634\) −3217.05 −0.201523
\(635\) 832.972 0.0520559
\(636\) 24736.6 1.54225
\(637\) 0 0
\(638\) −3386.89 −0.210170
\(639\) −788.882 −0.0488383
\(640\) −2489.70 −0.153772
\(641\) 12887.9 0.794137 0.397069 0.917789i \(-0.370027\pi\)
0.397069 + 0.917789i \(0.370027\pi\)
\(642\) 6696.96 0.411695
\(643\) 12135.2 0.744267 0.372134 0.928179i \(-0.378626\pi\)
0.372134 + 0.928179i \(0.378626\pi\)
\(644\) 0 0
\(645\) −1310.65 −0.0800103
\(646\) 1327.65 0.0808604
\(647\) −21159.6 −1.28573 −0.642865 0.765979i \(-0.722255\pi\)
−0.642865 + 0.765979i \(0.722255\pi\)
\(648\) 11124.4 0.674397
\(649\) −103.292 −0.00624743
\(650\) −8293.40 −0.500452
\(651\) 0 0
\(652\) 8386.99 0.503773
\(653\) −25356.0 −1.51954 −0.759769 0.650193i \(-0.774688\pi\)
−0.759769 + 0.650193i \(0.774688\pi\)
\(654\) 10377.6 0.620486
\(655\) 1733.81 0.103428
\(656\) 6549.74 0.389824
\(657\) 708.627 0.0420794
\(658\) 0 0
\(659\) −19623.2 −1.15996 −0.579978 0.814632i \(-0.696939\pi\)
−0.579978 + 0.814632i \(0.696939\pi\)
\(660\) −673.419 −0.0397164
\(661\) −8106.33 −0.477004 −0.238502 0.971142i \(-0.576656\pi\)
−0.238502 + 0.971142i \(0.576656\pi\)
\(662\) 9650.81 0.566601
\(663\) 3555.74 0.208286
\(664\) 2260.52 0.132116
\(665\) 0 0
\(666\) 74.0810 0.00431018
\(667\) −11082.8 −0.643371
\(668\) 13426.1 0.777654
\(669\) −20625.3 −1.19196
\(670\) −53.4286 −0.00308079
\(671\) 7024.23 0.404124
\(672\) 0 0
\(673\) −22638.5 −1.29665 −0.648327 0.761362i \(-0.724531\pi\)
−0.648327 + 0.761362i \(0.724531\pi\)
\(674\) 2039.03 0.116529
\(675\) −17442.1 −0.994590
\(676\) −12621.1 −0.718088
\(677\) −18076.3 −1.02619 −0.513095 0.858332i \(-0.671501\pi\)
−0.513095 + 0.858332i \(0.671501\pi\)
\(678\) 4861.17 0.275357
\(679\) 0 0
\(680\) 294.628 0.0166154
\(681\) 14359.8 0.808032
\(682\) 377.473 0.0211938
\(683\) −1272.88 −0.0713111 −0.0356556 0.999364i \(-0.511352\pi\)
−0.0356556 + 0.999364i \(0.511352\pi\)
\(684\) −785.755 −0.0439241
\(685\) 3169.93 0.176813
\(686\) 0 0
\(687\) −28170.4 −1.56444
\(688\) 5763.97 0.319403
\(689\) 44957.3 2.48583
\(690\) 366.919 0.0202440
\(691\) −15182.5 −0.835846 −0.417923 0.908482i \(-0.637242\pi\)
−0.417923 + 0.908482i \(0.637242\pi\)
\(692\) 18790.0 1.03221
\(693\) 0 0
\(694\) −7934.03 −0.433965
\(695\) 1345.88 0.0734563
\(696\) 22513.4 1.22611
\(697\) −1897.18 −0.103100
\(698\) −4514.43 −0.244804
\(699\) 8770.12 0.474558
\(700\) 0 0
\(701\) −23767.1 −1.28056 −0.640279 0.768142i \(-0.721181\pi\)
−0.640279 + 0.768142i \(0.721181\pi\)
\(702\) 9696.14 0.521307
\(703\) 7750.61 0.415818
\(704\) 1414.90 0.0757474
\(705\) −3795.31 −0.202751
\(706\) 778.295 0.0414894
\(707\) 0 0
\(708\) 316.919 0.0168228
\(709\) 155.285 0.00822546 0.00411273 0.999992i \(-0.498691\pi\)
0.00411273 + 0.999992i \(0.498691\pi\)
\(710\) 1407.69 0.0744078
\(711\) −1000.42 −0.0527689
\(712\) 4558.63 0.239946
\(713\) 1235.19 0.0648785
\(714\) 0 0
\(715\) −1223.90 −0.0640159
\(716\) −31000.8 −1.61809
\(717\) −8378.07 −0.436380
\(718\) −2103.89 −0.109354
\(719\) −33058.8 −1.71472 −0.857362 0.514714i \(-0.827898\pi\)
−0.857362 + 0.514714i \(0.827898\pi\)
\(720\) −64.8524 −0.00335682
\(721\) 0 0
\(722\) 6358.79 0.327769
\(723\) 20677.8 1.06365
\(724\) 28275.4 1.45145
\(725\) −33973.7 −1.74035
\(726\) 6543.40 0.334502
\(727\) −1738.18 −0.0886735 −0.0443368 0.999017i \(-0.514117\pi\)
−0.0443368 + 0.999017i \(0.514117\pi\)
\(728\) 0 0
\(729\) 20364.6 1.03463
\(730\) −1264.48 −0.0641103
\(731\) −1669.58 −0.0844756
\(732\) −21551.6 −1.08821
\(733\) −735.878 −0.0370809 −0.0185404 0.999828i \(-0.505902\pi\)
−0.0185404 + 0.999828i \(0.505902\pi\)
\(734\) 10605.5 0.533321
\(735\) 0 0
\(736\) −6674.74 −0.334286
\(737\) 337.029 0.0168448
\(738\) −186.960 −0.00932531
\(739\) 26114.2 1.29990 0.649949 0.759977i \(-0.274790\pi\)
0.649949 + 0.759977i \(0.274790\pi\)
\(740\) 793.900 0.0394383
\(741\) 36660.4 1.81748
\(742\) 0 0
\(743\) −28095.4 −1.38724 −0.693621 0.720340i \(-0.743986\pi\)
−0.693621 + 0.720340i \(0.743986\pi\)
\(744\) −2509.15 −0.123642
\(745\) 1257.76 0.0618535
\(746\) −7772.63 −0.381469
\(747\) 144.127 0.00705935
\(748\) −857.841 −0.0419329
\(749\) 0 0
\(750\) 2275.85 0.110803
\(751\) −2510.16 −0.121967 −0.0609833 0.998139i \(-0.519424\pi\)
−0.0609833 + 0.998139i \(0.519424\pi\)
\(752\) 16691.0 0.809387
\(753\) 35394.5 1.71295
\(754\) 18886.1 0.912190
\(755\) 6252.95 0.301415
\(756\) 0 0
\(757\) 8171.67 0.392344 0.196172 0.980569i \(-0.437149\pi\)
0.196172 + 0.980569i \(0.437149\pi\)
\(758\) 6864.33 0.328923
\(759\) −2314.53 −0.110688
\(760\) 3037.68 0.144984
\(761\) −7806.65 −0.371867 −0.185934 0.982562i \(-0.559531\pi\)
−0.185934 + 0.982562i \(0.559531\pi\)
\(762\) −2684.35 −0.127616
\(763\) 0 0
\(764\) 14949.9 0.707942
\(765\) 18.7850 0.000887809 0
\(766\) 10231.2 0.482595
\(767\) 575.983 0.0271154
\(768\) 2959.34 0.139044
\(769\) 20857.7 0.978084 0.489042 0.872260i \(-0.337346\pi\)
0.489042 + 0.872260i \(0.337346\pi\)
\(770\) 0 0
\(771\) −26851.3 −1.25425
\(772\) 12391.5 0.577694
\(773\) −18249.3 −0.849136 −0.424568 0.905396i \(-0.639574\pi\)
−0.424568 + 0.905396i \(0.639574\pi\)
\(774\) −164.530 −0.00764071
\(775\) 3786.42 0.175500
\(776\) 28013.8 1.29592
\(777\) 0 0
\(778\) 4712.73 0.217172
\(779\) −19560.4 −0.899644
\(780\) 3755.15 0.172379
\(781\) −8879.72 −0.406839
\(782\) 467.403 0.0213738
\(783\) 39720.0 1.81287
\(784\) 0 0
\(785\) 968.812 0.0440489
\(786\) −5587.41 −0.253558
\(787\) −19636.9 −0.889429 −0.444714 0.895672i \(-0.646695\pi\)
−0.444714 + 0.895672i \(0.646695\pi\)
\(788\) 24946.8 1.12778
\(789\) 13410.7 0.605110
\(790\) 1785.16 0.0803963
\(791\) 0 0
\(792\) −183.149 −0.00821708
\(793\) −39168.8 −1.75400
\(794\) −12428.5 −0.555505
\(795\) −6097.21 −0.272007
\(796\) 36234.1 1.61342
\(797\) −36758.6 −1.63370 −0.816848 0.576852i \(-0.804281\pi\)
−0.816848 + 0.576852i \(0.804281\pi\)
\(798\) 0 0
\(799\) −4834.69 −0.214066
\(800\) −20461.0 −0.904258
\(801\) 290.651 0.0128210
\(802\) 6385.70 0.281156
\(803\) 7976.36 0.350535
\(804\) −1034.06 −0.0453590
\(805\) 0 0
\(806\) −2104.88 −0.0919867
\(807\) −29101.9 −1.26944
\(808\) 15440.4 0.672267
\(809\) −8895.84 −0.386602 −0.193301 0.981140i \(-0.561919\pi\)
−0.193301 + 0.981140i \(0.561919\pi\)
\(810\) −1265.64 −0.0549012
\(811\) 9955.82 0.431068 0.215534 0.976496i \(-0.430851\pi\)
0.215534 + 0.976496i \(0.430851\pi\)
\(812\) 0 0
\(813\) −11352.8 −0.489740
\(814\) 833.862 0.0359052
\(815\) −2067.27 −0.0888508
\(816\) 2120.79 0.0909833
\(817\) −17213.7 −0.737126
\(818\) −13508.4 −0.577395
\(819\) 0 0
\(820\) −2003.58 −0.0853269
\(821\) −1460.65 −0.0620913 −0.0310457 0.999518i \(-0.509884\pi\)
−0.0310457 + 0.999518i \(0.509884\pi\)
\(822\) −10215.5 −0.433461
\(823\) −33331.3 −1.41173 −0.705866 0.708345i \(-0.749442\pi\)
−0.705866 + 0.708345i \(0.749442\pi\)
\(824\) −6188.67 −0.261642
\(825\) −7095.06 −0.299416
\(826\) 0 0
\(827\) 20877.9 0.877869 0.438934 0.898519i \(-0.355356\pi\)
0.438934 + 0.898519i \(0.355356\pi\)
\(828\) −276.627 −0.0116104
\(829\) −19886.9 −0.833171 −0.416586 0.909096i \(-0.636773\pi\)
−0.416586 + 0.909096i \(0.636773\pi\)
\(830\) −257.182 −0.0107553
\(831\) −25228.2 −1.05314
\(832\) −7889.84 −0.328763
\(833\) 0 0
\(834\) −4337.26 −0.180080
\(835\) −3309.35 −0.137155
\(836\) −8844.52 −0.365902
\(837\) −4426.85 −0.182813
\(838\) −17767.5 −0.732420
\(839\) 33409.9 1.37478 0.687388 0.726290i \(-0.258757\pi\)
0.687388 + 0.726290i \(0.258757\pi\)
\(840\) 0 0
\(841\) 52977.5 2.17219
\(842\) 7496.90 0.306841
\(843\) 14640.6 0.598160
\(844\) 14426.4 0.588362
\(845\) 3110.93 0.126650
\(846\) −476.438 −0.0193620
\(847\) 0 0
\(848\) 26814.3 1.08586
\(849\) 31610.4 1.27782
\(850\) 1432.80 0.0578171
\(851\) 2728.62 0.109913
\(852\) 27244.5 1.09552
\(853\) −15726.3 −0.631251 −0.315626 0.948884i \(-0.602214\pi\)
−0.315626 + 0.948884i \(0.602214\pi\)
\(854\) 0 0
\(855\) 193.677 0.00774693
\(856\) 19519.0 0.779374
\(857\) 24847.0 0.990383 0.495192 0.868784i \(-0.335098\pi\)
0.495192 + 0.868784i \(0.335098\pi\)
\(858\) 3944.17 0.156937
\(859\) −26765.4 −1.06312 −0.531562 0.847019i \(-0.678395\pi\)
−0.531562 + 0.847019i \(0.678395\pi\)
\(860\) −1763.21 −0.0699128
\(861\) 0 0
\(862\) −9637.64 −0.380811
\(863\) −3229.39 −0.127381 −0.0636905 0.997970i \(-0.520287\pi\)
−0.0636905 + 0.997970i \(0.520287\pi\)
\(864\) 23921.8 0.941939
\(865\) −4631.47 −0.182052
\(866\) −1986.42 −0.0779461
\(867\) 24431.2 0.957011
\(868\) 0 0
\(869\) −11260.8 −0.439582
\(870\) −2561.37 −0.0998146
\(871\) −1879.35 −0.0731108
\(872\) 30246.7 1.17463
\(873\) 1786.11 0.0692448
\(874\) 4819.02 0.186506
\(875\) 0 0
\(876\) −24472.9 −0.943906
\(877\) 6097.69 0.234783 0.117391 0.993086i \(-0.462547\pi\)
0.117391 + 0.993086i \(0.462547\pi\)
\(878\) 6688.98 0.257110
\(879\) 20397.2 0.782685
\(880\) −729.984 −0.0279634
\(881\) −29714.8 −1.13634 −0.568171 0.822910i \(-0.692349\pi\)
−0.568171 + 0.822910i \(0.692349\pi\)
\(882\) 0 0
\(883\) −7649.70 −0.291543 −0.145772 0.989318i \(-0.546566\pi\)
−0.145772 + 0.989318i \(0.546566\pi\)
\(884\) 4783.53 0.181999
\(885\) −78.1161 −0.00296705
\(886\) 12242.1 0.464201
\(887\) 28257.5 1.06967 0.534833 0.844958i \(-0.320374\pi\)
0.534833 + 0.844958i \(0.320374\pi\)
\(888\) −5542.87 −0.209467
\(889\) 0 0
\(890\) −518.640 −0.0195335
\(891\) 7983.66 0.300183
\(892\) −27747.2 −1.04153
\(893\) −49846.6 −1.86792
\(894\) −4053.28 −0.151635
\(895\) 7641.26 0.285384
\(896\) 0 0
\(897\) 12906.4 0.480414
\(898\) 14238.2 0.529103
\(899\) −8622.60 −0.319889
\(900\) −847.984 −0.0314068
\(901\) −7766.99 −0.287187
\(902\) −2104.43 −0.0776829
\(903\) 0 0
\(904\) 14168.4 0.521275
\(905\) −6969.49 −0.255993
\(906\) −20150.9 −0.738927
\(907\) 40378.4 1.47822 0.739108 0.673587i \(-0.235247\pi\)
0.739108 + 0.673587i \(0.235247\pi\)
\(908\) 19318.2 0.706055
\(909\) 984.455 0.0359211
\(910\) 0 0
\(911\) −14278.6 −0.519289 −0.259644 0.965704i \(-0.583605\pi\)
−0.259644 + 0.965704i \(0.583605\pi\)
\(912\) 21865.7 0.793911
\(913\) 1622.31 0.0588066
\(914\) −5065.28 −0.183309
\(915\) 5312.16 0.191928
\(916\) −37897.6 −1.36700
\(917\) 0 0
\(918\) −1675.14 −0.0602264
\(919\) −28188.0 −1.01179 −0.505895 0.862595i \(-0.668838\pi\)
−0.505895 + 0.862595i \(0.668838\pi\)
\(920\) 1069.42 0.0383237
\(921\) 10252.0 0.366790
\(922\) 6729.49 0.240373
\(923\) 49515.4 1.76579
\(924\) 0 0
\(925\) 8364.43 0.297320
\(926\) −5096.68 −0.180872
\(927\) −394.579 −0.0139802
\(928\) 46594.8 1.64822
\(929\) −29553.5 −1.04372 −0.521862 0.853030i \(-0.674763\pi\)
−0.521862 + 0.853030i \(0.674763\pi\)
\(930\) 285.469 0.0100655
\(931\) 0 0
\(932\) 11798.4 0.414668
\(933\) 25176.7 0.883438
\(934\) −559.863 −0.0196138
\(935\) 211.446 0.00739574
\(936\) 1021.29 0.0356643
\(937\) 10120.3 0.352845 0.176422 0.984315i \(-0.443548\pi\)
0.176422 + 0.984315i \(0.443548\pi\)
\(938\) 0 0
\(939\) −17165.3 −0.596558
\(940\) −5105.82 −0.177163
\(941\) 19374.2 0.671182 0.335591 0.942008i \(-0.391064\pi\)
0.335591 + 0.942008i \(0.391064\pi\)
\(942\) −3122.11 −0.107987
\(943\) −6886.27 −0.237803
\(944\) 343.539 0.0118445
\(945\) 0 0
\(946\) −1851.96 −0.0636496
\(947\) −3809.98 −0.130737 −0.0653685 0.997861i \(-0.520822\pi\)
−0.0653685 + 0.997861i \(0.520822\pi\)
\(948\) 34550.1 1.18369
\(949\) −44478.1 −1.52141
\(950\) 14772.4 0.504507
\(951\) 15347.0 0.523302
\(952\) 0 0
\(953\) −26227.8 −0.891501 −0.445750 0.895157i \(-0.647063\pi\)
−0.445750 + 0.895157i \(0.647063\pi\)
\(954\) −765.404 −0.0259758
\(955\) −3684.93 −0.124860
\(956\) −11271.0 −0.381308
\(957\) 16157.2 0.545755
\(958\) 11470.7 0.386848
\(959\) 0 0
\(960\) 1070.04 0.0359743
\(961\) 961.000 0.0322581
\(962\) −4649.81 −0.155838
\(963\) 1244.50 0.0416442
\(964\) 27817.9 0.929412
\(965\) −3054.33 −0.101888
\(966\) 0 0
\(967\) 18620.7 0.619236 0.309618 0.950861i \(-0.399799\pi\)
0.309618 + 0.950861i \(0.399799\pi\)
\(968\) 19071.4 0.633241
\(969\) −6333.58 −0.209973
\(970\) −3187.15 −0.105498
\(971\) −15203.3 −0.502468 −0.251234 0.967926i \(-0.580836\pi\)
−0.251234 + 0.967926i \(0.580836\pi\)
\(972\) 1946.99 0.0642488
\(973\) 0 0
\(974\) −1643.10 −0.0540538
\(975\) 39563.8 1.29954
\(976\) −23361.8 −0.766183
\(977\) 456.756 0.0149569 0.00747846 0.999972i \(-0.497620\pi\)
0.00747846 + 0.999972i \(0.497620\pi\)
\(978\) 6662.03 0.217820
\(979\) 3271.59 0.106803
\(980\) 0 0
\(981\) 1928.48 0.0627641
\(982\) −7161.79 −0.232731
\(983\) −17077.0 −0.554093 −0.277046 0.960857i \(-0.589356\pi\)
−0.277046 + 0.960857i \(0.589356\pi\)
\(984\) 13988.6 0.453193
\(985\) −6149.03 −0.198908
\(986\) −3262.83 −0.105385
\(987\) 0 0
\(988\) 49319.2 1.58811
\(989\) −6060.13 −0.194844
\(990\) 20.8371 0.000668935 0
\(991\) −20515.4 −0.657612 −0.328806 0.944397i \(-0.606646\pi\)
−0.328806 + 0.944397i \(0.606646\pi\)
\(992\) −5193.05 −0.166209
\(993\) −46039.3 −1.47131
\(994\) 0 0
\(995\) −8931.20 −0.284561
\(996\) −4977.52 −0.158352
\(997\) 17822.4 0.566139 0.283070 0.959099i \(-0.408647\pi\)
0.283070 + 0.959099i \(0.408647\pi\)
\(998\) 10183.0 0.322983
\(999\) −9779.18 −0.309709
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1519.4.a.h.1.13 23
7.6 odd 2 1519.4.a.i.1.13 yes 23
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1519.4.a.h.1.13 23 1.1 even 1 trivial
1519.4.a.i.1.13 yes 23 7.6 odd 2