gp: [N,k,chi] = [1519,4,Mod(1,1519)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1519, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1519.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [23,5,-6,91,-40]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(7\)
\( -1 \)
\(31\)
\( +1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1519))\):
\( T_{2}^{23} - 5 T_{2}^{22} - 125 T_{2}^{21} + 627 T_{2}^{20} + 6546 T_{2}^{19} - 33032 T_{2}^{18} + \cdots - 106186752 \)
T2^23 - 5*T2^22 - 125*T2^21 + 627*T2^20 + 6546*T2^19 - 33032*T2^18 - 187149*T2^17 + 955231*T2^16 + 3184753*T2^15 - 16622613*T2^14 - 32832763*T2^13 + 179378301*T2^12 + 197018388*T2^11 - 1192104314*T2^10 - 585647923*T2^9 + 4682142793*T2^8 + 204323280*T2^7 - 9933663452*T2^6 + 3091458832*T2^5 + 9165153184*T2^4 - 5461572672*T2^3 - 1108441792*T2^2 + 902267392*T2 - 106186752
\( T_{3}^{23} + 6 T_{3}^{22} - 398 T_{3}^{21} - 2288 T_{3}^{20} + 67412 T_{3}^{19} + 364180 T_{3}^{18} + \cdots + 3359484280832 \)
T3^23 + 6*T3^22 - 398*T3^21 - 2288*T3^20 + 67412*T3^19 + 364180*T3^18 - 6396232*T3^17 - 31729292*T3^16 + 375407049*T3^15 + 1660074842*T3^14 - 14167264706*T3^13 - 53607357360*T3^12 + 345607474823*T3^11 + 1051221937798*T3^10 - 5332905525192*T3^9 - 11688556847116*T3^8 + 49305105902587*T3^7 + 61599584776770*T3^6 - 243620634523892*T3^5 - 71660395915568*T3^4 + 472708393040480*T3^3 - 253073311846016*T3^2 + 6661477701632*T3 + 3359484280832