Properties

Label 1519.4.a.i.1.13
Level $1519$
Weight $4$
Character 1519.1
Self dual yes
Analytic conductor $89.624$
Analytic rank $0$
Dimension $23$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1519,4,Mod(1,1519)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1519, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1519.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1519 = 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1519.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [23,5,6,91,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.6239012987\)
Analytic rank: \(0\)
Dimension: \(23\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Character \(\chi\) \(=\) 1519.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.06861 q^{2} +5.09781 q^{3} -6.85807 q^{4} -1.69042 q^{5} +5.44757 q^{6} -15.8775 q^{8} -1.01232 q^{9} -1.80640 q^{10} -11.3948 q^{11} -34.9612 q^{12} -63.5400 q^{13} -8.61743 q^{15} +37.8978 q^{16} +10.9774 q^{17} -1.08178 q^{18} +113.179 q^{19} +11.5930 q^{20} -12.1766 q^{22} -39.8450 q^{23} -80.9404 q^{24} -122.142 q^{25} -67.8994 q^{26} -142.802 q^{27} +278.148 q^{29} -9.20866 q^{30} +31.0000 q^{31} +167.518 q^{32} -58.0884 q^{33} +11.7305 q^{34} +6.94258 q^{36} -68.4809 q^{37} +120.944 q^{38} -323.915 q^{39} +26.8396 q^{40} -172.827 q^{41} +152.093 q^{43} +78.1462 q^{44} +1.71125 q^{45} -42.5787 q^{46} -440.422 q^{47} +193.196 q^{48} -130.523 q^{50} +55.9607 q^{51} +435.762 q^{52} +707.544 q^{53} -152.599 q^{54} +19.2619 q^{55} +576.966 q^{57} +297.232 q^{58} -9.06489 q^{59} +59.0990 q^{60} +616.443 q^{61} +33.1269 q^{62} -124.171 q^{64} +107.409 q^{65} -62.0738 q^{66} -29.5775 q^{67} -75.2838 q^{68} -203.122 q^{69} +779.280 q^{71} +16.0731 q^{72} +700.002 q^{73} -73.1793 q^{74} -622.659 q^{75} -776.191 q^{76} -346.138 q^{78} +988.243 q^{79} -64.0631 q^{80} -700.643 q^{81} -184.684 q^{82} +142.373 q^{83} -18.5564 q^{85} +162.528 q^{86} +1417.95 q^{87} +180.920 q^{88} +287.113 q^{89} +1.82865 q^{90} +273.260 q^{92} +158.032 q^{93} -470.639 q^{94} -191.320 q^{95} +853.974 q^{96} +1764.37 q^{97} +11.5352 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 23 q + 5 q^{2} + 6 q^{3} + 91 q^{4} + 40 q^{5} + 36 q^{6} + 39 q^{8} + 211 q^{9} + 40 q^{10} + 44 q^{11} + 414 q^{12} - 20 q^{13} + 523 q^{16} + 306 q^{17} + 51 q^{18} + 296 q^{19} + 400 q^{20} - 326 q^{22}+ \cdots - 3456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06861 0.377810 0.188905 0.981995i \(-0.439506\pi\)
0.188905 + 0.981995i \(0.439506\pi\)
\(3\) 5.09781 0.981074 0.490537 0.871420i \(-0.336801\pi\)
0.490537 + 0.871420i \(0.336801\pi\)
\(4\) −6.85807 −0.857259
\(5\) −1.69042 −0.151196 −0.0755978 0.997138i \(-0.524086\pi\)
−0.0755978 + 0.997138i \(0.524086\pi\)
\(6\) 5.44757 0.370660
\(7\) 0 0
\(8\) −15.8775 −0.701692
\(9\) −1.01232 −0.0374934
\(10\) −1.80640 −0.0571232
\(11\) −11.3948 −0.312332 −0.156166 0.987731i \(-0.549913\pi\)
−0.156166 + 0.987731i \(0.549913\pi\)
\(12\) −34.9612 −0.841035
\(13\) −63.5400 −1.35560 −0.677801 0.735246i \(-0.737067\pi\)
−0.677801 + 0.735246i \(0.737067\pi\)
\(14\) 0 0
\(15\) −8.61743 −0.148334
\(16\) 37.8978 0.592153
\(17\) 10.9774 0.156612 0.0783061 0.996929i \(-0.475049\pi\)
0.0783061 + 0.996929i \(0.475049\pi\)
\(18\) −1.08178 −0.0141654
\(19\) 113.179 1.36658 0.683292 0.730145i \(-0.260548\pi\)
0.683292 + 0.730145i \(0.260548\pi\)
\(20\) 11.5930 0.129614
\(21\) 0 0
\(22\) −12.1766 −0.118002
\(23\) −39.8450 −0.361228 −0.180614 0.983554i \(-0.557809\pi\)
−0.180614 + 0.983554i \(0.557809\pi\)
\(24\) −80.9404 −0.688412
\(25\) −122.142 −0.977140
\(26\) −67.8994 −0.512160
\(27\) −142.802 −1.01786
\(28\) 0 0
\(29\) 278.148 1.78106 0.890532 0.454921i \(-0.150332\pi\)
0.890532 + 0.454921i \(0.150332\pi\)
\(30\) −9.20866 −0.0560421
\(31\) 31.0000 0.179605
\(32\) 167.518 0.925413
\(33\) −58.0884 −0.306421
\(34\) 11.7305 0.0591697
\(35\) 0 0
\(36\) 6.94258 0.0321416
\(37\) −68.4809 −0.304275 −0.152138 0.988359i \(-0.548616\pi\)
−0.152138 + 0.988359i \(0.548616\pi\)
\(38\) 120.944 0.516309
\(39\) −323.915 −1.32995
\(40\) 26.8396 0.106093
\(41\) −172.827 −0.658316 −0.329158 0.944275i \(-0.606765\pi\)
−0.329158 + 0.944275i \(0.606765\pi\)
\(42\) 0 0
\(43\) 152.093 0.539393 0.269697 0.962945i \(-0.413077\pi\)
0.269697 + 0.962945i \(0.413077\pi\)
\(44\) 78.1462 0.267750
\(45\) 1.71125 0.00566883
\(46\) −42.5787 −0.136476
\(47\) −440.422 −1.36685 −0.683427 0.730018i \(-0.739511\pi\)
−0.683427 + 0.730018i \(0.739511\pi\)
\(48\) 193.196 0.580946
\(49\) 0 0
\(50\) −130.523 −0.369174
\(51\) 55.9607 0.153648
\(52\) 435.762 1.16210
\(53\) 707.544 1.83375 0.916874 0.399177i \(-0.130704\pi\)
0.916874 + 0.399177i \(0.130704\pi\)
\(54\) −152.599 −0.384557
\(55\) 19.2619 0.0472232
\(56\) 0 0
\(57\) 576.966 1.34072
\(58\) 297.232 0.672904
\(59\) −9.06489 −0.0200025 −0.0100013 0.999950i \(-0.503184\pi\)
−0.0100013 + 0.999950i \(0.503184\pi\)
\(60\) 59.0990 0.127161
\(61\) 616.443 1.29389 0.646947 0.762535i \(-0.276046\pi\)
0.646947 + 0.762535i \(0.276046\pi\)
\(62\) 33.1269 0.0678567
\(63\) 0 0
\(64\) −124.171 −0.242522
\(65\) 107.409 0.204961
\(66\) −62.0738 −0.115769
\(67\) −29.5775 −0.0539323 −0.0269662 0.999636i \(-0.508585\pi\)
−0.0269662 + 0.999636i \(0.508585\pi\)
\(68\) −75.2838 −0.134257
\(69\) −203.122 −0.354392
\(70\) 0 0
\(71\) 779.280 1.30258 0.651292 0.758827i \(-0.274227\pi\)
0.651292 + 0.758827i \(0.274227\pi\)
\(72\) 16.0731 0.0263088
\(73\) 700.002 1.12232 0.561158 0.827709i \(-0.310356\pi\)
0.561158 + 0.827709i \(0.310356\pi\)
\(74\) −73.1793 −0.114958
\(75\) −622.659 −0.958647
\(76\) −776.191 −1.17152
\(77\) 0 0
\(78\) −346.138 −0.502467
\(79\) 988.243 1.40742 0.703709 0.710488i \(-0.251526\pi\)
0.703709 + 0.710488i \(0.251526\pi\)
\(80\) −64.0631 −0.0895309
\(81\) −700.643 −0.961101
\(82\) −184.684 −0.248719
\(83\) 142.373 0.188282 0.0941412 0.995559i \(-0.469989\pi\)
0.0941412 + 0.995559i \(0.469989\pi\)
\(84\) 0 0
\(85\) −18.5564 −0.0236791
\(86\) 162.528 0.203788
\(87\) 1417.95 1.74736
\(88\) 180.920 0.219161
\(89\) 287.113 0.341954 0.170977 0.985275i \(-0.445308\pi\)
0.170977 + 0.985275i \(0.445308\pi\)
\(90\) 1.82865 0.00214174
\(91\) 0 0
\(92\) 273.260 0.309666
\(93\) 158.032 0.176206
\(94\) −470.639 −0.516412
\(95\) −191.320 −0.206621
\(96\) 853.974 0.907899
\(97\) 1764.37 1.84685 0.923427 0.383775i \(-0.125376\pi\)
0.923427 + 0.383775i \(0.125376\pi\)
\(98\) 0 0
\(99\) 11.5352 0.0117104
\(100\) 837.662 0.837662
\(101\) 972.472 0.958066 0.479033 0.877797i \(-0.340988\pi\)
0.479033 + 0.877797i \(0.340988\pi\)
\(102\) 59.8001 0.0580499
\(103\) −389.777 −0.372872 −0.186436 0.982467i \(-0.559694\pi\)
−0.186436 + 0.982467i \(0.559694\pi\)
\(104\) 1008.85 0.951215
\(105\) 0 0
\(106\) 756.088 0.692809
\(107\) −1229.35 −1.11071 −0.555354 0.831614i \(-0.687417\pi\)
−0.555354 + 0.831614i \(0.687417\pi\)
\(108\) 979.344 0.872568
\(109\) −1905.00 −1.67400 −0.837002 0.547200i \(-0.815694\pi\)
−0.837002 + 0.547200i \(0.815694\pi\)
\(110\) 20.5835 0.0178414
\(111\) −349.103 −0.298517
\(112\) 0 0
\(113\) −892.356 −0.742883 −0.371441 0.928456i \(-0.621136\pi\)
−0.371441 + 0.928456i \(0.621136\pi\)
\(114\) 616.551 0.506538
\(115\) 67.3547 0.0546161
\(116\) −1907.56 −1.52683
\(117\) 64.3229 0.0508261
\(118\) −9.68683 −0.00755716
\(119\) 0 0
\(120\) 136.823 0.104085
\(121\) −1201.16 −0.902449
\(122\) 658.737 0.488846
\(123\) −881.037 −0.645857
\(124\) −212.600 −0.153968
\(125\) 417.774 0.298935
\(126\) 0 0
\(127\) 492.761 0.344295 0.172147 0.985071i \(-0.444929\pi\)
0.172147 + 0.985071i \(0.444929\pi\)
\(128\) −1472.83 −1.01704
\(129\) 775.339 0.529185
\(130\) 114.778 0.0774364
\(131\) −1025.67 −0.684071 −0.342036 0.939687i \(-0.611116\pi\)
−0.342036 + 0.939687i \(0.611116\pi\)
\(132\) 398.375 0.262682
\(133\) 0 0
\(134\) −31.6068 −0.0203762
\(135\) 241.394 0.153896
\(136\) −174.293 −0.109894
\(137\) 1875.23 1.16943 0.584715 0.811238i \(-0.301206\pi\)
0.584715 + 0.811238i \(0.301206\pi\)
\(138\) −217.058 −0.133893
\(139\) −796.182 −0.485837 −0.242918 0.970047i \(-0.578105\pi\)
−0.242918 + 0.970047i \(0.578105\pi\)
\(140\) 0 0
\(141\) −2245.19 −1.34099
\(142\) 832.746 0.492130
\(143\) 724.024 0.423398
\(144\) −38.3647 −0.0222018
\(145\) −470.187 −0.269289
\(146\) 748.028 0.424022
\(147\) 0 0
\(148\) 469.647 0.260843
\(149\) 744.054 0.409096 0.204548 0.978857i \(-0.434428\pi\)
0.204548 + 0.978857i \(0.434428\pi\)
\(150\) −665.379 −0.362187
\(151\) 3699.06 1.99354 0.996772 0.0802822i \(-0.0255822\pi\)
0.996772 + 0.0802822i \(0.0255822\pi\)
\(152\) −1797.00 −0.958920
\(153\) −11.1126 −0.00587192
\(154\) 0 0
\(155\) −52.4029 −0.0271555
\(156\) 2221.43 1.14011
\(157\) −573.120 −0.291337 −0.145669 0.989333i \(-0.546533\pi\)
−0.145669 + 0.989333i \(0.546533\pi\)
\(158\) 1056.05 0.531737
\(159\) 3606.92 1.79904
\(160\) −283.175 −0.139918
\(161\) 0 0
\(162\) −748.713 −0.363114
\(163\) −1222.94 −0.587655 −0.293827 0.955858i \(-0.594929\pi\)
−0.293827 + 0.955858i \(0.594929\pi\)
\(164\) 1185.26 0.564348
\(165\) 98.1936 0.0463295
\(166\) 152.141 0.0711350
\(167\) 1957.71 0.907139 0.453570 0.891221i \(-0.350150\pi\)
0.453570 + 0.891221i \(0.350150\pi\)
\(168\) 0 0
\(169\) 1840.33 0.837656
\(170\) −19.8295 −0.00894620
\(171\) −114.574 −0.0512378
\(172\) −1043.06 −0.462400
\(173\) 2739.84 1.20408 0.602041 0.798465i \(-0.294354\pi\)
0.602041 + 0.798465i \(0.294354\pi\)
\(174\) 1515.23 0.660169
\(175\) 0 0
\(176\) −431.837 −0.184948
\(177\) −46.2111 −0.0196240
\(178\) 306.812 0.129194
\(179\) 4520.34 1.88752 0.943760 0.330632i \(-0.107262\pi\)
0.943760 + 0.330632i \(0.107262\pi\)
\(180\) −11.7359 −0.00485966
\(181\) 4122.94 1.69312 0.846562 0.532290i \(-0.178668\pi\)
0.846562 + 0.532290i \(0.178668\pi\)
\(182\) 0 0
\(183\) 3142.51 1.26941
\(184\) 632.638 0.253471
\(185\) 115.761 0.0460051
\(186\) 168.875 0.0665725
\(187\) −125.085 −0.0489150
\(188\) 3020.45 1.17175
\(189\) 0 0
\(190\) −204.446 −0.0780637
\(191\) −2179.90 −0.825820 −0.412910 0.910772i \(-0.635488\pi\)
−0.412910 + 0.910772i \(0.635488\pi\)
\(192\) −633.002 −0.237932
\(193\) −1806.85 −0.673884 −0.336942 0.941525i \(-0.609393\pi\)
−0.336942 + 0.941525i \(0.609393\pi\)
\(194\) 1885.42 0.697760
\(195\) 547.551 0.201082
\(196\) 0 0
\(197\) −3637.58 −1.31557 −0.657784 0.753207i \(-0.728506\pi\)
−0.657784 + 0.753207i \(0.728506\pi\)
\(198\) 12.3266 0.00442431
\(199\) 5283.43 1.88207 0.941036 0.338306i \(-0.109854\pi\)
0.941036 + 0.338306i \(0.109854\pi\)
\(200\) 1939.31 0.685651
\(201\) −150.780 −0.0529116
\(202\) 1039.19 0.361967
\(203\) 0 0
\(204\) −383.782 −0.131716
\(205\) 292.149 0.0995345
\(206\) −416.519 −0.140875
\(207\) 40.3359 0.0135437
\(208\) −2408.02 −0.802723
\(209\) −1289.65 −0.426828
\(210\) 0 0
\(211\) −2103.57 −0.686329 −0.343165 0.939275i \(-0.611499\pi\)
−0.343165 + 0.939275i \(0.611499\pi\)
\(212\) −4852.39 −1.57200
\(213\) 3972.62 1.27793
\(214\) −1313.69 −0.419637
\(215\) −257.100 −0.0815538
\(216\) 2267.33 0.714223
\(217\) 0 0
\(218\) −2035.71 −0.632456
\(219\) 3568.48 1.10107
\(220\) −132.100 −0.0404825
\(221\) −697.503 −0.212304
\(222\) −373.054 −0.112783
\(223\) −4045.91 −1.21495 −0.607476 0.794338i \(-0.707818\pi\)
−0.607476 + 0.794338i \(0.707818\pi\)
\(224\) 0 0
\(225\) 123.647 0.0366363
\(226\) −953.580 −0.280669
\(227\) 2816.86 0.823619 0.411810 0.911270i \(-0.364897\pi\)
0.411810 + 0.911270i \(0.364897\pi\)
\(228\) −3956.88 −1.14934
\(229\) −5525.98 −1.59462 −0.797308 0.603572i \(-0.793744\pi\)
−0.797308 + 0.603572i \(0.793744\pi\)
\(230\) 71.9758 0.0206345
\(231\) 0 0
\(232\) −4416.29 −1.24976
\(233\) −1720.37 −0.483713 −0.241857 0.970312i \(-0.577756\pi\)
−0.241857 + 0.970312i \(0.577756\pi\)
\(234\) 68.7360 0.0192026
\(235\) 744.497 0.206662
\(236\) 62.1677 0.0171473
\(237\) 5037.88 1.38078
\(238\) 0 0
\(239\) 1643.46 0.444798 0.222399 0.974956i \(-0.428611\pi\)
0.222399 + 0.974956i \(0.428611\pi\)
\(240\) −326.581 −0.0878364
\(241\) 4056.22 1.08417 0.542083 0.840325i \(-0.317636\pi\)
0.542083 + 0.840325i \(0.317636\pi\)
\(242\) −1283.57 −0.340954
\(243\) 283.898 0.0749467
\(244\) −4227.61 −1.10920
\(245\) 0 0
\(246\) −941.484 −0.244012
\(247\) −7191.40 −1.85254
\(248\) −492.202 −0.126028
\(249\) 725.789 0.184719
\(250\) 446.437 0.112941
\(251\) 6943.08 1.74599 0.872995 0.487730i \(-0.162175\pi\)
0.872995 + 0.487730i \(0.162175\pi\)
\(252\) 0 0
\(253\) 454.025 0.112823
\(254\) 526.569 0.130078
\(255\) −94.5969 −0.0232309
\(256\) −580.511 −0.141726
\(257\) −5267.21 −1.27844 −0.639221 0.769023i \(-0.720743\pi\)
−0.639221 + 0.769023i \(0.720743\pi\)
\(258\) 828.535 0.199931
\(259\) 0 0
\(260\) −736.620 −0.175705
\(261\) −281.576 −0.0667781
\(262\) −1096.04 −0.258449
\(263\) −2630.67 −0.616784 −0.308392 0.951259i \(-0.599791\pi\)
−0.308392 + 0.951259i \(0.599791\pi\)
\(264\) 922.297 0.215013
\(265\) −1196.04 −0.277254
\(266\) 0 0
\(267\) 1463.65 0.335482
\(268\) 202.845 0.0462340
\(269\) −5708.71 −1.29393 −0.646963 0.762522i \(-0.723961\pi\)
−0.646963 + 0.762522i \(0.723961\pi\)
\(270\) 257.956 0.0581433
\(271\) −2226.99 −0.499188 −0.249594 0.968351i \(-0.580297\pi\)
−0.249594 + 0.968351i \(0.580297\pi\)
\(272\) 416.019 0.0927384
\(273\) 0 0
\(274\) 2003.89 0.441823
\(275\) 1391.79 0.305192
\(276\) 1393.03 0.303806
\(277\) 4948.83 1.07345 0.536726 0.843757i \(-0.319661\pi\)
0.536726 + 0.843757i \(0.319661\pi\)
\(278\) −850.807 −0.183554
\(279\) −31.3820 −0.00673401
\(280\) 0 0
\(281\) −2871.94 −0.609699 −0.304850 0.952401i \(-0.598606\pi\)
−0.304850 + 0.952401i \(0.598606\pi\)
\(282\) −2399.23 −0.506638
\(283\) 6200.78 1.30247 0.651233 0.758878i \(-0.274252\pi\)
0.651233 + 0.758878i \(0.274252\pi\)
\(284\) −5344.36 −1.11665
\(285\) −975.314 −0.202711
\(286\) 773.698 0.159964
\(287\) 0 0
\(288\) −169.582 −0.0346969
\(289\) −4792.50 −0.975473
\(290\) −502.446 −0.101740
\(291\) 8994.43 1.81190
\(292\) −4800.66 −0.962115
\(293\) 4001.17 0.797784 0.398892 0.916998i \(-0.369395\pi\)
0.398892 + 0.916998i \(0.369395\pi\)
\(294\) 0 0
\(295\) 15.3235 0.00302429
\(296\) 1087.30 0.213508
\(297\) 1627.19 0.317910
\(298\) 795.103 0.154561
\(299\) 2531.75 0.489682
\(300\) 4270.24 0.821809
\(301\) 0 0
\(302\) 3952.85 0.753182
\(303\) 4957.48 0.939933
\(304\) 4289.24 0.809226
\(305\) −1042.05 −0.195631
\(306\) −11.8751 −0.00221847
\(307\) 2011.05 0.373866 0.186933 0.982373i \(-0.440145\pi\)
0.186933 + 0.982373i \(0.440145\pi\)
\(308\) 0 0
\(309\) −1987.01 −0.365815
\(310\) −55.9983 −0.0102596
\(311\) 4938.73 0.900481 0.450240 0.892907i \(-0.351338\pi\)
0.450240 + 0.892907i \(0.351338\pi\)
\(312\) 5142.95 0.933212
\(313\) −3367.19 −0.608066 −0.304033 0.952661i \(-0.598333\pi\)
−0.304033 + 0.952661i \(0.598333\pi\)
\(314\) −612.441 −0.110070
\(315\) 0 0
\(316\) −6777.45 −1.20652
\(317\) −3010.50 −0.533397 −0.266698 0.963780i \(-0.585933\pi\)
−0.266698 + 0.963780i \(0.585933\pi\)
\(318\) 3854.39 0.679697
\(319\) −3169.44 −0.556283
\(320\) 209.901 0.0366683
\(321\) −6266.99 −1.08969
\(322\) 0 0
\(323\) 1242.41 0.214024
\(324\) 4805.06 0.823913
\(325\) 7760.93 1.32461
\(326\) −1306.84 −0.222022
\(327\) −9711.35 −1.64232
\(328\) 2744.05 0.461935
\(329\) 0 0
\(330\) 104.931 0.0175038
\(331\) 9031.19 1.49970 0.749848 0.661610i \(-0.230127\pi\)
0.749848 + 0.661610i \(0.230127\pi\)
\(332\) −976.403 −0.161407
\(333\) 69.3247 0.0114083
\(334\) 2092.03 0.342727
\(335\) 49.9983 0.00815433
\(336\) 0 0
\(337\) 1908.11 0.308432 0.154216 0.988037i \(-0.450715\pi\)
0.154216 + 0.988037i \(0.450715\pi\)
\(338\) 1966.59 0.316475
\(339\) −4549.06 −0.728823
\(340\) 127.261 0.0202991
\(341\) −353.238 −0.0560965
\(342\) −122.435 −0.0193582
\(343\) 0 0
\(344\) −2414.85 −0.378488
\(345\) 343.361 0.0535825
\(346\) 2927.82 0.454915
\(347\) −7424.64 −1.14863 −0.574316 0.818634i \(-0.694732\pi\)
−0.574316 + 0.818634i \(0.694732\pi\)
\(348\) −9724.39 −1.49794
\(349\) 4224.58 0.647956 0.323978 0.946065i \(-0.394980\pi\)
0.323978 + 0.946065i \(0.394980\pi\)
\(350\) 0 0
\(351\) 9073.61 1.37981
\(352\) −1908.83 −0.289036
\(353\) −728.325 −0.109815 −0.0549077 0.998491i \(-0.517486\pi\)
−0.0549077 + 0.998491i \(0.517486\pi\)
\(354\) −49.3816 −0.00741413
\(355\) −1317.31 −0.196945
\(356\) −1969.04 −0.293143
\(357\) 0 0
\(358\) 4830.47 0.713124
\(359\) −1968.81 −0.289443 −0.144721 0.989472i \(-0.546229\pi\)
−0.144721 + 0.989472i \(0.546229\pi\)
\(360\) −27.1703 −0.00397777
\(361\) 5950.53 0.867550
\(362\) 4405.81 0.639680
\(363\) −6123.28 −0.885369
\(364\) 0 0
\(365\) −1183.30 −0.169689
\(366\) 3358.12 0.479595
\(367\) −9924.61 −1.41161 −0.705805 0.708407i \(-0.749414\pi\)
−0.705805 + 0.708407i \(0.749414\pi\)
\(368\) −1510.04 −0.213902
\(369\) 174.956 0.0246825
\(370\) 123.704 0.0173812
\(371\) 0 0
\(372\) −1083.80 −0.151054
\(373\) −7273.60 −1.00968 −0.504842 0.863211i \(-0.668449\pi\)
−0.504842 + 0.863211i \(0.668449\pi\)
\(374\) −133.667 −0.0184806
\(375\) 2129.73 0.293277
\(376\) 6992.79 0.959111
\(377\) −17673.5 −2.41441
\(378\) 0 0
\(379\) 6423.61 0.870603 0.435302 0.900285i \(-0.356642\pi\)
0.435302 + 0.900285i \(0.356642\pi\)
\(380\) 1312.09 0.177128
\(381\) 2512.00 0.337779
\(382\) −2329.46 −0.312003
\(383\) −9574.31 −1.27735 −0.638674 0.769477i \(-0.720517\pi\)
−0.638674 + 0.769477i \(0.720517\pi\)
\(384\) −7508.22 −0.997792
\(385\) 0 0
\(386\) −1930.81 −0.254601
\(387\) −153.967 −0.0202237
\(388\) −12100.2 −1.58323
\(389\) 4410.16 0.574817 0.287408 0.957808i \(-0.407206\pi\)
0.287408 + 0.957808i \(0.407206\pi\)
\(390\) 585.118 0.0759708
\(391\) −437.394 −0.0565728
\(392\) 0 0
\(393\) −5228.68 −0.671124
\(394\) −3887.15 −0.497035
\(395\) −1670.54 −0.212795
\(396\) −79.1091 −0.0100388
\(397\) 11630.5 1.47033 0.735163 0.677890i \(-0.237105\pi\)
0.735163 + 0.677890i \(0.237105\pi\)
\(398\) 5645.92 0.711066
\(399\) 0 0
\(400\) −4628.93 −0.578616
\(401\) 5975.71 0.744172 0.372086 0.928198i \(-0.378643\pi\)
0.372086 + 0.928198i \(0.378643\pi\)
\(402\) −161.125 −0.0199906
\(403\) −1969.74 −0.243473
\(404\) −6669.29 −0.821311
\(405\) 1184.38 0.145314
\(406\) 0 0
\(407\) 780.324 0.0950350
\(408\) −888.514 −0.107814
\(409\) 12641.1 1.52827 0.764133 0.645058i \(-0.223167\pi\)
0.764133 + 0.645058i \(0.223167\pi\)
\(410\) 312.193 0.0376052
\(411\) 9559.59 1.14730
\(412\) 2673.12 0.319648
\(413\) 0 0
\(414\) 43.1033 0.00511694
\(415\) −240.669 −0.0284675
\(416\) −10644.1 −1.25449
\(417\) −4058.79 −0.476642
\(418\) −1378.13 −0.161260
\(419\) 16626.8 1.93859 0.969296 0.245896i \(-0.0790820\pi\)
0.969296 + 0.245896i \(0.0790820\pi\)
\(420\) 0 0
\(421\) 7015.57 0.812157 0.406078 0.913838i \(-0.366896\pi\)
0.406078 + 0.913838i \(0.366896\pi\)
\(422\) −2247.89 −0.259302
\(423\) 445.849 0.0512480
\(424\) −11234.0 −1.28673
\(425\) −1340.81 −0.153032
\(426\) 4245.18 0.482816
\(427\) 0 0
\(428\) 8430.97 0.952164
\(429\) 3690.94 0.415385
\(430\) −274.739 −0.0308119
\(431\) −9018.86 −1.00794 −0.503971 0.863720i \(-0.668128\pi\)
−0.503971 + 0.863720i \(0.668128\pi\)
\(432\) −5411.86 −0.602728
\(433\) 1858.88 0.206310 0.103155 0.994665i \(-0.467106\pi\)
0.103155 + 0.994665i \(0.467106\pi\)
\(434\) 0 0
\(435\) −2396.92 −0.264192
\(436\) 13064.7 1.43505
\(437\) −4509.62 −0.493649
\(438\) 3813.31 0.415997
\(439\) −6259.52 −0.680525 −0.340263 0.940330i \(-0.610516\pi\)
−0.340263 + 0.940330i \(0.610516\pi\)
\(440\) −305.831 −0.0331361
\(441\) 0 0
\(442\) −745.358 −0.0802106
\(443\) 11456.1 1.22866 0.614331 0.789048i \(-0.289426\pi\)
0.614331 + 0.789048i \(0.289426\pi\)
\(444\) 2394.17 0.255906
\(445\) −485.341 −0.0517019
\(446\) −4323.50 −0.459022
\(447\) 3793.05 0.401353
\(448\) 0 0
\(449\) 13324.0 1.40045 0.700223 0.713924i \(-0.253084\pi\)
0.700223 + 0.713924i \(0.253084\pi\)
\(450\) 132.131 0.0138416
\(451\) 1969.32 0.205613
\(452\) 6119.84 0.636843
\(453\) 18857.1 1.95581
\(454\) 3010.12 0.311172
\(455\) 0 0
\(456\) −9160.76 −0.940772
\(457\) −4740.07 −0.485189 −0.242594 0.970128i \(-0.577998\pi\)
−0.242594 + 0.970128i \(0.577998\pi\)
\(458\) −5905.12 −0.602463
\(459\) −1567.59 −0.159409
\(460\) −461.923 −0.0468202
\(461\) −6297.43 −0.636226 −0.318113 0.948053i \(-0.603049\pi\)
−0.318113 + 0.948053i \(0.603049\pi\)
\(462\) 0 0
\(463\) −4769.45 −0.478737 −0.239368 0.970929i \(-0.576940\pi\)
−0.239368 + 0.970929i \(0.576940\pi\)
\(464\) 10541.2 1.05466
\(465\) −267.140 −0.0266416
\(466\) −1838.40 −0.182752
\(467\) 523.918 0.0519144 0.0259572 0.999663i \(-0.491737\pi\)
0.0259572 + 0.999663i \(0.491737\pi\)
\(468\) −441.131 −0.0435711
\(469\) 0 0
\(470\) 795.577 0.0780792
\(471\) −2921.66 −0.285823
\(472\) 143.928 0.0140356
\(473\) −1733.06 −0.168470
\(474\) 5383.52 0.521674
\(475\) −13824.0 −1.33534
\(476\) 0 0
\(477\) −716.262 −0.0687534
\(478\) 1756.22 0.168049
\(479\) −10734.2 −1.02392 −0.511960 0.859009i \(-0.671081\pi\)
−0.511960 + 0.859009i \(0.671081\pi\)
\(480\) −1443.57 −0.137270
\(481\) 4351.28 0.412476
\(482\) 4334.51 0.409609
\(483\) 0 0
\(484\) 8237.64 0.773633
\(485\) −2982.52 −0.279236
\(486\) 303.376 0.0283157
\(487\) −1537.61 −0.143071 −0.0715357 0.997438i \(-0.522790\pi\)
−0.0715357 + 0.997438i \(0.522790\pi\)
\(488\) −9787.56 −0.907914
\(489\) −6234.30 −0.576533
\(490\) 0 0
\(491\) −6701.98 −0.616000 −0.308000 0.951386i \(-0.599660\pi\)
−0.308000 + 0.951386i \(0.599660\pi\)
\(492\) 6042.22 0.553667
\(493\) 3053.34 0.278936
\(494\) −7684.80 −0.699910
\(495\) −19.4993 −0.00177056
\(496\) 1174.83 0.106354
\(497\) 0 0
\(498\) 775.585 0.0697888
\(499\) 9529.20 0.854881 0.427440 0.904044i \(-0.359415\pi\)
0.427440 + 0.904044i \(0.359415\pi\)
\(500\) −2865.13 −0.256265
\(501\) 9980.04 0.889971
\(502\) 7419.44 0.659653
\(503\) −5089.01 −0.451108 −0.225554 0.974231i \(-0.572419\pi\)
−0.225554 + 0.974231i \(0.572419\pi\)
\(504\) 0 0
\(505\) −1643.88 −0.144855
\(506\) 485.175 0.0426258
\(507\) 9381.65 0.821803
\(508\) −3379.39 −0.295150
\(509\) −20343.6 −1.77154 −0.885769 0.464127i \(-0.846368\pi\)
−0.885769 + 0.464127i \(0.846368\pi\)
\(510\) −101.087 −0.00877689
\(511\) 0 0
\(512\) 11162.3 0.963495
\(513\) −16162.2 −1.39099
\(514\) −5628.59 −0.483009
\(515\) 658.886 0.0563766
\(516\) −5317.33 −0.453648
\(517\) 5018.51 0.426913
\(518\) 0 0
\(519\) 13967.2 1.18129
\(520\) −1705.39 −0.143819
\(521\) −3059.55 −0.257277 −0.128638 0.991692i \(-0.541061\pi\)
−0.128638 + 0.991692i \(0.541061\pi\)
\(522\) −300.894 −0.0252295
\(523\) 7266.06 0.607500 0.303750 0.952752i \(-0.401761\pi\)
0.303750 + 0.952752i \(0.401761\pi\)
\(524\) 7034.13 0.586426
\(525\) 0 0
\(526\) −2811.16 −0.233027
\(527\) 340.299 0.0281284
\(528\) −2201.42 −0.181448
\(529\) −10579.4 −0.869514
\(530\) −1278.10 −0.104750
\(531\) 9.17659 0.000749962 0
\(532\) 0 0
\(533\) 10981.4 0.892415
\(534\) 1564.07 0.126749
\(535\) 2078.11 0.167934
\(536\) 469.616 0.0378439
\(537\) 23043.8 1.85180
\(538\) −6100.37 −0.488858
\(539\) 0 0
\(540\) −1655.50 −0.131928
\(541\) −5752.04 −0.457116 −0.228558 0.973530i \(-0.573401\pi\)
−0.228558 + 0.973530i \(0.573401\pi\)
\(542\) −2379.78 −0.188598
\(543\) 21018.0 1.66108
\(544\) 1838.91 0.144931
\(545\) 3220.25 0.253102
\(546\) 0 0
\(547\) −10824.1 −0.846075 −0.423037 0.906112i \(-0.639036\pi\)
−0.423037 + 0.906112i \(0.639036\pi\)
\(548\) −12860.5 −1.00251
\(549\) −624.039 −0.0485124
\(550\) 1487.28 0.115305
\(551\) 31480.6 2.43397
\(552\) 3225.07 0.248674
\(553\) 0 0
\(554\) 5288.36 0.405561
\(555\) 590.129 0.0451344
\(556\) 5460.28 0.416488
\(557\) −1717.55 −0.130656 −0.0653278 0.997864i \(-0.520809\pi\)
−0.0653278 + 0.997864i \(0.520809\pi\)
\(558\) −33.5351 −0.00254418
\(559\) −9663.96 −0.731202
\(560\) 0 0
\(561\) −637.659 −0.0479893
\(562\) −3068.98 −0.230351
\(563\) −7436.84 −0.556706 −0.278353 0.960479i \(-0.589788\pi\)
−0.278353 + 0.960479i \(0.589788\pi\)
\(564\) 15397.7 1.14957
\(565\) 1508.45 0.112321
\(566\) 6626.21 0.492085
\(567\) 0 0
\(568\) −12373.0 −0.914013
\(569\) −10663.6 −0.785658 −0.392829 0.919611i \(-0.628504\pi\)
−0.392829 + 0.919611i \(0.628504\pi\)
\(570\) −1042.23 −0.0765863
\(571\) 3526.22 0.258438 0.129219 0.991616i \(-0.458753\pi\)
0.129219 + 0.991616i \(0.458753\pi\)
\(572\) −4965.41 −0.362962
\(573\) −11112.7 −0.810191
\(574\) 0 0
\(575\) 4866.77 0.352971
\(576\) 125.701 0.00909298
\(577\) −8391.90 −0.605476 −0.302738 0.953074i \(-0.597901\pi\)
−0.302738 + 0.953074i \(0.597901\pi\)
\(578\) −5121.31 −0.368544
\(579\) −9210.96 −0.661131
\(580\) 3224.58 0.230850
\(581\) 0 0
\(582\) 9611.53 0.684555
\(583\) −8062.30 −0.572738
\(584\) −11114.3 −0.787519
\(585\) −108.733 −0.00768468
\(586\) 4275.68 0.301411
\(587\) −6802.34 −0.478301 −0.239150 0.970983i \(-0.576869\pi\)
−0.239150 + 0.970983i \(0.576869\pi\)
\(588\) 0 0
\(589\) 3508.55 0.245446
\(590\) 16.3748 0.00114261
\(591\) −18543.7 −1.29067
\(592\) −2595.27 −0.180178
\(593\) 13527.4 0.936771 0.468385 0.883524i \(-0.344836\pi\)
0.468385 + 0.883524i \(0.344836\pi\)
\(594\) 1738.83 0.120110
\(595\) 0 0
\(596\) −5102.78 −0.350701
\(597\) 26933.9 1.84645
\(598\) 2705.45 0.185007
\(599\) 10633.4 0.725323 0.362662 0.931921i \(-0.381868\pi\)
0.362662 + 0.931921i \(0.381868\pi\)
\(600\) 9886.26 0.672675
\(601\) −14943.1 −1.01421 −0.507105 0.861884i \(-0.669284\pi\)
−0.507105 + 0.861884i \(0.669284\pi\)
\(602\) 0 0
\(603\) 29.9419 0.00202211
\(604\) −25368.4 −1.70898
\(605\) 2030.46 0.136446
\(606\) 5297.61 0.355117
\(607\) −2596.39 −0.173615 −0.0868076 0.996225i \(-0.527667\pi\)
−0.0868076 + 0.996225i \(0.527667\pi\)
\(608\) 18959.5 1.26465
\(609\) 0 0
\(610\) −1113.54 −0.0739114
\(611\) 27984.4 1.85291
\(612\) 76.2114 0.00503376
\(613\) −6716.68 −0.442552 −0.221276 0.975211i \(-0.571022\pi\)
−0.221276 + 0.975211i \(0.571022\pi\)
\(614\) 2149.03 0.141250
\(615\) 1489.32 0.0976507
\(616\) 0 0
\(617\) 10466.6 0.682934 0.341467 0.939894i \(-0.389076\pi\)
0.341467 + 0.939894i \(0.389076\pi\)
\(618\) −2123.34 −0.138209
\(619\) 4068.02 0.264148 0.132074 0.991240i \(-0.457836\pi\)
0.132074 + 0.991240i \(0.457836\pi\)
\(620\) 359.383 0.0232793
\(621\) 5689.92 0.367679
\(622\) 5277.57 0.340211
\(623\) 0 0
\(624\) −12275.7 −0.787531
\(625\) 14561.6 0.931942
\(626\) −3598.21 −0.229734
\(627\) −6574.40 −0.418750
\(628\) 3930.50 0.249751
\(629\) −751.742 −0.0476533
\(630\) 0 0
\(631\) 4589.57 0.289553 0.144776 0.989464i \(-0.453754\pi\)
0.144776 + 0.989464i \(0.453754\pi\)
\(632\) −15690.8 −0.987574
\(633\) −10723.6 −0.673340
\(634\) −3217.05 −0.201523
\(635\) −832.972 −0.0520559
\(636\) −24736.6 −1.54225
\(637\) 0 0
\(638\) −3386.89 −0.210170
\(639\) −788.882 −0.0488383
\(640\) 2489.70 0.153772
\(641\) 12887.9 0.794137 0.397069 0.917789i \(-0.370027\pi\)
0.397069 + 0.917789i \(0.370027\pi\)
\(642\) −6696.96 −0.411695
\(643\) −12135.2 −0.744267 −0.372134 0.928179i \(-0.621374\pi\)
−0.372134 + 0.928179i \(0.621374\pi\)
\(644\) 0 0
\(645\) −1310.65 −0.0800103
\(646\) 1327.65 0.0808604
\(647\) 21159.6 1.28573 0.642865 0.765979i \(-0.277745\pi\)
0.642865 + 0.765979i \(0.277745\pi\)
\(648\) 11124.4 0.674397
\(649\) 103.292 0.00624743
\(650\) 8293.40 0.500452
\(651\) 0 0
\(652\) 8386.99 0.503773
\(653\) −25356.0 −1.51954 −0.759769 0.650193i \(-0.774688\pi\)
−0.759769 + 0.650193i \(0.774688\pi\)
\(654\) −10377.6 −0.620486
\(655\) 1733.81 0.103428
\(656\) −6549.74 −0.389824
\(657\) −708.627 −0.0420794
\(658\) 0 0
\(659\) −19623.2 −1.15996 −0.579978 0.814632i \(-0.696939\pi\)
−0.579978 + 0.814632i \(0.696939\pi\)
\(660\) −673.419 −0.0397164
\(661\) 8106.33 0.477004 0.238502 0.971142i \(-0.423344\pi\)
0.238502 + 0.971142i \(0.423344\pi\)
\(662\) 9650.81 0.566601
\(663\) −3555.74 −0.208286
\(664\) −2260.52 −0.132116
\(665\) 0 0
\(666\) 74.0810 0.00431018
\(667\) −11082.8 −0.643371
\(668\) −13426.1 −0.777654
\(669\) −20625.3 −1.19196
\(670\) 53.4286 0.00308079
\(671\) −7024.23 −0.404124
\(672\) 0 0
\(673\) −22638.5 −1.29665 −0.648327 0.761362i \(-0.724531\pi\)
−0.648327 + 0.761362i \(0.724531\pi\)
\(674\) 2039.03 0.116529
\(675\) 17442.1 0.994590
\(676\) −12621.1 −0.718088
\(677\) 18076.3 1.02619 0.513095 0.858332i \(-0.328499\pi\)
0.513095 + 0.858332i \(0.328499\pi\)
\(678\) −4861.17 −0.275357
\(679\) 0 0
\(680\) 294.628 0.0166154
\(681\) 14359.8 0.808032
\(682\) −377.473 −0.0211938
\(683\) −1272.88 −0.0713111 −0.0356556 0.999364i \(-0.511352\pi\)
−0.0356556 + 0.999364i \(0.511352\pi\)
\(684\) 785.755 0.0439241
\(685\) −3169.93 −0.176813
\(686\) 0 0
\(687\) −28170.4 −1.56444
\(688\) 5763.97 0.319403
\(689\) −44957.3 −2.48583
\(690\) 366.919 0.0202440
\(691\) 15182.5 0.835846 0.417923 0.908482i \(-0.362758\pi\)
0.417923 + 0.908482i \(0.362758\pi\)
\(692\) −18790.0 −1.03221
\(693\) 0 0
\(694\) −7934.03 −0.433965
\(695\) 1345.88 0.0734563
\(696\) −22513.4 −1.22611
\(697\) −1897.18 −0.103100
\(698\) 4514.43 0.244804
\(699\) −8770.12 −0.474558
\(700\) 0 0
\(701\) −23767.1 −1.28056 −0.640279 0.768142i \(-0.721181\pi\)
−0.640279 + 0.768142i \(0.721181\pi\)
\(702\) 9696.14 0.521307
\(703\) −7750.61 −0.415818
\(704\) 1414.90 0.0757474
\(705\) 3795.31 0.202751
\(706\) −778.295 −0.0414894
\(707\) 0 0
\(708\) 316.919 0.0168228
\(709\) 155.285 0.00822546 0.00411273 0.999992i \(-0.498691\pi\)
0.00411273 + 0.999992i \(0.498691\pi\)
\(710\) −1407.69 −0.0744078
\(711\) −1000.42 −0.0527689
\(712\) −4558.63 −0.239946
\(713\) −1235.19 −0.0648785
\(714\) 0 0
\(715\) −1223.90 −0.0640159
\(716\) −31000.8 −1.61809
\(717\) 8378.07 0.436380
\(718\) −2103.89 −0.109354
\(719\) 33058.8 1.71472 0.857362 0.514714i \(-0.172102\pi\)
0.857362 + 0.514714i \(0.172102\pi\)
\(720\) 64.8524 0.00335682
\(721\) 0 0
\(722\) 6358.79 0.327769
\(723\) 20677.8 1.06365
\(724\) −28275.4 −1.45145
\(725\) −33973.7 −1.74035
\(726\) −6543.40 −0.334502
\(727\) 1738.18 0.0886735 0.0443368 0.999017i \(-0.485883\pi\)
0.0443368 + 0.999017i \(0.485883\pi\)
\(728\) 0 0
\(729\) 20364.6 1.03463
\(730\) −1264.48 −0.0641103
\(731\) 1669.58 0.0844756
\(732\) −21551.6 −1.08821
\(733\) 735.878 0.0370809 0.0185404 0.999828i \(-0.494098\pi\)
0.0185404 + 0.999828i \(0.494098\pi\)
\(734\) −10605.5 −0.533321
\(735\) 0 0
\(736\) −6674.74 −0.334286
\(737\) 337.029 0.0168448
\(738\) 186.960 0.00932531
\(739\) 26114.2 1.29990 0.649949 0.759977i \(-0.274790\pi\)
0.649949 + 0.759977i \(0.274790\pi\)
\(740\) −793.900 −0.0394383
\(741\) −36660.4 −1.81748
\(742\) 0 0
\(743\) −28095.4 −1.38724 −0.693621 0.720340i \(-0.743986\pi\)
−0.693621 + 0.720340i \(0.743986\pi\)
\(744\) −2509.15 −0.123642
\(745\) −1257.76 −0.0618535
\(746\) −7772.63 −0.381469
\(747\) −144.127 −0.00705935
\(748\) 857.841 0.0419329
\(749\) 0 0
\(750\) 2275.85 0.110803
\(751\) −2510.16 −0.121967 −0.0609833 0.998139i \(-0.519424\pi\)
−0.0609833 + 0.998139i \(0.519424\pi\)
\(752\) −16691.0 −0.809387
\(753\) 35394.5 1.71295
\(754\) −18886.1 −0.912190
\(755\) −6252.95 −0.301415
\(756\) 0 0
\(757\) 8171.67 0.392344 0.196172 0.980569i \(-0.437149\pi\)
0.196172 + 0.980569i \(0.437149\pi\)
\(758\) 6864.33 0.328923
\(759\) 2314.53 0.110688
\(760\) 3037.68 0.144984
\(761\) 7806.65 0.371867 0.185934 0.982562i \(-0.440469\pi\)
0.185934 + 0.982562i \(0.440469\pi\)
\(762\) 2684.35 0.127616
\(763\) 0 0
\(764\) 14949.9 0.707942
\(765\) 18.7850 0.000887809 0
\(766\) −10231.2 −0.482595
\(767\) 575.983 0.0271154
\(768\) −2959.34 −0.139044
\(769\) −20857.7 −0.978084 −0.489042 0.872260i \(-0.662654\pi\)
−0.489042 + 0.872260i \(0.662654\pi\)
\(770\) 0 0
\(771\) −26851.3 −1.25425
\(772\) 12391.5 0.577694
\(773\) 18249.3 0.849136 0.424568 0.905396i \(-0.360426\pi\)
0.424568 + 0.905396i \(0.360426\pi\)
\(774\) −164.530 −0.00764071
\(775\) −3786.42 −0.175500
\(776\) −28013.8 −1.29592
\(777\) 0 0
\(778\) 4712.73 0.217172
\(779\) −19560.4 −0.899644
\(780\) −3755.15 −0.172379
\(781\) −8879.72 −0.406839
\(782\) −467.403 −0.0213738
\(783\) −39720.0 −1.81287
\(784\) 0 0
\(785\) 968.812 0.0440489
\(786\) −5587.41 −0.253558
\(787\) 19636.9 0.889429 0.444714 0.895672i \(-0.353305\pi\)
0.444714 + 0.895672i \(0.353305\pi\)
\(788\) 24946.8 1.12778
\(789\) −13410.7 −0.605110
\(790\) −1785.16 −0.0803963
\(791\) 0 0
\(792\) −183.149 −0.00821708
\(793\) −39168.8 −1.75400
\(794\) 12428.5 0.555505
\(795\) −6097.21 −0.272007
\(796\) −36234.1 −1.61342
\(797\) 36758.6 1.63370 0.816848 0.576852i \(-0.195719\pi\)
0.816848 + 0.576852i \(0.195719\pi\)
\(798\) 0 0
\(799\) −4834.69 −0.214066
\(800\) −20461.0 −0.904258
\(801\) −290.651 −0.0128210
\(802\) 6385.70 0.281156
\(803\) −7976.36 −0.350535
\(804\) 1034.06 0.0453590
\(805\) 0 0
\(806\) −2104.88 −0.0919867
\(807\) −29101.9 −1.26944
\(808\) −15440.4 −0.672267
\(809\) −8895.84 −0.386602 −0.193301 0.981140i \(-0.561919\pi\)
−0.193301 + 0.981140i \(0.561919\pi\)
\(810\) 1265.64 0.0549012
\(811\) −9955.82 −0.431068 −0.215534 0.976496i \(-0.569149\pi\)
−0.215534 + 0.976496i \(0.569149\pi\)
\(812\) 0 0
\(813\) −11352.8 −0.489740
\(814\) 833.862 0.0359052
\(815\) 2067.27 0.0888508
\(816\) 2120.79 0.0909833
\(817\) 17213.7 0.737126
\(818\) 13508.4 0.577395
\(819\) 0 0
\(820\) −2003.58 −0.0853269
\(821\) −1460.65 −0.0620913 −0.0310457 0.999518i \(-0.509884\pi\)
−0.0310457 + 0.999518i \(0.509884\pi\)
\(822\) 10215.5 0.433461
\(823\) −33331.3 −1.41173 −0.705866 0.708345i \(-0.749442\pi\)
−0.705866 + 0.708345i \(0.749442\pi\)
\(824\) 6188.67 0.261642
\(825\) 7095.06 0.299416
\(826\) 0 0
\(827\) 20877.9 0.877869 0.438934 0.898519i \(-0.355356\pi\)
0.438934 + 0.898519i \(0.355356\pi\)
\(828\) −276.627 −0.0116104
\(829\) 19886.9 0.833171 0.416586 0.909096i \(-0.363227\pi\)
0.416586 + 0.909096i \(0.363227\pi\)
\(830\) −257.182 −0.0107553
\(831\) 25228.2 1.05314
\(832\) 7889.84 0.328763
\(833\) 0 0
\(834\) −4337.26 −0.180080
\(835\) −3309.35 −0.137155
\(836\) 8844.52 0.365902
\(837\) −4426.85 −0.182813
\(838\) 17767.5 0.732420
\(839\) −33409.9 −1.37478 −0.687388 0.726290i \(-0.741243\pi\)
−0.687388 + 0.726290i \(0.741243\pi\)
\(840\) 0 0
\(841\) 52977.5 2.17219
\(842\) 7496.90 0.306841
\(843\) −14640.6 −0.598160
\(844\) 14426.4 0.588362
\(845\) −3110.93 −0.126650
\(846\) 476.438 0.0193620
\(847\) 0 0
\(848\) 26814.3 1.08586
\(849\) 31610.4 1.27782
\(850\) −1432.80 −0.0578171
\(851\) 2728.62 0.109913
\(852\) −27244.5 −1.09552
\(853\) 15726.3 0.631251 0.315626 0.948884i \(-0.397786\pi\)
0.315626 + 0.948884i \(0.397786\pi\)
\(854\) 0 0
\(855\) 193.677 0.00774693
\(856\) 19519.0 0.779374
\(857\) −24847.0 −0.990383 −0.495192 0.868784i \(-0.664902\pi\)
−0.495192 + 0.868784i \(0.664902\pi\)
\(858\) 3944.17 0.156937
\(859\) 26765.4 1.06312 0.531562 0.847019i \(-0.321605\pi\)
0.531562 + 0.847019i \(0.321605\pi\)
\(860\) 1763.21 0.0699128
\(861\) 0 0
\(862\) −9637.64 −0.380811
\(863\) −3229.39 −0.127381 −0.0636905 0.997970i \(-0.520287\pi\)
−0.0636905 + 0.997970i \(0.520287\pi\)
\(864\) −23921.8 −0.941939
\(865\) −4631.47 −0.182052
\(866\) 1986.42 0.0779461
\(867\) −24431.2 −0.957011
\(868\) 0 0
\(869\) −11260.8 −0.439582
\(870\) −2561.37 −0.0998146
\(871\) 1879.35 0.0731108
\(872\) 30246.7 1.17463
\(873\) −1786.11 −0.0692448
\(874\) −4819.02 −0.186506
\(875\) 0 0
\(876\) −24472.9 −0.943906
\(877\) 6097.69 0.234783 0.117391 0.993086i \(-0.462547\pi\)
0.117391 + 0.993086i \(0.462547\pi\)
\(878\) −6688.98 −0.257110
\(879\) 20397.2 0.782685
\(880\) 729.984 0.0279634
\(881\) 29714.8 1.13634 0.568171 0.822910i \(-0.307651\pi\)
0.568171 + 0.822910i \(0.307651\pi\)
\(882\) 0 0
\(883\) −7649.70 −0.291543 −0.145772 0.989318i \(-0.546566\pi\)
−0.145772 + 0.989318i \(0.546566\pi\)
\(884\) 4783.53 0.181999
\(885\) 78.1161 0.00296705
\(886\) 12242.1 0.464201
\(887\) −28257.5 −1.06967 −0.534833 0.844958i \(-0.679626\pi\)
−0.534833 + 0.844958i \(0.679626\pi\)
\(888\) 5542.87 0.209467
\(889\) 0 0
\(890\) −518.640 −0.0195335
\(891\) 7983.66 0.300183
\(892\) 27747.2 1.04153
\(893\) −49846.6 −1.86792
\(894\) 4053.28 0.151635
\(895\) −7641.26 −0.285384
\(896\) 0 0
\(897\) 12906.4 0.480414
\(898\) 14238.2 0.529103
\(899\) 8622.60 0.319889
\(900\) −847.984 −0.0314068
\(901\) 7766.99 0.287187
\(902\) 2104.43 0.0776829
\(903\) 0 0
\(904\) 14168.4 0.521275
\(905\) −6969.49 −0.255993
\(906\) 20150.9 0.738927
\(907\) 40378.4 1.47822 0.739108 0.673587i \(-0.235247\pi\)
0.739108 + 0.673587i \(0.235247\pi\)
\(908\) −19318.2 −0.706055
\(909\) −984.455 −0.0359211
\(910\) 0 0
\(911\) −14278.6 −0.519289 −0.259644 0.965704i \(-0.583605\pi\)
−0.259644 + 0.965704i \(0.583605\pi\)
\(912\) 21865.7 0.793911
\(913\) −1622.31 −0.0588066
\(914\) −5065.28 −0.183309
\(915\) −5312.16 −0.191928
\(916\) 37897.6 1.36700
\(917\) 0 0
\(918\) −1675.14 −0.0602264
\(919\) −28188.0 −1.01179 −0.505895 0.862595i \(-0.668838\pi\)
−0.505895 + 0.862595i \(0.668838\pi\)
\(920\) −1069.42 −0.0383237
\(921\) 10252.0 0.366790
\(922\) −6729.49 −0.240373
\(923\) −49515.4 −1.76579
\(924\) 0 0
\(925\) 8364.43 0.297320
\(926\) −5096.68 −0.180872
\(927\) 394.579 0.0139802
\(928\) 46594.8 1.64822
\(929\) 29553.5 1.04372 0.521862 0.853030i \(-0.325237\pi\)
0.521862 + 0.853030i \(0.325237\pi\)
\(930\) −285.469 −0.0100655
\(931\) 0 0
\(932\) 11798.4 0.414668
\(933\) 25176.7 0.883438
\(934\) 559.863 0.0196138
\(935\) 211.446 0.00739574
\(936\) −1021.29 −0.0356643
\(937\) −10120.3 −0.352845 −0.176422 0.984315i \(-0.556452\pi\)
−0.176422 + 0.984315i \(0.556452\pi\)
\(938\) 0 0
\(939\) −17165.3 −0.596558
\(940\) −5105.82 −0.177163
\(941\) −19374.2 −0.671182 −0.335591 0.942008i \(-0.608936\pi\)
−0.335591 + 0.942008i \(0.608936\pi\)
\(942\) −3122.11 −0.107987
\(943\) 6886.27 0.237803
\(944\) −343.539 −0.0118445
\(945\) 0 0
\(946\) −1851.96 −0.0636496
\(947\) −3809.98 −0.130737 −0.0653685 0.997861i \(-0.520822\pi\)
−0.0653685 + 0.997861i \(0.520822\pi\)
\(948\) −34550.1 −1.18369
\(949\) −44478.1 −1.52141
\(950\) −14772.4 −0.504507
\(951\) −15347.0 −0.523302
\(952\) 0 0
\(953\) −26227.8 −0.891501 −0.445750 0.895157i \(-0.647063\pi\)
−0.445750 + 0.895157i \(0.647063\pi\)
\(954\) −765.404 −0.0259758
\(955\) 3684.93 0.124860
\(956\) −11271.0 −0.381308
\(957\) −16157.2 −0.545755
\(958\) −11470.7 −0.386848
\(959\) 0 0
\(960\) 1070.04 0.0359743
\(961\) 961.000 0.0322581
\(962\) 4649.81 0.155838
\(963\) 1244.50 0.0416442
\(964\) −27817.9 −0.929412
\(965\) 3054.33 0.101888
\(966\) 0 0
\(967\) 18620.7 0.619236 0.309618 0.950861i \(-0.399799\pi\)
0.309618 + 0.950861i \(0.399799\pi\)
\(968\) 19071.4 0.633241
\(969\) 6333.58 0.209973
\(970\) −3187.15 −0.105498
\(971\) 15203.3 0.502468 0.251234 0.967926i \(-0.419164\pi\)
0.251234 + 0.967926i \(0.419164\pi\)
\(972\) −1946.99 −0.0642488
\(973\) 0 0
\(974\) −1643.10 −0.0540538
\(975\) 39563.8 1.29954
\(976\) 23361.8 0.766183
\(977\) 456.756 0.0149569 0.00747846 0.999972i \(-0.497620\pi\)
0.00747846 + 0.999972i \(0.497620\pi\)
\(978\) −6662.03 −0.217820
\(979\) −3271.59 −0.106803
\(980\) 0 0
\(981\) 1928.48 0.0627641
\(982\) −7161.79 −0.232731
\(983\) 17077.0 0.554093 0.277046 0.960857i \(-0.410644\pi\)
0.277046 + 0.960857i \(0.410644\pi\)
\(984\) 13988.6 0.453193
\(985\) 6149.03 0.198908
\(986\) 3262.83 0.105385
\(987\) 0 0
\(988\) 49319.2 1.58811
\(989\) −6060.13 −0.194844
\(990\) −20.8371 −0.000668935 0
\(991\) −20515.4 −0.657612 −0.328806 0.944397i \(-0.606646\pi\)
−0.328806 + 0.944397i \(0.606646\pi\)
\(992\) 5193.05 0.166209
\(993\) 46039.3 1.47131
\(994\) 0 0
\(995\) −8931.20 −0.284561
\(996\) −4977.52 −0.158352
\(997\) −17822.4 −0.566139 −0.283070 0.959099i \(-0.591353\pi\)
−0.283070 + 0.959099i \(0.591353\pi\)
\(998\) 10183.0 0.322983
\(999\) 9779.18 0.309709
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1519.4.a.i.1.13 yes 23
7.6 odd 2 1519.4.a.h.1.13 23
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1519.4.a.h.1.13 23 7.6 odd 2
1519.4.a.i.1.13 yes 23 1.1 even 1 trivial