Properties

Label 15.5.c.a.11.1
Level $15$
Weight $5$
Character 15.11
Analytic conductor $1.551$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [15,5,Mod(11,15)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("15.11"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 15 = 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 15.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.55054944626\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 73x^{4} + 1096x^{2} + 180 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 11.1
Root \(-7.20990i\) of defining polynomial
Character \(\chi\) \(=\) 15.11
Dual form 15.5.c.a.11.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.20990i q^{2} +(8.77108 + 2.01697i) q^{3} -35.9827 q^{4} +11.1803i q^{5} +(14.5422 - 63.2386i) q^{6} +23.3388 q^{7} +144.073i q^{8} +(72.8637 + 35.3820i) q^{9} +80.6091 q^{10} -33.9875i q^{11} +(-315.607 - 72.5760i) q^{12} -125.965 q^{13} -168.271i q^{14} +(-22.5504 + 98.0636i) q^{15} +463.029 q^{16} +308.095i q^{17} +(255.101 - 525.340i) q^{18} -363.724 q^{19} -402.298i q^{20} +(204.707 + 47.0738i) q^{21} -245.046 q^{22} -102.256i q^{23} +(-290.591 + 1263.68i) q^{24} -125.000 q^{25} +908.197i q^{26} +(567.728 + 457.302i) q^{27} -839.794 q^{28} -1565.10i q^{29} +(707.029 + 162.586i) q^{30} +326.954 q^{31} -1033.23i q^{32} +(68.5518 - 298.107i) q^{33} +2221.33 q^{34} +260.936i q^{35} +(-2621.83 - 1273.14i) q^{36} +72.4778 q^{37} +2622.41i q^{38} +(-1104.85 - 254.068i) q^{39} -1610.78 q^{40} -2149.01i q^{41} +(339.397 - 1475.92i) q^{42} +1501.27 q^{43} +1222.96i q^{44} +(-395.583 + 814.640i) q^{45} -737.258 q^{46} +1958.33i q^{47} +(4061.27 + 933.916i) q^{48} -1856.30 q^{49} +901.237i q^{50} +(-621.418 + 2702.32i) q^{51} +4532.57 q^{52} -2965.17i q^{53} +(3297.10 - 4093.26i) q^{54} +379.992 q^{55} +3362.50i q^{56} +(-3190.25 - 733.621i) q^{57} -11284.2 q^{58} +5045.29i q^{59} +(811.424 - 3528.59i) q^{60} +736.716 q^{61} -2357.30i q^{62} +(1700.55 + 825.775i) q^{63} -40.9924 q^{64} -1408.34i q^{65} +(-2149.32 - 494.252i) q^{66} +4254.63 q^{67} -11086.1i q^{68} +(206.248 - 896.898i) q^{69} +1881.32 q^{70} -1303.84i q^{71} +(-5097.59 + 10497.7i) q^{72} +6768.14 q^{73} -522.557i q^{74} +(-1096.38 - 252.121i) q^{75} +13087.8 q^{76} -793.229i q^{77} +(-1831.81 + 7965.87i) q^{78} -6367.07 q^{79} +5176.82i q^{80} +(4057.23 + 5156.13i) q^{81} -15494.1 q^{82} +6892.17i q^{83} +(-7365.90 - 1693.84i) q^{84} -3444.60 q^{85} -10824.0i q^{86} +(3156.76 - 13727.6i) q^{87} +4896.68 q^{88} +6401.82i q^{89} +(5873.48 + 2852.11i) q^{90} -2939.88 q^{91} +3679.45i q^{92} +(2867.74 + 659.456i) q^{93} +14119.3 q^{94} -4066.56i q^{95} +(2083.99 - 9062.51i) q^{96} -9879.94 q^{97} +13383.7i q^{98} +(1202.55 - 2476.45i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 8 q^{3} - 50 q^{4} - 2 q^{6} + 76 q^{7} + 118 q^{9} + 50 q^{10} - 452 q^{12} - 424 q^{13} + 50 q^{15} + 802 q^{16} + 1160 q^{18} - 244 q^{19} - 876 q^{21} + 340 q^{22} - 786 q^{24} - 750 q^{25} - 352 q^{27}+ \cdots + 9680 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/15\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.20990i 1.80247i −0.433325 0.901237i \(-0.642660\pi\)
0.433325 0.901237i \(-0.357340\pi\)
\(3\) 8.77108 + 2.01697i 0.974564 + 0.224108i
\(4\) −35.9827 −2.24892
\(5\) 11.1803i 0.447214i
\(6\) 14.5422 63.2386i 0.403949 1.75663i
\(7\) 23.3388 0.476303 0.238151 0.971228i \(-0.423459\pi\)
0.238151 + 0.971228i \(0.423459\pi\)
\(8\) 144.073i 2.25114i
\(9\) 72.8637 + 35.3820i 0.899551 + 0.436815i
\(10\) 80.6091 0.806091
\(11\) 33.9875i 0.280888i −0.990089 0.140444i \(-0.955147\pi\)
0.990089 0.140444i \(-0.0448531\pi\)
\(12\) −315.607 72.5760i −2.19171 0.504000i
\(13\) −125.965 −0.745357 −0.372678 0.927961i \(-0.621561\pi\)
−0.372678 + 0.927961i \(0.621561\pi\)
\(14\) 168.271i 0.858524i
\(15\) −22.5504 + 98.0636i −0.100224 + 0.435838i
\(16\) 463.029 1.80871
\(17\) 308.095i 1.06607i 0.846093 + 0.533036i \(0.178949\pi\)
−0.846093 + 0.533036i \(0.821051\pi\)
\(18\) 255.101 525.340i 0.787348 1.62142i
\(19\) −363.724 −1.00755 −0.503773 0.863836i \(-0.668055\pi\)
−0.503773 + 0.863836i \(0.668055\pi\)
\(20\) 402.298i 1.00575i
\(21\) 204.707 + 47.0738i 0.464188 + 0.106743i
\(22\) −245.046 −0.506294
\(23\) 102.256i 0.193301i −0.995318 0.0966506i \(-0.969187\pi\)
0.995318 0.0966506i \(-0.0308129\pi\)
\(24\) −290.591 + 1263.68i −0.504498 + 2.19388i
\(25\) −125.000 −0.200000
\(26\) 908.197i 1.34349i
\(27\) 567.728 + 457.302i 0.778777 + 0.627301i
\(28\) −839.794 −1.07117
\(29\) 1565.10i 1.86100i −0.366296 0.930498i \(-0.619374\pi\)
0.366296 0.930498i \(-0.380626\pi\)
\(30\) 707.029 + 162.586i 0.785588 + 0.180651i
\(31\) 326.954 0.340222 0.170111 0.985425i \(-0.445587\pi\)
0.170111 + 0.985425i \(0.445587\pi\)
\(32\) 1033.23i 1.00901i
\(33\) 68.5518 298.107i 0.0629493 0.273744i
\(34\) 2221.33 1.92157
\(35\) 260.936i 0.213009i
\(36\) −2621.83 1273.14i −2.02302 0.982360i
\(37\) 72.4778 0.0529421 0.0264711 0.999650i \(-0.491573\pi\)
0.0264711 + 0.999650i \(0.491573\pi\)
\(38\) 2622.41i 1.81608i
\(39\) −1104.85 254.068i −0.726398 0.167040i
\(40\) −1610.78 −1.00674
\(41\) 2149.01i 1.27841i −0.769036 0.639205i \(-0.779264\pi\)
0.769036 0.639205i \(-0.220736\pi\)
\(42\) 339.397 1475.92i 0.192402 0.836687i
\(43\) 1501.27 0.811934 0.405967 0.913888i \(-0.366935\pi\)
0.405967 + 0.913888i \(0.366935\pi\)
\(44\) 1222.96i 0.631695i
\(45\) −395.583 + 814.640i −0.195350 + 0.402292i
\(46\) −737.258 −0.348420
\(47\) 1958.33i 0.886522i 0.896393 + 0.443261i \(0.146178\pi\)
−0.896393 + 0.443261i \(0.853822\pi\)
\(48\) 4061.27 + 933.916i 1.76270 + 0.405346i
\(49\) −1856.30 −0.773136
\(50\) 901.237i 0.360495i
\(51\) −621.418 + 2702.32i −0.238915 + 1.03896i
\(52\) 4532.57 1.67625
\(53\) 2965.17i 1.05560i −0.849370 0.527798i \(-0.823018\pi\)
0.849370 0.527798i \(-0.176982\pi\)
\(54\) 3297.10 4093.26i 1.13069 1.40373i
\(55\) 379.992 0.125617
\(56\) 3362.50i 1.07222i
\(57\) −3190.25 733.621i −0.981919 0.225799i
\(58\) −11284.2 −3.35440
\(59\) 5045.29i 1.44938i 0.689075 + 0.724690i \(0.258017\pi\)
−0.689075 + 0.724690i \(0.741983\pi\)
\(60\) 811.424 3528.59i 0.225396 0.980164i
\(61\) 736.716 0.197989 0.0989944 0.995088i \(-0.468437\pi\)
0.0989944 + 0.995088i \(0.468437\pi\)
\(62\) 2357.30i 0.613242i
\(63\) 1700.55 + 825.775i 0.428459 + 0.208056i
\(64\) −40.9924 −0.0100079
\(65\) 1408.34i 0.333334i
\(66\) −2149.32 494.252i −0.493416 0.113465i
\(67\) 4254.63 0.947791 0.473895 0.880581i \(-0.342847\pi\)
0.473895 + 0.880581i \(0.342847\pi\)
\(68\) 11086.1i 2.39751i
\(69\) 206.248 896.898i 0.0433203 0.188384i
\(70\) 1881.32 0.383944
\(71\) 1303.84i 0.258647i −0.991602 0.129323i \(-0.958719\pi\)
0.991602 0.129323i \(-0.0412805\pi\)
\(72\) −5097.59 + 10497.7i −0.983332 + 2.02502i
\(73\) 6768.14 1.27006 0.635029 0.772488i \(-0.280988\pi\)
0.635029 + 0.772488i \(0.280988\pi\)
\(74\) 522.557i 0.0954269i
\(75\) −1096.38 252.121i −0.194913 0.0448216i
\(76\) 13087.8 2.26589
\(77\) 793.229i 0.133788i
\(78\) −1831.81 + 7965.87i −0.301086 + 1.30931i
\(79\) −6367.07 −1.02020 −0.510100 0.860115i \(-0.670392\pi\)
−0.510100 + 0.860115i \(0.670392\pi\)
\(80\) 5176.82i 0.808879i
\(81\) 4057.23 + 5156.13i 0.618385 + 0.785875i
\(82\) −15494.1 −2.30430
\(83\) 6892.17i 1.00046i 0.865893 + 0.500230i \(0.166751\pi\)
−0.865893 + 0.500230i \(0.833249\pi\)
\(84\) −7365.90 1693.84i −1.04392 0.240057i
\(85\) −3444.60 −0.476762
\(86\) 10824.0i 1.46349i
\(87\) 3156.76 13727.6i 0.417064 1.81366i
\(88\) 4896.68 0.632319
\(89\) 6401.82i 0.808208i 0.914713 + 0.404104i \(0.132417\pi\)
−0.914713 + 0.404104i \(0.867583\pi\)
\(90\) 5873.48 + 2852.11i 0.725121 + 0.352113i
\(91\) −2939.88 −0.355016
\(92\) 3679.45i 0.434718i
\(93\) 2867.74 + 659.456i 0.331568 + 0.0762465i
\(94\) 14119.3 1.59793
\(95\) 4066.56i 0.450588i
\(96\) 2083.99 9062.51i 0.226127 0.983345i
\(97\) −9879.94 −1.05005 −0.525026 0.851086i \(-0.675944\pi\)
−0.525026 + 0.851086i \(0.675944\pi\)
\(98\) 13383.7i 1.39356i
\(99\) 1202.55 2476.45i 0.122696 0.252674i
\(100\) 4497.83 0.449783
\(101\) 11119.7i 1.09006i −0.838415 0.545032i \(-0.816518\pi\)
0.838415 0.545032i \(-0.183482\pi\)
\(102\) 19483.5 + 4480.36i 1.87269 + 0.430638i
\(103\) −12245.5 −1.15426 −0.577128 0.816653i \(-0.695827\pi\)
−0.577128 + 0.816653i \(0.695827\pi\)
\(104\) 18148.2i 1.67790i
\(105\) −526.301 + 2288.69i −0.0477370 + 0.207591i
\(106\) −21378.6 −1.90269
\(107\) 708.790i 0.0619085i −0.999521 0.0309542i \(-0.990145\pi\)
0.999521 0.0309542i \(-0.00985462\pi\)
\(108\) −20428.4 16455.0i −1.75140 1.41075i
\(109\) −908.407 −0.0764588 −0.0382294 0.999269i \(-0.512172\pi\)
−0.0382294 + 0.999269i \(0.512172\pi\)
\(110\) 2739.70i 0.226422i
\(111\) 635.708 + 146.186i 0.0515955 + 0.0118647i
\(112\) 10806.6 0.861493
\(113\) 3441.26i 0.269501i 0.990880 + 0.134751i \(0.0430233\pi\)
−0.990880 + 0.134751i \(0.956977\pi\)
\(114\) −5289.33 + 23001.4i −0.406997 + 1.76988i
\(115\) 1143.26 0.0864469
\(116\) 56316.4i 4.18523i
\(117\) −9178.29 4456.91i −0.670487 0.325583i
\(118\) 36376.0 2.61247
\(119\) 7190.57i 0.507773i
\(120\) −14128.3 3248.91i −0.981133 0.225618i
\(121\) 13485.8 0.921102
\(122\) 5311.65i 0.356870i
\(123\) 4334.48 18849.1i 0.286502 1.24589i
\(124\) −11764.7 −0.765131
\(125\) 1397.54i 0.0894427i
\(126\) 5953.76 12260.8i 0.375016 0.772286i
\(127\) 28648.5 1.77621 0.888106 0.459638i \(-0.152021\pi\)
0.888106 + 0.459638i \(0.152021\pi\)
\(128\) 16236.1i 0.990971i
\(129\) 13167.7 + 3028.01i 0.791282 + 0.181961i
\(130\) −10154.0 −0.600826
\(131\) 400.763i 0.0233531i −0.999932 0.0116766i \(-0.996283\pi\)
0.999932 0.0116766i \(-0.00371685\pi\)
\(132\) −2466.68 + 10726.7i −0.141568 + 0.615627i
\(133\) −8488.90 −0.479897
\(134\) 30675.5i 1.70837i
\(135\) −5112.80 + 6347.40i −0.280538 + 0.348280i
\(136\) −44388.1 −2.39988
\(137\) 29277.7i 1.55989i 0.625845 + 0.779947i \(0.284754\pi\)
−0.625845 + 0.779947i \(0.715246\pi\)
\(138\) −6466.55 1487.03i −0.339558 0.0780838i
\(139\) 1852.04 0.0958565 0.0479282 0.998851i \(-0.484738\pi\)
0.0479282 + 0.998851i \(0.484738\pi\)
\(140\) 9389.18i 0.479040i
\(141\) −3949.89 + 17176.6i −0.198677 + 0.863973i
\(142\) −9400.54 −0.466204
\(143\) 4281.25i 0.209362i
\(144\) 33738.0 + 16382.9i 1.62703 + 0.790071i
\(145\) 17498.3 0.832263
\(146\) 48797.6i 2.28925i
\(147\) −16281.7 3744.10i −0.753470 0.173266i
\(148\) −2607.94 −0.119062
\(149\) 19905.0i 0.896582i −0.893888 0.448291i \(-0.852033\pi\)
0.893888 0.448291i \(-0.147967\pi\)
\(150\) −1817.77 + 7904.83i −0.0807898 + 0.351326i
\(151\) −24648.2 −1.08101 −0.540506 0.841340i \(-0.681767\pi\)
−0.540506 + 0.841340i \(0.681767\pi\)
\(152\) 52402.8i 2.26813i
\(153\) −10901.0 + 22448.9i −0.465676 + 0.958986i
\(154\) −5719.10 −0.241149
\(155\) 3655.45i 0.152152i
\(156\) 39755.5 + 9142.06i 1.63361 + 0.375660i
\(157\) 1399.18 0.0567642 0.0283821 0.999597i \(-0.490964\pi\)
0.0283821 + 0.999597i \(0.490964\pi\)
\(158\) 45905.9i 1.83888i
\(159\) 5980.66 26007.8i 0.236568 1.02875i
\(160\) 11551.8 0.451243
\(161\) 2386.54i 0.0920699i
\(162\) 37175.2 29252.2i 1.41652 1.11462i
\(163\) 8023.34 0.301981 0.150991 0.988535i \(-0.451754\pi\)
0.150991 + 0.988535i \(0.451754\pi\)
\(164\) 77327.0i 2.87504i
\(165\) 3332.94 + 766.432i 0.122422 + 0.0281518i
\(166\) 49691.8 1.80330
\(167\) 20948.5i 0.751138i 0.926794 + 0.375569i \(0.122553\pi\)
−0.926794 + 0.375569i \(0.877447\pi\)
\(168\) −6782.06 + 29492.7i −0.240294 + 1.04495i
\(169\) −12693.7 −0.444443
\(170\) 24835.2i 0.859351i
\(171\) −26502.3 12869.3i −0.906339 0.440111i
\(172\) −54019.5 −1.82597
\(173\) 20564.6i 0.687112i −0.939132 0.343556i \(-0.888368\pi\)
0.939132 0.343556i \(-0.111632\pi\)
\(174\) −98974.6 22759.9i −3.26908 0.751747i
\(175\) −2917.36 −0.0952606
\(176\) 15737.2i 0.508045i
\(177\) −10176.2 + 44252.6i −0.324817 + 1.41251i
\(178\) 46156.5 1.45678
\(179\) 32395.6i 1.01107i −0.862807 0.505533i \(-0.831296\pi\)
0.862807 0.505533i \(-0.168704\pi\)
\(180\) 14234.1 29312.9i 0.439325 0.904720i
\(181\) 18055.4 0.551125 0.275562 0.961283i \(-0.411136\pi\)
0.275562 + 0.961283i \(0.411136\pi\)
\(182\) 21196.3i 0.639907i
\(183\) 6461.79 + 1485.93i 0.192953 + 0.0443708i
\(184\) 14732.4 0.435148
\(185\) 810.326i 0.0236764i
\(186\) 4754.61 20676.1i 0.137432 0.597644i
\(187\) 10471.4 0.299447
\(188\) 70465.8i 1.99371i
\(189\) 13250.1 + 10672.9i 0.370934 + 0.298785i
\(190\) −29319.5 −0.812174
\(191\) 11720.8i 0.321285i 0.987013 + 0.160642i \(0.0513566\pi\)
−0.987013 + 0.160642i \(0.948643\pi\)
\(192\) −359.548 82.6806i −0.00975336 0.00224285i
\(193\) −28253.2 −0.758496 −0.379248 0.925295i \(-0.623817\pi\)
−0.379248 + 0.925295i \(0.623817\pi\)
\(194\) 71233.4i 1.89269i
\(195\) 2840.57 12352.6i 0.0747027 0.324855i
\(196\) 66794.6 1.73872
\(197\) 53312.1i 1.37370i −0.726797 0.686852i \(-0.758992\pi\)
0.726797 0.686852i \(-0.241008\pi\)
\(198\) −17855.0 8670.24i −0.455438 0.221157i
\(199\) 50464.4 1.27432 0.637161 0.770731i \(-0.280109\pi\)
0.637161 + 0.770731i \(0.280109\pi\)
\(200\) 18009.1i 0.450228i
\(201\) 37317.7 + 8581.47i 0.923683 + 0.212407i
\(202\) −80172.2 −1.96481
\(203\) 36527.6i 0.886398i
\(204\) 22360.3 97236.7i 0.537300 2.33652i
\(205\) 24026.6 0.571722
\(206\) 88288.9i 2.08052i
\(207\) 3618.03 7450.77i 0.0844368 0.173884i
\(208\) −58325.6 −1.34813
\(209\) 12362.1i 0.283008i
\(210\) 16501.2 + 3794.58i 0.374178 + 0.0860448i
\(211\) −67329.0 −1.51230 −0.756148 0.654400i \(-0.772921\pi\)
−0.756148 + 0.654400i \(0.772921\pi\)
\(212\) 106695.i 2.37395i
\(213\) 2629.80 11436.1i 0.0579648 0.252068i
\(214\) −5110.31 −0.111589
\(215\) 16784.7i 0.363108i
\(216\) −65884.9 + 81794.3i −1.41214 + 1.75314i
\(217\) 7630.72 0.162049
\(218\) 6549.52i 0.137815i
\(219\) 59363.9 + 13651.1i 1.23775 + 0.284630i
\(220\) −13673.1 −0.282502
\(221\) 38809.2i 0.794604i
\(222\) 1053.98 4583.39i 0.0213859 0.0929996i
\(223\) −56592.7 −1.13802 −0.569011 0.822330i \(-0.692674\pi\)
−0.569011 + 0.822330i \(0.692674\pi\)
\(224\) 24114.3i 0.480594i
\(225\) −9107.96 4422.75i −0.179910 0.0873630i
\(226\) 24811.1 0.485769
\(227\) 19015.9i 0.369033i −0.982829 0.184516i \(-0.940928\pi\)
0.982829 0.184516i \(-0.0590719\pi\)
\(228\) 114794. + 26397.6i 2.20825 + 0.507803i
\(229\) −79079.9 −1.50798 −0.753989 0.656887i \(-0.771873\pi\)
−0.753989 + 0.656887i \(0.771873\pi\)
\(230\) 8242.79i 0.155818i
\(231\) 1599.92 6957.47i 0.0299829 0.130385i
\(232\) 225488. 4.18936
\(233\) 36312.6i 0.668876i 0.942418 + 0.334438i \(0.108546\pi\)
−0.942418 + 0.334438i \(0.891454\pi\)
\(234\) −32133.9 + 66174.6i −0.586855 + 1.20854i
\(235\) −21894.8 −0.396465
\(236\) 181543.i 3.25953i
\(237\) −55846.0 12842.2i −0.994250 0.228635i
\(238\) 51843.3 0.915248
\(239\) 46783.7i 0.819028i 0.912304 + 0.409514i \(0.134302\pi\)
−0.912304 + 0.409514i \(0.865698\pi\)
\(240\) −10441.5 + 45406.3i −0.181276 + 0.788304i
\(241\) 30646.4 0.527649 0.263824 0.964571i \(-0.415016\pi\)
0.263824 + 0.964571i \(0.415016\pi\)
\(242\) 97231.6i 1.66026i
\(243\) 25186.5 + 53408.1i 0.426535 + 0.904471i
\(244\) −26509.0 −0.445260
\(245\) 20754.0i 0.345757i
\(246\) −135900. 31251.2i −2.24569 0.516412i
\(247\) 45816.6 0.750981
\(248\) 47105.2i 0.765888i
\(249\) −13901.3 + 60451.8i −0.224211 + 0.975013i
\(250\) −10076.1 −0.161218
\(251\) 114804.i 1.82226i 0.412120 + 0.911130i \(0.364788\pi\)
−0.412120 + 0.911130i \(0.635212\pi\)
\(252\) −61190.4 29713.6i −0.963568 0.467901i
\(253\) −3475.44 −0.0542960
\(254\) 206553.i 3.20158i
\(255\) −30212.9 6947.66i −0.464635 0.106846i
\(256\) −117716. −1.79621
\(257\) 89602.7i 1.35661i −0.734780 0.678305i \(-0.762715\pi\)
0.734780 0.678305i \(-0.237285\pi\)
\(258\) 21831.6 94938.0i 0.327980 1.42627i
\(259\) 1691.55 0.0252165
\(260\) 50675.6i 0.749640i
\(261\) 55376.3 114039.i 0.812911 1.67406i
\(262\) −2889.46 −0.0420935
\(263\) 113892.i 1.64658i 0.567620 + 0.823291i \(0.307864\pi\)
−0.567620 + 0.823291i \(0.692136\pi\)
\(264\) 42949.2 + 9876.46i 0.616236 + 0.141708i
\(265\) 33151.6 0.472077
\(266\) 61204.1i 0.865003i
\(267\) −12912.3 + 56150.9i −0.181126 + 0.787651i
\(268\) −153093. −2.13150
\(269\) 39232.3i 0.542174i −0.962555 0.271087i \(-0.912617\pi\)
0.962555 0.271087i \(-0.0873832\pi\)
\(270\) 45764.1 + 36862.7i 0.627765 + 0.505662i
\(271\) 52549.5 0.715533 0.357767 0.933811i \(-0.383538\pi\)
0.357767 + 0.933811i \(0.383538\pi\)
\(272\) 142657.i 1.92821i
\(273\) −25786.0 5929.66i −0.345986 0.0795618i
\(274\) 211089. 2.81167
\(275\) 4248.44i 0.0561777i
\(276\) −7421.35 + 32272.8i −0.0974237 + 0.423661i
\(277\) −28707.3 −0.374139 −0.187069 0.982347i \(-0.559899\pi\)
−0.187069 + 0.982347i \(0.559899\pi\)
\(278\) 13353.0i 0.172779i
\(279\) 23823.0 + 11568.3i 0.306047 + 0.148614i
\(280\) −37593.8 −0.479513
\(281\) 83537.2i 1.05796i 0.848636 + 0.528978i \(0.177424\pi\)
−0.848636 + 0.528978i \(0.822576\pi\)
\(282\) 123842. + 28478.3i 1.55729 + 0.358109i
\(283\) 126719. 1.58223 0.791115 0.611667i \(-0.209501\pi\)
0.791115 + 0.611667i \(0.209501\pi\)
\(284\) 46915.6i 0.581675i
\(285\) 8202.13 35668.1i 0.100980 0.439127i
\(286\) 30867.4 0.377370
\(287\) 50155.3i 0.608910i
\(288\) 36557.6 75284.7i 0.440751 0.907656i
\(289\) −11401.3 −0.136508
\(290\) 126161.i 1.50013i
\(291\) −86657.7 19927.5i −1.02334 0.235325i
\(292\) −243536. −2.85626
\(293\) 69385.0i 0.808222i −0.914710 0.404111i \(-0.867581\pi\)
0.914710 0.404111i \(-0.132419\pi\)
\(294\) −26994.6 + 117390.i −0.312307 + 1.35811i
\(295\) −56408.1 −0.648182
\(296\) 10442.1i 0.119180i
\(297\) 15542.6 19295.7i 0.176202 0.218749i
\(298\) −143513. −1.61607
\(299\) 12880.7i 0.144078i
\(300\) 39450.8 + 9072.00i 0.438343 + 0.100800i
\(301\) 35037.8 0.386727
\(302\) 177711.i 1.94850i
\(303\) 22428.2 97532.1i 0.244292 1.06234i
\(304\) −168415. −1.82236
\(305\) 8236.74i 0.0885432i
\(306\) 161854. + 78595.2i 1.72855 + 0.839369i
\(307\) 63952.5 0.678549 0.339274 0.940687i \(-0.389818\pi\)
0.339274 + 0.940687i \(0.389818\pi\)
\(308\) 28542.5i 0.300878i
\(309\) −107406. 24698.8i −1.12490 0.258678i
\(310\) 26355.4 0.274250
\(311\) 18806.5i 0.194441i −0.995263 0.0972203i \(-0.969005\pi\)
0.995263 0.0972203i \(-0.0309951\pi\)
\(312\) 36604.4 159179.i 0.376031 1.63522i
\(313\) 62746.1 0.640469 0.320235 0.947338i \(-0.396238\pi\)
0.320235 + 0.947338i \(0.396238\pi\)
\(314\) 10088.0i 0.102316i
\(315\) −9232.45 + 19012.8i −0.0930456 + 0.191613i
\(316\) 229104. 2.29434
\(317\) 93427.4i 0.929728i 0.885382 + 0.464864i \(0.153897\pi\)
−0.885382 + 0.464864i \(0.846103\pi\)
\(318\) −187513. 43120.0i −1.85429 0.426407i
\(319\) −53193.8 −0.522732
\(320\) 458.309i 0.00447568i
\(321\) 1429.61 6216.86i 0.0138742 0.0603338i
\(322\) −17206.7 −0.165954
\(323\) 112061.i 1.07412i
\(324\) −145990. 185531.i −1.39070 1.76737i
\(325\) 15745.7 0.149071
\(326\) 57847.5i 0.544314i
\(327\) −7967.71 1832.23i −0.0745140 0.0171350i
\(328\) 309614. 2.87788
\(329\) 45705.1i 0.422253i
\(330\) 5525.90 24030.2i 0.0507429 0.220663i
\(331\) −71675.0 −0.654202 −0.327101 0.944989i \(-0.606072\pi\)
−0.327101 + 0.944989i \(0.606072\pi\)
\(332\) 247999.i 2.24995i
\(333\) 5281.00 + 2564.41i 0.0476242 + 0.0231259i
\(334\) 151036. 1.35391
\(335\) 47568.3i 0.423865i
\(336\) 94785.2 + 21796.5i 0.839580 + 0.193067i
\(337\) −87920.2 −0.774157 −0.387078 0.922047i \(-0.626516\pi\)
−0.387078 + 0.922047i \(0.626516\pi\)
\(338\) 91520.6i 0.801098i
\(339\) −6940.92 + 30183.6i −0.0603973 + 0.262646i
\(340\) 123946. 1.07220
\(341\) 11112.3i 0.0955645i
\(342\) −92786.3 + 191079.i −0.793290 + 1.63365i
\(343\) −99360.4 −0.844550
\(344\) 216292.i 1.82778i
\(345\) 10027.6 + 2305.92i 0.0842481 + 0.0193734i
\(346\) −148269. −1.23850
\(347\) 5941.38i 0.0493433i −0.999696 0.0246717i \(-0.992146\pi\)
0.999696 0.0246717i \(-0.00785403\pi\)
\(348\) −113589. + 493955.i −0.937942 + 4.07877i
\(349\) −65214.3 −0.535417 −0.267709 0.963500i \(-0.586266\pi\)
−0.267709 + 0.963500i \(0.586266\pi\)
\(350\) 21033.8i 0.171705i
\(351\) −71514.1 57604.2i −0.580467 0.467563i
\(352\) −35116.8 −0.283419
\(353\) 36220.5i 0.290673i 0.989382 + 0.145337i \(0.0464265\pi\)
−0.989382 + 0.145337i \(0.953573\pi\)
\(354\) 319057. + 73369.4i 2.54602 + 0.585475i
\(355\) 14577.4 0.115670
\(356\) 230354.i 1.81759i
\(357\) −14503.2 + 63069.1i −0.113796 + 0.494857i
\(358\) −233569. −1.82242
\(359\) 152925.i 1.18656i −0.804997 0.593279i \(-0.797833\pi\)
0.804997 0.593279i \(-0.202167\pi\)
\(360\) −117368. 56992.8i −0.905615 0.439759i
\(361\) 1974.27 0.0151493
\(362\) 130178.i 0.993389i
\(363\) 118285. + 27200.6i 0.897673 + 0.206426i
\(364\) 105785. 0.798400
\(365\) 75670.1i 0.567987i
\(366\) 10713.4 46588.9i 0.0799773 0.347792i
\(367\) 143778. 1.06748 0.533740 0.845649i \(-0.320786\pi\)
0.533740 + 0.845649i \(0.320786\pi\)
\(368\) 47347.6i 0.349625i
\(369\) 76036.2 156584.i 0.558429 1.15000i
\(370\) 5842.37 0.0426762
\(371\) 69203.7i 0.502784i
\(372\) −103189. 23729.0i −0.745670 0.171472i
\(373\) 102685. 0.738056 0.369028 0.929418i \(-0.379691\pi\)
0.369028 + 0.929418i \(0.379691\pi\)
\(374\) 75497.5i 0.539746i
\(375\) 2818.80 12258.0i 0.0200448 0.0871677i
\(376\) −282142. −1.99568
\(377\) 197148.i 1.38711i
\(378\) 76950.6 95532.1i 0.538553 0.668599i
\(379\) −148649. −1.03486 −0.517432 0.855724i \(-0.673112\pi\)
−0.517432 + 0.855724i \(0.673112\pi\)
\(380\) 146326.i 1.01334i
\(381\) 251279. + 57783.3i 1.73103 + 0.398063i
\(382\) 84505.7 0.579108
\(383\) 88390.0i 0.602568i −0.953535 0.301284i \(-0.902585\pi\)
0.953535 0.301284i \(-0.0974152\pi\)
\(384\) 32747.7 142408.i 0.222084 0.965765i
\(385\) 8868.57 0.0598318
\(386\) 203703.i 1.36717i
\(387\) 109388. + 53117.8i 0.730376 + 0.354665i
\(388\) 355506. 2.36148
\(389\) 107542.i 0.710687i 0.934736 + 0.355344i \(0.115636\pi\)
−0.934736 + 0.355344i \(0.884364\pi\)
\(390\) −89061.1 20480.2i −0.585543 0.134650i
\(391\) 31504.6 0.206073
\(392\) 267442.i 1.74044i
\(393\) 808.328 3515.13i 0.00523362 0.0227591i
\(394\) −384375. −2.47607
\(395\) 71186.0i 0.456247i
\(396\) −43270.8 + 89109.4i −0.275934 + 0.568242i
\(397\) −131243. −0.832710 −0.416355 0.909202i \(-0.636693\pi\)
−0.416355 + 0.909202i \(0.636693\pi\)
\(398\) 363844.i 2.29693i
\(399\) −74456.8 17121.9i −0.467691 0.107549i
\(400\) −57878.6 −0.361742
\(401\) 21480.0i 0.133581i −0.997767 0.0667907i \(-0.978724\pi\)
0.997767 0.0667907i \(-0.0212760\pi\)
\(402\) 61871.6 269057.i 0.382859 1.66492i
\(403\) −41184.8 −0.253587
\(404\) 400118.i 2.45146i
\(405\) −57647.3 + 45361.2i −0.351454 + 0.276550i
\(406\) −263360. −1.59771
\(407\) 2463.34i 0.0148708i
\(408\) −389332. 89529.5i −2.33883 0.537831i
\(409\) 118822. 0.710313 0.355156 0.934807i \(-0.384428\pi\)
0.355156 + 0.934807i \(0.384428\pi\)
\(410\) 173230.i 1.03052i
\(411\) −59052.2 + 256797.i −0.349585 + 1.52022i
\(412\) 440626. 2.59583
\(413\) 117751.i 0.690344i
\(414\) −53719.3 26085.7i −0.313422 0.152195i
\(415\) −77056.8 −0.447419
\(416\) 130151.i 0.752073i
\(417\) 16244.4 + 3735.52i 0.0934183 + 0.0214822i
\(418\) 89129.3 0.510115
\(419\) 95945.4i 0.546507i −0.961942 0.273254i \(-0.911900\pi\)
0.961942 0.273254i \(-0.0880998\pi\)
\(420\) 18937.7 82353.2i 0.107357 0.466855i
\(421\) 73818.2 0.416485 0.208242 0.978077i \(-0.433226\pi\)
0.208242 + 0.978077i \(0.433226\pi\)
\(422\) 485435.i 2.72588i
\(423\) −69289.6 + 142691.i −0.387246 + 0.797472i
\(424\) 427201. 2.37630
\(425\) 38511.8i 0.213214i
\(426\) −82452.9 18960.6i −0.454346 0.104480i
\(427\) 17194.1 0.0943026
\(428\) 25504.2i 0.139227i
\(429\) −8635.15 + 37551.1i −0.0469197 + 0.204037i
\(430\) 121016. 0.654493
\(431\) 107733.i 0.579955i −0.957033 0.289977i \(-0.906352\pi\)
0.957033 0.289977i \(-0.0936478\pi\)
\(432\) 262875. + 211744.i 1.40858 + 1.13460i
\(433\) −114738. −0.611974 −0.305987 0.952036i \(-0.598986\pi\)
−0.305987 + 0.952036i \(0.598986\pi\)
\(434\) 55016.7i 0.292089i
\(435\) 153479. + 35293.6i 0.811094 + 0.186517i
\(436\) 32686.9 0.171949
\(437\) 37193.1i 0.194760i
\(438\) 98423.4 428008.i 0.513039 2.23102i
\(439\) 257591. 1.33660 0.668300 0.743892i \(-0.267022\pi\)
0.668300 + 0.743892i \(0.267022\pi\)
\(440\) 54746.5i 0.282782i
\(441\) −135257. 65679.6i −0.695475 0.337717i
\(442\) −279811. −1.43225
\(443\) 35360.6i 0.180182i −0.995934 0.0900911i \(-0.971284\pi\)
0.995934 0.0900911i \(-0.0287158\pi\)
\(444\) −22874.5 5260.14i −0.116034 0.0266828i
\(445\) −71574.5 −0.361442
\(446\) 408028.i 2.05126i
\(447\) 40147.8 174588.i 0.200931 0.873777i
\(448\) −956.716 −0.00476680
\(449\) 8230.74i 0.0408269i −0.999792 0.0204134i \(-0.993502\pi\)
0.999792 0.0204134i \(-0.00649825\pi\)
\(450\) −31887.6 + 65667.5i −0.157470 + 0.324284i
\(451\) −73039.4 −0.359091
\(452\) 123826.i 0.606086i
\(453\) −216191. 49714.6i −1.05352 0.242263i
\(454\) −137103. −0.665172
\(455\) 32868.9i 0.158768i
\(456\) 105695. 459629.i 0.508305 2.21044i
\(457\) −180660. −0.865027 −0.432514 0.901627i \(-0.642373\pi\)
−0.432514 + 0.901627i \(0.642373\pi\)
\(458\) 570158.i 2.71809i
\(459\) −140892. + 174914.i −0.668748 + 0.830232i
\(460\) −41137.5 −0.194412
\(461\) 34875.9i 0.164106i 0.996628 + 0.0820529i \(0.0261476\pi\)
−0.996628 + 0.0820529i \(0.973852\pi\)
\(462\) −50162.7 11535.3i −0.235016 0.0540435i
\(463\) −206020. −0.961054 −0.480527 0.876980i \(-0.659555\pi\)
−0.480527 + 0.876980i \(0.659555\pi\)
\(464\) 724686.i 3.36600i
\(465\) −7372.94 + 32062.3i −0.0340985 + 0.148282i
\(466\) 261810. 1.20563
\(467\) 274766.i 1.25988i −0.776644 0.629940i \(-0.783079\pi\)
0.776644 0.629940i \(-0.216921\pi\)
\(468\) 330259. + 160371.i 1.50787 + 0.732209i
\(469\) 99298.2 0.451436
\(470\) 157859.i 0.714618i
\(471\) 12272.3 + 2822.11i 0.0553204 + 0.0127213i
\(472\) −726890. −3.26276
\(473\) 51024.3i 0.228063i
\(474\) −92590.9 + 402644.i −0.412108 + 1.79211i
\(475\) 45465.5 0.201509
\(476\) 258736.i 1.14194i
\(477\) 104914. 216053.i 0.461101 0.949564i
\(478\) 337306. 1.47628
\(479\) 160960.i 0.701533i 0.936463 + 0.350766i \(0.114079\pi\)
−0.936463 + 0.350766i \(0.885921\pi\)
\(480\) 101322. + 23299.7i 0.439765 + 0.101127i
\(481\) −9129.68 −0.0394608
\(482\) 220957.i 0.951074i
\(483\) 4813.59 20932.6i 0.0206336 0.0897280i
\(484\) −485257. −2.07148
\(485\) 110461.i 0.469597i
\(486\) 385067. 181592.i 1.63029 0.768819i
\(487\) −69827.5 −0.294421 −0.147210 0.989105i \(-0.547029\pi\)
−0.147210 + 0.989105i \(0.547029\pi\)
\(488\) 106141.i 0.445700i
\(489\) 70373.4 + 16182.9i 0.294300 + 0.0676764i
\(490\) −149635. −0.623218
\(491\) 430893.i 1.78734i −0.448727 0.893669i \(-0.648122\pi\)
0.448727 0.893669i \(-0.351878\pi\)
\(492\) −155966. + 678241.i −0.644318 + 2.80191i
\(493\) 482198. 1.98396
\(494\) 330333.i 1.35363i
\(495\) 27687.6 + 13444.9i 0.112999 + 0.0548715i
\(496\) 151389. 0.615362
\(497\) 30430.1i 0.123194i
\(498\) 435851. + 100227.i 1.75744 + 0.404135i
\(499\) 282872. 1.13603 0.568013 0.823019i \(-0.307712\pi\)
0.568013 + 0.823019i \(0.307712\pi\)
\(500\) 50287.3i 0.201149i
\(501\) −42252.5 + 183741.i −0.168336 + 0.732032i
\(502\) 827726. 3.28458
\(503\) 240734.i 0.951483i 0.879585 + 0.475742i \(0.157820\pi\)
−0.879585 + 0.475742i \(0.842180\pi\)
\(504\) −118972. + 245004.i −0.468364 + 0.964521i
\(505\) 124322. 0.487491
\(506\) 25057.5i 0.0978673i
\(507\) −111338. 25602.9i −0.433138 0.0996032i
\(508\) −1.03085e6 −3.99455
\(509\) 225427.i 0.870102i 0.900406 + 0.435051i \(0.143270\pi\)
−0.900406 + 0.435051i \(0.856730\pi\)
\(510\) −50092.0 + 217832.i −0.192587 + 0.837493i
\(511\) 157961. 0.604933
\(512\) 588946.i 2.24665i
\(513\) −206497. 166332.i −0.784654 0.632035i
\(514\) −646027. −2.44526
\(515\) 136909.i 0.516199i
\(516\) −473810. 108956.i −1.77953 0.409215i
\(517\) 66558.6 0.249014
\(518\) 12195.9i 0.0454521i
\(519\) 41478.2 180374.i 0.153987 0.669635i
\(520\) 202903. 0.750381
\(521\) 154960.i 0.570880i −0.958397 0.285440i \(-0.907860\pi\)
0.958397 0.285440i \(-0.0921397\pi\)
\(522\) −822208. 399258.i −3.01745 1.46525i
\(523\) −128163. −0.468553 −0.234277 0.972170i \(-0.575272\pi\)
−0.234277 + 0.972170i \(0.575272\pi\)
\(524\) 14420.5i 0.0525193i
\(525\) −25588.4 5884.22i −0.0928376 0.0213486i
\(526\) 821153. 2.96792
\(527\) 100733.i 0.362701i
\(528\) 31741.5 138032.i 0.113857 0.495123i
\(529\) 269385. 0.962635
\(530\) 239020.i 0.850907i
\(531\) −178513. + 367618.i −0.633111 + 1.30379i
\(532\) 305453. 1.07925
\(533\) 270700.i 0.952872i
\(534\) 404842. + 93096.3i 1.41972 + 0.326475i
\(535\) 7924.52 0.0276863
\(536\) 612978.i 2.13361i
\(537\) 65340.9 284144.i 0.226588 0.985349i
\(538\) −282861. −0.977256
\(539\) 63090.9i 0.217165i
\(540\) 183972. 228396.i 0.630905 0.783252i
\(541\) −499660. −1.70718 −0.853591 0.520943i \(-0.825580\pi\)
−0.853591 + 0.520943i \(0.825580\pi\)
\(542\) 378876.i 1.28973i
\(543\) 158365. + 36417.2i 0.537107 + 0.123511i
\(544\) 318332. 1.07568
\(545\) 10156.3i 0.0341934i
\(546\) −42752.3 + 185914.i −0.143408 + 0.623630i
\(547\) −244301. −0.816490 −0.408245 0.912872i \(-0.633859\pi\)
−0.408245 + 0.912872i \(0.633859\pi\)
\(548\) 1.05349e6i 3.50807i
\(549\) 53679.8 + 26066.5i 0.178101 + 0.0864845i
\(550\) 30630.8 0.101259
\(551\) 569264.i 1.87504i
\(552\) 129219. + 29714.8i 0.424080 + 0.0975201i
\(553\) −148600. −0.485924
\(554\) 206977.i 0.674376i
\(555\) −1634.40 + 7107.43i −0.00530608 + 0.0230742i
\(556\) −66641.4 −0.215573
\(557\) 247875.i 0.798954i 0.916743 + 0.399477i \(0.130808\pi\)
−0.916743 + 0.399477i \(0.869192\pi\)
\(558\) 83406.1 171762.i 0.267873 0.551643i
\(559\) −189107. −0.605181
\(560\) 120821.i 0.385271i
\(561\) 91845.2 + 21120.4i 0.291830 + 0.0671085i
\(562\) 602295. 1.90694
\(563\) 265392.i 0.837279i −0.908152 0.418640i \(-0.862507\pi\)
0.908152 0.418640i \(-0.137493\pi\)
\(564\) 142127. 618061.i 0.446807 1.94300i
\(565\) −38474.5 −0.120525
\(566\) 913633.i 2.85193i
\(567\) 94690.9 + 120338.i 0.294539 + 0.374315i
\(568\) 187848. 0.582250
\(569\) 551671.i 1.70394i −0.523587 0.851972i \(-0.675407\pi\)
0.523587 0.851972i \(-0.324593\pi\)
\(570\) −257164. 59136.6i −0.791516 0.182015i
\(571\) 325456. 0.998205 0.499102 0.866543i \(-0.333663\pi\)
0.499102 + 0.866543i \(0.333663\pi\)
\(572\) 154051.i 0.470838i
\(573\) −23640.5 + 102804.i −0.0720024 + 0.313113i
\(574\) −361615. −1.09755
\(575\) 12782.0i 0.0386602i
\(576\) −2986.86 1450.40i −0.00900264 0.00437161i
\(577\) −262408. −0.788181 −0.394091 0.919072i \(-0.628940\pi\)
−0.394091 + 0.919072i \(0.628940\pi\)
\(578\) 82202.3i 0.246053i
\(579\) −247811. 56985.9i −0.739203 0.169985i
\(580\) −629636. −1.87169
\(581\) 160855.i 0.476522i
\(582\) −143676. + 624793.i −0.424167 + 1.84455i
\(583\) −100779. −0.296505
\(584\) 975106.i 2.85908i
\(585\) 49829.7 102616.i 0.145605 0.299851i
\(586\) −500259. −1.45680
\(587\) 427538.i 1.24079i 0.784290 + 0.620395i \(0.213028\pi\)
−0.784290 + 0.620395i \(0.786972\pi\)
\(588\) 585860. + 134723.i 1.69449 + 0.389660i
\(589\) −118921. −0.342790
\(590\) 406696.i 1.16833i
\(591\) 107529. 467605.i 0.307858 1.33876i
\(592\) 33559.3 0.0957568
\(593\) 63018.6i 0.179209i −0.995977 0.0896043i \(-0.971440\pi\)
0.995977 0.0896043i \(-0.0285603\pi\)
\(594\) −139120. 112060.i −0.394290 0.317599i
\(595\) −80393.0 −0.227083
\(596\) 716235.i 2.01634i
\(597\) 442628. + 101785.i 1.24191 + 0.285586i
\(598\) 92868.9 0.259698
\(599\) 634561.i 1.76856i 0.466959 + 0.884279i \(0.345350\pi\)
−0.466959 + 0.884279i \(0.654650\pi\)
\(600\) 36323.9 157959.i 0.100900 0.438776i
\(601\) −474806. −1.31452 −0.657260 0.753664i \(-0.728285\pi\)
−0.657260 + 0.753664i \(0.728285\pi\)
\(602\) 252619.i 0.697065i
\(603\) 310008. + 150538.i 0.852587 + 0.414009i
\(604\) 886906. 2.43111
\(605\) 150776.i 0.411929i
\(606\) −703197. 161705.i −1.91484 0.440330i
\(607\) −163861. −0.444731 −0.222365 0.974963i \(-0.571378\pi\)
−0.222365 + 0.974963i \(0.571378\pi\)
\(608\) 375809.i 1.01662i
\(609\) 73675.1 320386.i 0.198649 0.863852i
\(610\) 59386.0 0.159597
\(611\) 246681.i 0.660775i
\(612\) 392247. 807771.i 1.04727 2.15668i
\(613\) 328099. 0.873139 0.436570 0.899670i \(-0.356193\pi\)
0.436570 + 0.899670i \(0.356193\pi\)
\(614\) 461091.i 1.22307i
\(615\) 210739. + 48461.0i 0.557180 + 0.128127i
\(616\) 114283. 0.301175
\(617\) 405778.i 1.06590i −0.846146 0.532952i \(-0.821083\pi\)
0.846146 0.532952i \(-0.178917\pi\)
\(618\) −178076. + 774389.i −0.466261 + 2.02760i
\(619\) 184587. 0.481747 0.240874 0.970557i \(-0.422566\pi\)
0.240874 + 0.970557i \(0.422566\pi\)
\(620\) 131533.i 0.342177i
\(621\) 46762.0 58053.8i 0.121258 0.150538i
\(622\) −135593. −0.350474
\(623\) 149411.i 0.384952i
\(624\) −511579. 117641.i −1.31384 0.302127i
\(625\) 15625.0 0.0400000
\(626\) 452393.i 1.15443i
\(627\) −24933.9 + 108429.i −0.0634243 + 0.275810i
\(628\) −50346.2 −0.127658
\(629\) 22330.0i 0.0564401i
\(630\) 137080. + 66565.0i 0.345377 + 0.167712i
\(631\) 712031. 1.78830 0.894149 0.447769i \(-0.147781\pi\)
0.894149 + 0.447769i \(0.147781\pi\)
\(632\) 917322.i 2.29661i
\(633\) −590548. 135801.i −1.47383 0.338918i
\(634\) 673602. 1.67581
\(635\) 320300.i 0.794346i
\(636\) −215200. + 935828.i −0.532021 + 2.31357i
\(637\) 233829. 0.576262
\(638\) 383522.i 0.942212i
\(639\) 46132.4 95002.4i 0.112981 0.232666i
\(640\) 181525. 0.443176
\(641\) 388033.i 0.944393i −0.881493 0.472196i \(-0.843461\pi\)
0.881493 0.472196i \(-0.156539\pi\)
\(642\) −44822.9 10307.3i −0.108750 0.0250079i
\(643\) −276131. −0.667872 −0.333936 0.942596i \(-0.608377\pi\)
−0.333936 + 0.942596i \(0.608377\pi\)
\(644\) 85874.2i 0.207057i
\(645\) −33854.2 + 147220.i −0.0813753 + 0.353872i
\(646\) −807952. −1.93607
\(647\) 603278.i 1.44115i 0.693378 + 0.720574i \(0.256122\pi\)
−0.693378 + 0.720574i \(0.743878\pi\)
\(648\) −742859. + 584536.i −1.76912 + 1.39207i
\(649\) 171477. 0.407114
\(650\) 113525.i 0.268697i
\(651\) 66929.6 + 15390.9i 0.157927 + 0.0363164i
\(652\) −288701. −0.679131
\(653\) 625614.i 1.46717i −0.679598 0.733584i \(-0.737846\pi\)
0.679598 0.733584i \(-0.262154\pi\)
\(654\) −13210.2 + 57446.4i −0.0308854 + 0.134310i
\(655\) 4480.67 0.0104438
\(656\) 995053.i 2.31227i
\(657\) 493152. + 239471.i 1.14248 + 0.554781i
\(658\) 329529. 0.761100
\(659\) 706201.i 1.62614i −0.582167 0.813069i \(-0.697795\pi\)
0.582167 0.813069i \(-0.302205\pi\)
\(660\) −119928. 27578.3i −0.275317 0.0633110i
\(661\) −296423. −0.678437 −0.339219 0.940708i \(-0.610163\pi\)
−0.339219 + 0.940708i \(0.610163\pi\)
\(662\) 516769.i 1.17918i
\(663\) 78277.1 340399.i 0.178077 0.774392i
\(664\) −992975. −2.25218
\(665\) 94908.8i 0.214617i
\(666\) 18489.1 38075.4i 0.0416839 0.0858414i
\(667\) −160041. −0.359733
\(668\) 753782.i 1.68925i
\(669\) −496379. 114146.i −1.10908 0.255040i
\(670\) 342962. 0.764006
\(671\) 25039.1i 0.0556127i
\(672\) 48637.9 211508.i 0.107705 0.468370i
\(673\) 52622.9 0.116184 0.0580918 0.998311i \(-0.481498\pi\)
0.0580918 + 0.998311i \(0.481498\pi\)
\(674\) 633896.i 1.39540i
\(675\) −70966.0 57162.8i −0.155755 0.125460i
\(676\) 456754. 0.999515
\(677\) 341720.i 0.745578i −0.927916 0.372789i \(-0.878401\pi\)
0.927916 0.372789i \(-0.121599\pi\)
\(678\) 217621. + 50043.4i 0.473413 + 0.108865i
\(679\) −230586. −0.500143
\(680\) 496274.i 1.07326i
\(681\) 38354.5 166790.i 0.0827032 0.359646i
\(682\) −80118.8 −0.172253
\(683\) 247237.i 0.529996i 0.964249 + 0.264998i \(0.0853714\pi\)
−0.964249 + 0.264998i \(0.914629\pi\)
\(684\) 953622. + 463071.i 2.03828 + 0.989774i
\(685\) −327334. −0.697606
\(686\) 716379.i 1.52228i
\(687\) −693616. 159502.i −1.46962 0.337950i
\(688\) 695130. 1.46855
\(689\) 373509.i 0.786796i
\(690\) 16625.5 72298.2i 0.0349201 0.151855i
\(691\) 471510. 0.987496 0.493748 0.869605i \(-0.335627\pi\)
0.493748 + 0.869605i \(0.335627\pi\)
\(692\) 739968.i 1.54526i
\(693\) 28066.0 57797.6i 0.0584406 0.120349i
\(694\) −42836.8 −0.0889401
\(695\) 20706.5i 0.0428683i
\(696\) 1.97778e6 + 454803.i 4.08280 + 0.938869i
\(697\) 662097. 1.36288
\(698\) 470189.i 0.965076i
\(699\) −73241.5 + 318501.i −0.149900 + 0.651863i
\(700\) 104974. 0.214233
\(701\) 530831.i 1.08024i 0.841588 + 0.540120i \(0.181621\pi\)
−0.841588 + 0.540120i \(0.818379\pi\)
\(702\) −415321. + 515609.i −0.842771 + 1.04628i
\(703\) −26361.9 −0.0533416
\(704\) 1393.23i 0.00281111i
\(705\) −192041. 44161.1i −0.386380 0.0888508i
\(706\) 261146. 0.523931
\(707\) 259522.i 0.519200i
\(708\) 366167. 1.59233e6i 0.730487 3.17662i
\(709\) −938943. −1.86787 −0.933936 0.357441i \(-0.883649\pi\)
−0.933936 + 0.357441i \(0.883649\pi\)
\(710\) 105101.i 0.208493i
\(711\) −463928. 225280.i −0.917722 0.445639i
\(712\) −922329. −1.81939
\(713\) 33433.1i 0.0657653i
\(714\) 454722. + 104566.i 0.891968 + 0.205114i
\(715\) −47865.8 −0.0936296
\(716\) 1.16568e6i 2.27380i
\(717\) −94361.3 + 410343.i −0.183551 + 0.798195i
\(718\) −1.10257e6 −2.13874
\(719\) 918433.i 1.77660i −0.459263 0.888300i \(-0.651886\pi\)
0.459263 0.888300i \(-0.348114\pi\)
\(720\) −183166. + 377202.i −0.353330 + 0.727628i
\(721\) −285796. −0.549776
\(722\) 14234.3i 0.0273062i
\(723\) 268802. + 61812.8i 0.514228 + 0.118250i
\(724\) −649681. −1.23943
\(725\) 195637.i 0.372199i
\(726\) 196113. 852826.i 0.372078 1.61803i
\(727\) −314965. −0.595928 −0.297964 0.954577i \(-0.596308\pi\)
−0.297964 + 0.954577i \(0.596308\pi\)
\(728\) 423558.i 0.799190i
\(729\) 113190. + 519247.i 0.212987 + 0.977055i
\(730\) 545574. 1.02378
\(731\) 462532.i 0.865580i
\(732\) −232513. 53467.9i −0.433935 0.0997863i
\(733\) 958567. 1.78408 0.892040 0.451956i \(-0.149274\pi\)
0.892040 + 0.451956i \(0.149274\pi\)
\(734\) 1.03662e6i 1.92411i
\(735\) 41860.3 182035.i 0.0774868 0.336962i
\(736\) −105654. −0.195043
\(737\) 144604.i 0.266224i
\(738\) −1.12896e6 548213.i −2.07284 1.00655i
\(739\) 197682. 0.361976 0.180988 0.983485i \(-0.442071\pi\)
0.180988 + 0.983485i \(0.442071\pi\)
\(740\) 29157.7i 0.0532463i
\(741\) 401861. + 92410.8i 0.731880 + 0.168301i
\(742\) −498952. −0.906255
\(743\) 81590.4i 0.147796i −0.997266 0.0738978i \(-0.976456\pi\)
0.997266 0.0738978i \(-0.0235439\pi\)
\(744\) −95009.7 + 413163.i −0.171641 + 0.746407i
\(745\) 222545. 0.400964
\(746\) 740349.i 1.33033i
\(747\) −243859. + 502189.i −0.437016 + 0.899965i
\(748\) −376788. −0.673431
\(749\) 16542.3i 0.0294872i
\(750\) −88378.6 20323.3i −0.157118 0.0361303i
\(751\) 132505. 0.234938 0.117469 0.993077i \(-0.462522\pi\)
0.117469 + 0.993077i \(0.462522\pi\)
\(752\) 906762.i 1.60346i
\(753\) −231557. + 1.00696e6i −0.408383 + 1.77591i
\(754\) 1.42142e6 2.50022
\(755\) 275575.i 0.483443i
\(756\) −476775. 384040.i −0.834199 0.671943i
\(757\) 997153. 1.74008 0.870042 0.492978i \(-0.164092\pi\)
0.870042 + 0.492978i \(0.164092\pi\)
\(758\) 1.07174e6i 1.86532i
\(759\) −30483.3 7009.85i −0.0529150 0.0121682i
\(760\) 585881. 1.01434
\(761\) 316363.i 0.546281i 0.961974 + 0.273140i \(0.0880623\pi\)
−0.961974 + 0.273140i \(0.911938\pi\)
\(762\) 416612. 1.81169e6i 0.717499 3.12014i
\(763\) −21201.2 −0.0364175
\(764\) 421745.i 0.722542i
\(765\) −250986. 121877.i −0.428872 0.208257i
\(766\) −637283. −1.08611
\(767\) 635532.i 1.08031i
\(768\) −1.03250e6 237430.i −1.75052 0.402544i
\(769\) 584632. 0.988621 0.494311 0.869285i \(-0.335421\pi\)
0.494311 + 0.869285i \(0.335421\pi\)
\(770\) 63941.5i 0.107845i
\(771\) 180726. 785913.i 0.304027 1.32210i
\(772\) 1.01663e6 1.70579
\(773\) 662736.i 1.10913i 0.832141 + 0.554564i \(0.187115\pi\)
−0.832141 + 0.554564i \(0.812885\pi\)
\(774\) 382974. 788675.i 0.639275 1.31649i
\(775\) −40869.2 −0.0680444
\(776\) 1.42343e6i 2.36381i
\(777\) 14836.7 + 3411.80i 0.0245751 + 0.00565121i
\(778\) 775367. 1.28100
\(779\) 781646.i 1.28806i
\(780\) −102211. + 444480.i −0.168000 + 0.730572i
\(781\) −44314.2 −0.0726509
\(782\) 227145.i 0.371441i
\(783\) 715723. 888551.i 1.16740 1.44930i
\(784\) −859520. −1.39838
\(785\) 15643.3i 0.0253857i
\(786\) −25343.7 5827.96i −0.0410228 0.00943348i
\(787\) −773806. −1.24935 −0.624673 0.780886i \(-0.714768\pi\)
−0.624673 + 0.780886i \(0.714768\pi\)
\(788\) 1.91831e6i 3.08935i
\(789\) −229718. + 998959.i −0.369012 + 1.60470i
\(790\) −513244. −0.822374
\(791\) 80315.0i 0.128364i
\(792\) 356790. + 173254.i 0.568804 + 0.276207i
\(793\) −92800.7 −0.147572
\(794\) 946246.i 1.50094i
\(795\) 290776. + 66865.9i 0.460070 + 0.105796i
\(796\) −1.81584e6 −2.86584
\(797\) 481401.i 0.757863i −0.925425 0.378932i \(-0.876292\pi\)
0.925425 0.378932i \(-0.123708\pi\)
\(798\) −123447. + 536826.i −0.193854 + 0.843001i
\(799\) −603350. −0.945096
\(800\) 129153.i 0.201802i
\(801\) −226509. + 466460.i −0.353038 + 0.727025i
\(802\) −154869. −0.240777
\(803\) 230032.i 0.356745i
\(804\) −1.34279e6 308784.i −2.07729 0.477686i
\(805\) 26682.4 0.0411749
\(806\) 296938.i 0.457084i
\(807\) 79130.4 344109.i 0.121506 0.528384i
\(808\) 1.60205e6 2.45389
\(809\) 391432.i 0.598081i −0.954240 0.299040i \(-0.903333\pi\)
0.954240 0.299040i \(-0.0966665\pi\)
\(810\) 327049. + 415631.i 0.498475 + 0.633487i
\(811\) 1.15536e6 1.75661 0.878305 0.478101i \(-0.158675\pi\)
0.878305 + 0.478101i \(0.158675\pi\)
\(812\) 1.31436e6i 1.99343i
\(813\) 460916. + 105991.i 0.697333 + 0.160357i
\(814\) −17760.4 −0.0268043
\(815\) 89703.7i 0.135050i
\(816\) −287735. + 1.25125e6i −0.432127 + 1.87917i
\(817\) −546047. −0.818061
\(818\) 856694.i 1.28032i
\(819\) −214211. 104019.i −0.319355 0.155076i
\(820\) −864542. −1.28576
\(821\) 299979.i 0.445045i −0.974928 0.222522i \(-0.928571\pi\)
0.974928 0.222522i \(-0.0714291\pi\)
\(822\) 1.85148e6 + 425760.i 2.74015 + 0.630118i
\(823\) 32530.4 0.0480275 0.0240138 0.999712i \(-0.492355\pi\)
0.0240138 + 0.999712i \(0.492355\pi\)
\(824\) 1.76425e6i 2.59839i
\(825\) −8568.97 + 37263.4i −0.0125899 + 0.0547488i
\(826\) 848975. 1.24433
\(827\) 764819.i 1.11827i −0.829076 0.559136i \(-0.811133\pi\)
0.829076 0.559136i \(-0.188867\pi\)
\(828\) −130186. + 268098.i −0.189891 + 0.391051i
\(829\) −137003. −0.199352 −0.0996758 0.995020i \(-0.531781\pi\)
−0.0996758 + 0.995020i \(0.531781\pi\)
\(830\) 555572.i 0.806462i
\(831\) −251794. 57901.8i −0.364622 0.0838475i
\(832\) 5163.63 0.00745947
\(833\) 571916.i 0.824218i
\(834\) 26932.7 117121.i 0.0387211 0.168384i
\(835\) −234211. −0.335919
\(836\) 444820.i 0.636461i
\(837\) 185621. + 149517.i 0.264957 + 0.213422i
\(838\) −691757. −0.985066
\(839\) 1.12228e6i 1.59433i 0.603759 + 0.797167i \(0.293669\pi\)
−0.603759 + 0.797167i \(0.706331\pi\)
\(840\) −329739. 75825.7i −0.467317 0.107463i
\(841\) −1.74225e6 −2.46331
\(842\) 532222.i 0.750704i
\(843\) −168492. + 732711.i −0.237096 + 1.03105i
\(844\) 2.42267e6 3.40103
\(845\) 141920.i 0.198761i
\(846\) 1.02879e6 + 499571.i 1.43742 + 0.698001i
\(847\) 314744. 0.438723
\(848\) 1.37296e6i 1.90927i
\(849\) 1.11146e6 + 255589.i 1.54199 + 0.354590i
\(850\) −277666. −0.384313
\(851\) 7411.31i 0.0102338i
\(852\) −94627.3 + 411500.i −0.130358 + 0.566879i
\(853\) 43550.6 0.0598544 0.0299272 0.999552i \(-0.490472\pi\)
0.0299272 + 0.999552i \(0.490472\pi\)
\(854\) 123968.i 0.169978i
\(855\) 143883. 296304.i 0.196824 0.405327i
\(856\) 102118. 0.139365
\(857\) 300075.i 0.408572i −0.978911 0.204286i \(-0.934513\pi\)
0.978911 0.204286i \(-0.0654872\pi\)
\(858\) 270740. + 62258.6i 0.367771 + 0.0845716i
\(859\) −498647. −0.675782 −0.337891 0.941185i \(-0.609713\pi\)
−0.337891 + 0.941185i \(0.609713\pi\)
\(860\) 603957.i 0.816599i
\(861\) 101162. 439916.i 0.136462 0.593422i
\(862\) −776744. −1.04535
\(863\) 13487.9i 0.0181102i 0.999959 + 0.00905512i \(0.00288237\pi\)
−0.999959 + 0.00905512i \(0.997118\pi\)
\(864\) 472497. 586592.i 0.632953 0.785794i
\(865\) 229919. 0.307286
\(866\) 827252.i 1.10307i
\(867\) −100002. 22996.1i −0.133036 0.0305926i
\(868\) −274573. −0.364434
\(869\) 216401.i 0.286562i
\(870\) 254463. 1.10657e6i 0.336192 1.46198i
\(871\) −535936. −0.706443
\(872\) 130877.i 0.172119i
\(873\) −719888. 349572.i −0.944575 0.458678i
\(874\) 268158. 0.351050
\(875\) 32617.0i 0.0426018i
\(876\) −2.13607e6 491205.i −2.78360 0.640109i
\(877\) −944732. −1.22831 −0.614157 0.789184i \(-0.710504\pi\)
−0.614157 + 0.789184i \(0.710504\pi\)
\(878\) 1.85720e6i 2.40919i
\(879\) 139948. 608582.i 0.181129 0.787664i
\(880\) 175947. 0.227205
\(881\) 1.28495e6i 1.65552i 0.561082 + 0.827760i \(0.310385\pi\)
−0.561082 + 0.827760i \(0.689615\pi\)
\(882\) −473543. + 975187.i −0.608727 + 1.25358i
\(883\) −1.22382e6 −1.56963 −0.784815 0.619731i \(-0.787242\pi\)
−0.784815 + 0.619731i \(0.787242\pi\)
\(884\) 1.39646e6i 1.78700i
\(885\) −494760. 113773.i −0.631695 0.145263i
\(886\) −254946. −0.324774
\(887\) 755435.i 0.960173i 0.877221 + 0.480087i \(0.159395\pi\)
−0.877221 + 0.480087i \(0.840605\pi\)
\(888\) −21061.4 + 91588.4i −0.0267092 + 0.116149i
\(889\) 668624. 0.846015
\(890\) 516045.i 0.651490i
\(891\) 175244. 137895.i 0.220743 0.173697i
\(892\) 2.03636e6 2.55932
\(893\) 712291.i 0.893212i
\(894\) −1.25877e6 289462.i −1.57496 0.362173i
\(895\) 362193. 0.452162
\(896\) 378931.i 0.472002i
\(897\) −25980.1 + 112978.i −0.0322891 + 0.140414i
\(898\) −59342.8 −0.0735894
\(899\) 511714.i 0.633152i
\(900\) 327729. + 159142.i 0.404603 + 0.196472i
\(901\) 913553. 1.12534
\(902\) 526607.i 0.647252i
\(903\) 307319. + 70670.2i 0.376890 + 0.0866685i
\(904\) −495793. −0.606685
\(905\) 201866.i 0.246471i
\(906\) −358437. + 1.55871e6i −0.436674 + 1.89894i
\(907\) 1.28653e6 1.56389 0.781946 0.623346i \(-0.214227\pi\)
0.781946 + 0.623346i \(0.214227\pi\)
\(908\) 684242.i 0.829924i
\(909\) 393439. 810225.i 0.476156 0.980568i
\(910\) −236982. −0.286175
\(911\) 501962.i 0.604831i −0.953176 0.302416i \(-0.902207\pi\)
0.953176 0.302416i \(-0.0977931\pi\)
\(912\) −1.47718e6 339688.i −1.77600 0.408404i
\(913\) 234248. 0.281018
\(914\) 1.30254e6i 1.55919i
\(915\) −16613.3 + 72245.1i −0.0198432 + 0.0862911i
\(916\) 2.84551e6 3.39132
\(917\) 9353.35i 0.0111232i
\(918\) 1.26111e6 + 1.01582e6i 1.49647 + 1.20540i
\(919\) −252142. −0.298548 −0.149274 0.988796i \(-0.547694\pi\)
−0.149274 + 0.988796i \(0.547694\pi\)
\(920\) 164713.i 0.194604i
\(921\) 560933. + 128990.i 0.661289 + 0.152068i
\(922\) 251452. 0.295797
\(923\) 164238.i 0.192784i
\(924\) −57569.4 + 250348.i −0.0674291 + 0.293225i
\(925\) −9059.72 −0.0105884
\(926\) 1.48539e6i 1.73228i
\(927\) −892253. 433271.i −1.03831 0.504197i
\(928\) −1.61710e6 −1.87776
\(929\) 1.28900e6i 1.49356i −0.665074 0.746778i \(-0.731600\pi\)
0.665074 0.746778i \(-0.268400\pi\)
\(930\) 231166. + 53158.2i 0.267274 + 0.0614616i
\(931\) 675181. 0.778970
\(932\) 1.30662e6i 1.50425i
\(933\) 37932.1 164953.i 0.0435757 0.189495i
\(934\) −1.98104e6 −2.27090
\(935\) 117073.i 0.133917i
\(936\) 642120. 1.32234e6i 0.732933 1.50936i
\(937\) 596815. 0.679768 0.339884 0.940467i \(-0.389612\pi\)
0.339884 + 0.940467i \(0.389612\pi\)
\(938\) 715930.i 0.813701i
\(939\) 550351. + 126557.i 0.624178 + 0.143534i
\(940\) 787832. 0.891616
\(941\) 1.55891e6i 1.76052i −0.474493 0.880259i \(-0.657369\pi\)
0.474493 0.880259i \(-0.342631\pi\)
\(942\) 20347.1 88482.2i 0.0229298 0.0997136i
\(943\) −219749. −0.247118
\(944\) 2.33612e6i 2.62150i
\(945\) −119327. + 148141.i −0.133621 + 0.165887i
\(946\) −367880. −0.411078
\(947\) 226143.i 0.252164i 0.992020 + 0.126082i \(0.0402402\pi\)
−0.992020 + 0.126082i \(0.959760\pi\)
\(948\) 2.00949e6 + 462096.i 2.23599 + 0.514180i
\(949\) −852551. −0.946647
\(950\) 327802.i 0.363215i
\(951\) −188440. + 819459.i −0.208359 + 0.906080i
\(952\) −1.03597e6 −1.14307
\(953\) 1.71407e6i 1.88731i 0.330927 + 0.943656i \(0.392639\pi\)
−0.330927 + 0.943656i \(0.607361\pi\)
\(954\) −1.55772e6 756418.i −1.71156 0.831122i
\(955\) −131042. −0.143683
\(956\) 1.68340e6i 1.84192i
\(957\) −466567. 107290.i −0.509436 0.117148i
\(958\) 1.16051e6 1.26449
\(959\) 683307.i 0.742982i
\(960\) 924.397 4019.87i 0.00100303 0.00436184i
\(961\) −816622. −0.884249
\(962\) 65824.1i 0.0711271i
\(963\) 25078.4 51645.1i 0.0270426 0.0556899i
\(964\) −1.10274e6 −1.18664
\(965\) 315880.i 0.339210i
\(966\) −150922. 34705.5i −0.161733 0.0371915i
\(967\) 1.48328e6 1.58625 0.793123 0.609061i \(-0.208454\pi\)
0.793123 + 0.609061i \(0.208454\pi\)
\(968\) 1.94295e6i 2.07353i
\(969\) 226025. 982900.i 0.240718 1.04680i
\(970\) −796413. −0.846438
\(971\) 25773.5i 0.0273360i −0.999907 0.0136680i \(-0.995649\pi\)
0.999907 0.0136680i \(-0.00435080\pi\)
\(972\) −906277. 1.92177e6i −0.959242 2.03408i
\(973\) 43224.5 0.0456567
\(974\) 503449.i 0.530686i
\(975\) 138106. + 31758.5i 0.145280 + 0.0334081i
\(976\) 341121. 0.358104
\(977\) 1.63957e6i 1.71767i 0.512249 + 0.858837i \(0.328813\pi\)
−0.512249 + 0.858837i \(0.671187\pi\)
\(978\) 116677. 507385.i 0.121985 0.530469i
\(979\) 217582. 0.227016
\(980\) 746786.i 0.777578i
\(981\) −66189.9 32141.3i −0.0687786 0.0333984i
\(982\) −3.10670e6 −3.22163
\(983\) 1.02737e6i 1.06322i 0.846991 + 0.531608i \(0.178412\pi\)
−0.846991 + 0.531608i \(0.821588\pi\)
\(984\) 2.71565e6 + 624482.i 2.80468 + 0.644955i
\(985\) 596047. 0.614339
\(986\) 3.47660e6i 3.57603i
\(987\) −92185.8 + 400883.i −0.0946302 + 0.411513i
\(988\) −1.64860e6 −1.68889
\(989\) 153514.i 0.156948i
\(990\) 96936.2 199625.i 0.0989044 0.203678i
\(991\) 101778. 0.103635 0.0518174 0.998657i \(-0.483499\pi\)
0.0518174 + 0.998657i \(0.483499\pi\)
\(992\) 337817.i 0.343288i
\(993\) −628667. 144566.i −0.637562 0.146612i
\(994\) −219398. −0.222054
\(995\) 564210.i 0.569894i
\(996\) 500206. 2.17521e6i 0.504232 2.19272i
\(997\) −466189. −0.468999 −0.234499 0.972116i \(-0.575345\pi\)
−0.234499 + 0.972116i \(0.575345\pi\)
\(998\) 2.03948e6i 2.04766i
\(999\) 41147.7 + 33144.3i 0.0412301 + 0.0332106i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 15.5.c.a.11.1 6
3.2 odd 2 inner 15.5.c.a.11.6 yes 6
4.3 odd 2 240.5.l.d.161.1 6
5.2 odd 4 75.5.d.d.74.11 12
5.3 odd 4 75.5.d.d.74.2 12
5.4 even 2 75.5.c.i.26.6 6
12.11 even 2 240.5.l.d.161.2 6
15.2 even 4 75.5.d.d.74.1 12
15.8 even 4 75.5.d.d.74.12 12
15.14 odd 2 75.5.c.i.26.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.5.c.a.11.1 6 1.1 even 1 trivial
15.5.c.a.11.6 yes 6 3.2 odd 2 inner
75.5.c.i.26.1 6 15.14 odd 2
75.5.c.i.26.6 6 5.4 even 2
75.5.d.d.74.1 12 15.2 even 4
75.5.d.d.74.2 12 5.3 odd 4
75.5.d.d.74.11 12 5.2 odd 4
75.5.d.d.74.12 12 15.8 even 4
240.5.l.d.161.1 6 4.3 odd 2
240.5.l.d.161.2 6 12.11 even 2