Properties

Label 240.5.l.d.161.2
Level $240$
Weight $5$
Character 240.161
Analytic conductor $24.809$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,5,Mod(161,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.161"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 240.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.8087911401\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 73x^{4} + 1096x^{2} + 180 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.2
Root \(7.20990i\) of defining polynomial
Character \(\chi\) \(=\) 240.161
Dual form 240.5.l.d.161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.77108 + 2.01697i) q^{3} -11.1803i q^{5} -23.3388 q^{7} +(72.8637 - 35.3820i) q^{9} -33.9875i q^{11} -125.965 q^{13} +(22.5504 + 98.0636i) q^{15} -308.095i q^{17} +363.724 q^{19} +(204.707 - 47.0738i) q^{21} -102.256i q^{23} -125.000 q^{25} +(-567.728 + 457.302i) q^{27} +1565.10i q^{29} -326.954 q^{31} +(68.5518 + 298.107i) q^{33} +260.936i q^{35} +72.4778 q^{37} +(1104.85 - 254.068i) q^{39} +2149.01i q^{41} -1501.27 q^{43} +(-395.583 - 814.640i) q^{45} +1958.33i q^{47} -1856.30 q^{49} +(621.418 + 2702.32i) q^{51} +2965.17i q^{53} -379.992 q^{55} +(-3190.25 + 733.621i) q^{57} +5045.29i q^{59} +736.716 q^{61} +(-1700.55 + 825.775i) q^{63} +1408.34i q^{65} -4254.63 q^{67} +(206.248 + 896.898i) q^{69} -1303.84i q^{71} +6768.14 q^{73} +(1096.38 - 252.121i) q^{75} +793.229i q^{77} +6367.07 q^{79} +(4057.23 - 5156.13i) q^{81} +6892.17i q^{83} -3444.60 q^{85} +(-3156.76 - 13727.6i) q^{87} -6401.82i q^{89} +2939.88 q^{91} +(2867.74 - 659.456i) q^{93} -4066.56i q^{95} -9879.94 q^{97} +(-1202.55 - 2476.45i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 8 q^{3} - 76 q^{7} + 118 q^{9} - 424 q^{13} - 50 q^{15} + 244 q^{19} - 876 q^{21} - 750 q^{25} + 352 q^{27} - 3772 q^{31} + 4420 q^{33} + 1896 q^{37} + 1336 q^{39} + 7384 q^{43} + 1900 q^{45} - 1318 q^{49}+ \cdots - 9680 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.77108 + 2.01697i −0.974564 + 0.224108i
\(4\) 0 0
\(5\) 11.1803i 0.447214i
\(6\) 0 0
\(7\) −23.3388 −0.476303 −0.238151 0.971228i \(-0.576541\pi\)
−0.238151 + 0.971228i \(0.576541\pi\)
\(8\) 0 0
\(9\) 72.8637 35.3820i 0.899551 0.436815i
\(10\) 0 0
\(11\) 33.9875i 0.280888i −0.990089 0.140444i \(-0.955147\pi\)
0.990089 0.140444i \(-0.0448531\pi\)
\(12\) 0 0
\(13\) −125.965 −0.745357 −0.372678 0.927961i \(-0.621561\pi\)
−0.372678 + 0.927961i \(0.621561\pi\)
\(14\) 0 0
\(15\) 22.5504 + 98.0636i 0.100224 + 0.435838i
\(16\) 0 0
\(17\) 308.095i 1.06607i −0.846093 0.533036i \(-0.821051\pi\)
0.846093 0.533036i \(-0.178949\pi\)
\(18\) 0 0
\(19\) 363.724 1.00755 0.503773 0.863836i \(-0.331945\pi\)
0.503773 + 0.863836i \(0.331945\pi\)
\(20\) 0 0
\(21\) 204.707 47.0738i 0.464188 0.106743i
\(22\) 0 0
\(23\) 102.256i 0.193301i −0.995318 0.0966506i \(-0.969187\pi\)
0.995318 0.0966506i \(-0.0308129\pi\)
\(24\) 0 0
\(25\) −125.000 −0.200000
\(26\) 0 0
\(27\) −567.728 + 457.302i −0.778777 + 0.627301i
\(28\) 0 0
\(29\) 1565.10i 1.86100i 0.366296 + 0.930498i \(0.380626\pi\)
−0.366296 + 0.930498i \(0.619374\pi\)
\(30\) 0 0
\(31\) −326.954 −0.340222 −0.170111 0.985425i \(-0.554413\pi\)
−0.170111 + 0.985425i \(0.554413\pi\)
\(32\) 0 0
\(33\) 68.5518 + 298.107i 0.0629493 + 0.273744i
\(34\) 0 0
\(35\) 260.936i 0.213009i
\(36\) 0 0
\(37\) 72.4778 0.0529421 0.0264711 0.999650i \(-0.491573\pi\)
0.0264711 + 0.999650i \(0.491573\pi\)
\(38\) 0 0
\(39\) 1104.85 254.068i 0.726398 0.167040i
\(40\) 0 0
\(41\) 2149.01i 1.27841i 0.769036 + 0.639205i \(0.220736\pi\)
−0.769036 + 0.639205i \(0.779264\pi\)
\(42\) 0 0
\(43\) −1501.27 −0.811934 −0.405967 0.913888i \(-0.633065\pi\)
−0.405967 + 0.913888i \(0.633065\pi\)
\(44\) 0 0
\(45\) −395.583 814.640i −0.195350 0.402292i
\(46\) 0 0
\(47\) 1958.33i 0.886522i 0.896393 + 0.443261i \(0.146178\pi\)
−0.896393 + 0.443261i \(0.853822\pi\)
\(48\) 0 0
\(49\) −1856.30 −0.773136
\(50\) 0 0
\(51\) 621.418 + 2702.32i 0.238915 + 1.03896i
\(52\) 0 0
\(53\) 2965.17i 1.05560i 0.849370 + 0.527798i \(0.176982\pi\)
−0.849370 + 0.527798i \(0.823018\pi\)
\(54\) 0 0
\(55\) −379.992 −0.125617
\(56\) 0 0
\(57\) −3190.25 + 733.621i −0.981919 + 0.225799i
\(58\) 0 0
\(59\) 5045.29i 1.44938i 0.689075 + 0.724690i \(0.258017\pi\)
−0.689075 + 0.724690i \(0.741983\pi\)
\(60\) 0 0
\(61\) 736.716 0.197989 0.0989944 0.995088i \(-0.468437\pi\)
0.0989944 + 0.995088i \(0.468437\pi\)
\(62\) 0 0
\(63\) −1700.55 + 825.775i −0.428459 + 0.208056i
\(64\) 0 0
\(65\) 1408.34i 0.333334i
\(66\) 0 0
\(67\) −4254.63 −0.947791 −0.473895 0.880581i \(-0.657153\pi\)
−0.473895 + 0.880581i \(0.657153\pi\)
\(68\) 0 0
\(69\) 206.248 + 896.898i 0.0433203 + 0.188384i
\(70\) 0 0
\(71\) 1303.84i 0.258647i −0.991602 0.129323i \(-0.958719\pi\)
0.991602 0.129323i \(-0.0412805\pi\)
\(72\) 0 0
\(73\) 6768.14 1.27006 0.635029 0.772488i \(-0.280988\pi\)
0.635029 + 0.772488i \(0.280988\pi\)
\(74\) 0 0
\(75\) 1096.38 252.121i 0.194913 0.0448216i
\(76\) 0 0
\(77\) 793.229i 0.133788i
\(78\) 0 0
\(79\) 6367.07 1.02020 0.510100 0.860115i \(-0.329608\pi\)
0.510100 + 0.860115i \(0.329608\pi\)
\(80\) 0 0
\(81\) 4057.23 5156.13i 0.618385 0.785875i
\(82\) 0 0
\(83\) 6892.17i 1.00046i 0.865893 + 0.500230i \(0.166751\pi\)
−0.865893 + 0.500230i \(0.833249\pi\)
\(84\) 0 0
\(85\) −3444.60 −0.476762
\(86\) 0 0
\(87\) −3156.76 13727.6i −0.417064 1.81366i
\(88\) 0 0
\(89\) 6401.82i 0.808208i −0.914713 0.404104i \(-0.867583\pi\)
0.914713 0.404104i \(-0.132417\pi\)
\(90\) 0 0
\(91\) 2939.88 0.355016
\(92\) 0 0
\(93\) 2867.74 659.456i 0.331568 0.0762465i
\(94\) 0 0
\(95\) 4066.56i 0.450588i
\(96\) 0 0
\(97\) −9879.94 −1.05005 −0.525026 0.851086i \(-0.675944\pi\)
−0.525026 + 0.851086i \(0.675944\pi\)
\(98\) 0 0
\(99\) −1202.55 2476.45i −0.122696 0.252674i
\(100\) 0 0
\(101\) 11119.7i 1.09006i 0.838415 + 0.545032i \(0.183482\pi\)
−0.838415 + 0.545032i \(0.816518\pi\)
\(102\) 0 0
\(103\) 12245.5 1.15426 0.577128 0.816653i \(-0.304173\pi\)
0.577128 + 0.816653i \(0.304173\pi\)
\(104\) 0 0
\(105\) −526.301 2288.69i −0.0477370 0.207591i
\(106\) 0 0
\(107\) 708.790i 0.0619085i −0.999521 0.0309542i \(-0.990145\pi\)
0.999521 0.0309542i \(-0.00985462\pi\)
\(108\) 0 0
\(109\) −908.407 −0.0764588 −0.0382294 0.999269i \(-0.512172\pi\)
−0.0382294 + 0.999269i \(0.512172\pi\)
\(110\) 0 0
\(111\) −635.708 + 146.186i −0.0515955 + 0.0118647i
\(112\) 0 0
\(113\) 3441.26i 0.269501i −0.990880 0.134751i \(-0.956977\pi\)
0.990880 0.134751i \(-0.0430233\pi\)
\(114\) 0 0
\(115\) −1143.26 −0.0864469
\(116\) 0 0
\(117\) −9178.29 + 4456.91i −0.670487 + 0.325583i
\(118\) 0 0
\(119\) 7190.57i 0.507773i
\(120\) 0 0
\(121\) 13485.8 0.921102
\(122\) 0 0
\(123\) −4334.48 18849.1i −0.286502 1.24589i
\(124\) 0 0
\(125\) 1397.54i 0.0894427i
\(126\) 0 0
\(127\) −28648.5 −1.77621 −0.888106 0.459638i \(-0.847979\pi\)
−0.888106 + 0.459638i \(0.847979\pi\)
\(128\) 0 0
\(129\) 13167.7 3028.01i 0.791282 0.181961i
\(130\) 0 0
\(131\) 400.763i 0.0233531i −0.999932 0.0116766i \(-0.996283\pi\)
0.999932 0.0116766i \(-0.00371685\pi\)
\(132\) 0 0
\(133\) −8488.90 −0.479897
\(134\) 0 0
\(135\) 5112.80 + 6347.40i 0.280538 + 0.348280i
\(136\) 0 0
\(137\) 29277.7i 1.55989i −0.625845 0.779947i \(-0.715246\pi\)
0.625845 0.779947i \(-0.284754\pi\)
\(138\) 0 0
\(139\) −1852.04 −0.0958565 −0.0479282 0.998851i \(-0.515262\pi\)
−0.0479282 + 0.998851i \(0.515262\pi\)
\(140\) 0 0
\(141\) −3949.89 17176.6i −0.198677 0.863973i
\(142\) 0 0
\(143\) 4281.25i 0.209362i
\(144\) 0 0
\(145\) 17498.3 0.832263
\(146\) 0 0
\(147\) 16281.7 3744.10i 0.753470 0.173266i
\(148\) 0 0
\(149\) 19905.0i 0.896582i 0.893888 + 0.448291i \(0.147967\pi\)
−0.893888 + 0.448291i \(0.852033\pi\)
\(150\) 0 0
\(151\) 24648.2 1.08101 0.540506 0.841340i \(-0.318233\pi\)
0.540506 + 0.841340i \(0.318233\pi\)
\(152\) 0 0
\(153\) −10901.0 22448.9i −0.465676 0.958986i
\(154\) 0 0
\(155\) 3655.45i 0.152152i
\(156\) 0 0
\(157\) 1399.18 0.0567642 0.0283821 0.999597i \(-0.490964\pi\)
0.0283821 + 0.999597i \(0.490964\pi\)
\(158\) 0 0
\(159\) −5980.66 26007.8i −0.236568 1.02875i
\(160\) 0 0
\(161\) 2386.54i 0.0920699i
\(162\) 0 0
\(163\) −8023.34 −0.301981 −0.150991 0.988535i \(-0.548246\pi\)
−0.150991 + 0.988535i \(0.548246\pi\)
\(164\) 0 0
\(165\) 3332.94 766.432i 0.122422 0.0281518i
\(166\) 0 0
\(167\) 20948.5i 0.751138i 0.926794 + 0.375569i \(0.122553\pi\)
−0.926794 + 0.375569i \(0.877447\pi\)
\(168\) 0 0
\(169\) −12693.7 −0.444443
\(170\) 0 0
\(171\) 26502.3 12869.3i 0.906339 0.440111i
\(172\) 0 0
\(173\) 20564.6i 0.687112i 0.939132 + 0.343556i \(0.111632\pi\)
−0.939132 + 0.343556i \(0.888368\pi\)
\(174\) 0 0
\(175\) 2917.36 0.0952606
\(176\) 0 0
\(177\) −10176.2 44252.6i −0.324817 1.41251i
\(178\) 0 0
\(179\) 32395.6i 1.01107i −0.862807 0.505533i \(-0.831296\pi\)
0.862807 0.505533i \(-0.168704\pi\)
\(180\) 0 0
\(181\) 18055.4 0.551125 0.275562 0.961283i \(-0.411136\pi\)
0.275562 + 0.961283i \(0.411136\pi\)
\(182\) 0 0
\(183\) −6461.79 + 1485.93i −0.192953 + 0.0443708i
\(184\) 0 0
\(185\) 810.326i 0.0236764i
\(186\) 0 0
\(187\) −10471.4 −0.299447
\(188\) 0 0
\(189\) 13250.1 10672.9i 0.370934 0.298785i
\(190\) 0 0
\(191\) 11720.8i 0.321285i 0.987013 + 0.160642i \(0.0513566\pi\)
−0.987013 + 0.160642i \(0.948643\pi\)
\(192\) 0 0
\(193\) −28253.2 −0.758496 −0.379248 0.925295i \(-0.623817\pi\)
−0.379248 + 0.925295i \(0.623817\pi\)
\(194\) 0 0
\(195\) −2840.57 12352.6i −0.0747027 0.324855i
\(196\) 0 0
\(197\) 53312.1i 1.37370i 0.726797 + 0.686852i \(0.241008\pi\)
−0.726797 + 0.686852i \(0.758992\pi\)
\(198\) 0 0
\(199\) −50464.4 −1.27432 −0.637161 0.770731i \(-0.719891\pi\)
−0.637161 + 0.770731i \(0.719891\pi\)
\(200\) 0 0
\(201\) 37317.7 8581.47i 0.923683 0.212407i
\(202\) 0 0
\(203\) 36527.6i 0.886398i
\(204\) 0 0
\(205\) 24026.6 0.571722
\(206\) 0 0
\(207\) −3618.03 7450.77i −0.0844368 0.173884i
\(208\) 0 0
\(209\) 12362.1i 0.283008i
\(210\) 0 0
\(211\) 67329.0 1.51230 0.756148 0.654400i \(-0.227079\pi\)
0.756148 + 0.654400i \(0.227079\pi\)
\(212\) 0 0
\(213\) 2629.80 + 11436.1i 0.0579648 + 0.252068i
\(214\) 0 0
\(215\) 16784.7i 0.363108i
\(216\) 0 0
\(217\) 7630.72 0.162049
\(218\) 0 0
\(219\) −59363.9 + 13651.1i −1.23775 + 0.284630i
\(220\) 0 0
\(221\) 38809.2i 0.794604i
\(222\) 0 0
\(223\) 56592.7 1.13802 0.569011 0.822330i \(-0.307326\pi\)
0.569011 + 0.822330i \(0.307326\pi\)
\(224\) 0 0
\(225\) −9107.96 + 4422.75i −0.179910 + 0.0873630i
\(226\) 0 0
\(227\) 19015.9i 0.369033i −0.982829 0.184516i \(-0.940928\pi\)
0.982829 0.184516i \(-0.0590719\pi\)
\(228\) 0 0
\(229\) −79079.9 −1.50798 −0.753989 0.656887i \(-0.771873\pi\)
−0.753989 + 0.656887i \(0.771873\pi\)
\(230\) 0 0
\(231\) −1599.92 6957.47i −0.0299829 0.130385i
\(232\) 0 0
\(233\) 36312.6i 0.668876i −0.942418 0.334438i \(-0.891454\pi\)
0.942418 0.334438i \(-0.108546\pi\)
\(234\) 0 0
\(235\) 21894.8 0.396465
\(236\) 0 0
\(237\) −55846.0 + 12842.2i −0.994250 + 0.228635i
\(238\) 0 0
\(239\) 46783.7i 0.819028i 0.912304 + 0.409514i \(0.134302\pi\)
−0.912304 + 0.409514i \(0.865698\pi\)
\(240\) 0 0
\(241\) 30646.4 0.527649 0.263824 0.964571i \(-0.415016\pi\)
0.263824 + 0.964571i \(0.415016\pi\)
\(242\) 0 0
\(243\) −25186.5 + 53408.1i −0.426535 + 0.904471i
\(244\) 0 0
\(245\) 20754.0i 0.345757i
\(246\) 0 0
\(247\) −45816.6 −0.750981
\(248\) 0 0
\(249\) −13901.3 60451.8i −0.224211 0.975013i
\(250\) 0 0
\(251\) 114804.i 1.82226i 0.412120 + 0.911130i \(0.364788\pi\)
−0.412120 + 0.911130i \(0.635212\pi\)
\(252\) 0 0
\(253\) −3475.44 −0.0542960
\(254\) 0 0
\(255\) 30212.9 6947.66i 0.464635 0.106846i
\(256\) 0 0
\(257\) 89602.7i 1.35661i 0.734780 + 0.678305i \(0.237285\pi\)
−0.734780 + 0.678305i \(0.762715\pi\)
\(258\) 0 0
\(259\) −1691.55 −0.0252165
\(260\) 0 0
\(261\) 55376.3 + 114039.i 0.812911 + 1.67406i
\(262\) 0 0
\(263\) 113892.i 1.64658i 0.567620 + 0.823291i \(0.307864\pi\)
−0.567620 + 0.823291i \(0.692136\pi\)
\(264\) 0 0
\(265\) 33151.6 0.472077
\(266\) 0 0
\(267\) 12912.3 + 56150.9i 0.181126 + 0.787651i
\(268\) 0 0
\(269\) 39232.3i 0.542174i 0.962555 + 0.271087i \(0.0873832\pi\)
−0.962555 + 0.271087i \(0.912617\pi\)
\(270\) 0 0
\(271\) −52549.5 −0.715533 −0.357767 0.933811i \(-0.616462\pi\)
−0.357767 + 0.933811i \(0.616462\pi\)
\(272\) 0 0
\(273\) −25786.0 + 5929.66i −0.345986 + 0.0795618i
\(274\) 0 0
\(275\) 4248.44i 0.0561777i
\(276\) 0 0
\(277\) −28707.3 −0.374139 −0.187069 0.982347i \(-0.559899\pi\)
−0.187069 + 0.982347i \(0.559899\pi\)
\(278\) 0 0
\(279\) −23823.0 + 11568.3i −0.306047 + 0.148614i
\(280\) 0 0
\(281\) 83537.2i 1.05796i −0.848636 0.528978i \(-0.822576\pi\)
0.848636 0.528978i \(-0.177424\pi\)
\(282\) 0 0
\(283\) −126719. −1.58223 −0.791115 0.611667i \(-0.790499\pi\)
−0.791115 + 0.611667i \(0.790499\pi\)
\(284\) 0 0
\(285\) 8202.13 + 35668.1i 0.100980 + 0.439127i
\(286\) 0 0
\(287\) 50155.3i 0.608910i
\(288\) 0 0
\(289\) −11401.3 −0.136508
\(290\) 0 0
\(291\) 86657.7 19927.5i 1.02334 0.235325i
\(292\) 0 0
\(293\) 69385.0i 0.808222i 0.914710 + 0.404111i \(0.132419\pi\)
−0.914710 + 0.404111i \(0.867581\pi\)
\(294\) 0 0
\(295\) 56408.1 0.648182
\(296\) 0 0
\(297\) 15542.6 + 19295.7i 0.176202 + 0.218749i
\(298\) 0 0
\(299\) 12880.7i 0.144078i
\(300\) 0 0
\(301\) 35037.8 0.386727
\(302\) 0 0
\(303\) −22428.2 97532.1i −0.244292 1.06234i
\(304\) 0 0
\(305\) 8236.74i 0.0885432i
\(306\) 0 0
\(307\) −63952.5 −0.678549 −0.339274 0.940687i \(-0.610182\pi\)
−0.339274 + 0.940687i \(0.610182\pi\)
\(308\) 0 0
\(309\) −107406. + 24698.8i −1.12490 + 0.258678i
\(310\) 0 0
\(311\) 18806.5i 0.194441i −0.995263 0.0972203i \(-0.969005\pi\)
0.995263 0.0972203i \(-0.0309951\pi\)
\(312\) 0 0
\(313\) 62746.1 0.640469 0.320235 0.947338i \(-0.396238\pi\)
0.320235 + 0.947338i \(0.396238\pi\)
\(314\) 0 0
\(315\) 9232.45 + 19012.8i 0.0930456 + 0.191613i
\(316\) 0 0
\(317\) 93427.4i 0.929728i −0.885382 0.464864i \(-0.846103\pi\)
0.885382 0.464864i \(-0.153897\pi\)
\(318\) 0 0
\(319\) 53193.8 0.522732
\(320\) 0 0
\(321\) 1429.61 + 6216.86i 0.0138742 + 0.0603338i
\(322\) 0 0
\(323\) 112061.i 1.07412i
\(324\) 0 0
\(325\) 15745.7 0.149071
\(326\) 0 0
\(327\) 7967.71 1832.23i 0.0745140 0.0171350i
\(328\) 0 0
\(329\) 45705.1i 0.422253i
\(330\) 0 0
\(331\) 71675.0 0.654202 0.327101 0.944989i \(-0.393928\pi\)
0.327101 + 0.944989i \(0.393928\pi\)
\(332\) 0 0
\(333\) 5281.00 2564.41i 0.0476242 0.0231259i
\(334\) 0 0
\(335\) 47568.3i 0.423865i
\(336\) 0 0
\(337\) −87920.2 −0.774157 −0.387078 0.922047i \(-0.626516\pi\)
−0.387078 + 0.922047i \(0.626516\pi\)
\(338\) 0 0
\(339\) 6940.92 + 30183.6i 0.0603973 + 0.262646i
\(340\) 0 0
\(341\) 11112.3i 0.0955645i
\(342\) 0 0
\(343\) 99360.4 0.844550
\(344\) 0 0
\(345\) 10027.6 2305.92i 0.0842481 0.0193734i
\(346\) 0 0
\(347\) 5941.38i 0.0493433i −0.999696 0.0246717i \(-0.992146\pi\)
0.999696 0.0246717i \(-0.00785403\pi\)
\(348\) 0 0
\(349\) −65214.3 −0.535417 −0.267709 0.963500i \(-0.586266\pi\)
−0.267709 + 0.963500i \(0.586266\pi\)
\(350\) 0 0
\(351\) 71514.1 57604.2i 0.580467 0.467563i
\(352\) 0 0
\(353\) 36220.5i 0.290673i −0.989382 0.145337i \(-0.953573\pi\)
0.989382 0.145337i \(-0.0464265\pi\)
\(354\) 0 0
\(355\) −14577.4 −0.115670
\(356\) 0 0
\(357\) −14503.2 63069.1i −0.113796 0.494857i
\(358\) 0 0
\(359\) 152925.i 1.18656i −0.804997 0.593279i \(-0.797833\pi\)
0.804997 0.593279i \(-0.202167\pi\)
\(360\) 0 0
\(361\) 1974.27 0.0151493
\(362\) 0 0
\(363\) −118285. + 27200.6i −0.897673 + 0.206426i
\(364\) 0 0
\(365\) 75670.1i 0.567987i
\(366\) 0 0
\(367\) −143778. −1.06748 −0.533740 0.845649i \(-0.679214\pi\)
−0.533740 + 0.845649i \(0.679214\pi\)
\(368\) 0 0
\(369\) 76036.2 + 156584.i 0.558429 + 1.15000i
\(370\) 0 0
\(371\) 69203.7i 0.502784i
\(372\) 0 0
\(373\) 102685. 0.738056 0.369028 0.929418i \(-0.379691\pi\)
0.369028 + 0.929418i \(0.379691\pi\)
\(374\) 0 0
\(375\) −2818.80 12258.0i −0.0200448 0.0871677i
\(376\) 0 0
\(377\) 197148.i 1.38711i
\(378\) 0 0
\(379\) 148649. 1.03486 0.517432 0.855724i \(-0.326888\pi\)
0.517432 + 0.855724i \(0.326888\pi\)
\(380\) 0 0
\(381\) 251279. 57783.3i 1.73103 0.398063i
\(382\) 0 0
\(383\) 88390.0i 0.602568i −0.953535 0.301284i \(-0.902585\pi\)
0.953535 0.301284i \(-0.0974152\pi\)
\(384\) 0 0
\(385\) 8868.57 0.0598318
\(386\) 0 0
\(387\) −109388. + 53117.8i −0.730376 + 0.354665i
\(388\) 0 0
\(389\) 107542.i 0.710687i −0.934736 0.355344i \(-0.884364\pi\)
0.934736 0.355344i \(-0.115636\pi\)
\(390\) 0 0
\(391\) −31504.6 −0.206073
\(392\) 0 0
\(393\) 808.328 + 3515.13i 0.00523362 + 0.0227591i
\(394\) 0 0
\(395\) 71186.0i 0.456247i
\(396\) 0 0
\(397\) −131243. −0.832710 −0.416355 0.909202i \(-0.636693\pi\)
−0.416355 + 0.909202i \(0.636693\pi\)
\(398\) 0 0
\(399\) 74456.8 17121.9i 0.467691 0.107549i
\(400\) 0 0
\(401\) 21480.0i 0.133581i 0.997767 + 0.0667907i \(0.0212760\pi\)
−0.997767 + 0.0667907i \(0.978724\pi\)
\(402\) 0 0
\(403\) 41184.8 0.253587
\(404\) 0 0
\(405\) −57647.3 45361.2i −0.351454 0.276550i
\(406\) 0 0
\(407\) 2463.34i 0.0148708i
\(408\) 0 0
\(409\) 118822. 0.710313 0.355156 0.934807i \(-0.384428\pi\)
0.355156 + 0.934807i \(0.384428\pi\)
\(410\) 0 0
\(411\) 59052.2 + 256797.i 0.349585 + 1.52022i
\(412\) 0 0
\(413\) 117751.i 0.690344i
\(414\) 0 0
\(415\) 77056.8 0.447419
\(416\) 0 0
\(417\) 16244.4 3735.52i 0.0934183 0.0214822i
\(418\) 0 0
\(419\) 95945.4i 0.546507i −0.961942 0.273254i \(-0.911900\pi\)
0.961942 0.273254i \(-0.0880998\pi\)
\(420\) 0 0
\(421\) 73818.2 0.416485 0.208242 0.978077i \(-0.433226\pi\)
0.208242 + 0.978077i \(0.433226\pi\)
\(422\) 0 0
\(423\) 69289.6 + 142691.i 0.387246 + 0.797472i
\(424\) 0 0
\(425\) 38511.8i 0.213214i
\(426\) 0 0
\(427\) −17194.1 −0.0943026
\(428\) 0 0
\(429\) −8635.15 37551.1i −0.0469197 0.204037i
\(430\) 0 0
\(431\) 107733.i 0.579955i −0.957033 0.289977i \(-0.906352\pi\)
0.957033 0.289977i \(-0.0936478\pi\)
\(432\) 0 0
\(433\) −114738. −0.611974 −0.305987 0.952036i \(-0.598986\pi\)
−0.305987 + 0.952036i \(0.598986\pi\)
\(434\) 0 0
\(435\) −153479. + 35293.6i −0.811094 + 0.186517i
\(436\) 0 0
\(437\) 37193.1i 0.194760i
\(438\) 0 0
\(439\) −257591. −1.33660 −0.668300 0.743892i \(-0.732978\pi\)
−0.668300 + 0.743892i \(0.732978\pi\)
\(440\) 0 0
\(441\) −135257. + 65679.6i −0.695475 + 0.337717i
\(442\) 0 0
\(443\) 35360.6i 0.180182i −0.995934 0.0900911i \(-0.971284\pi\)
0.995934 0.0900911i \(-0.0287158\pi\)
\(444\) 0 0
\(445\) −71574.5 −0.361442
\(446\) 0 0
\(447\) −40147.8 174588.i −0.200931 0.873777i
\(448\) 0 0
\(449\) 8230.74i 0.0408269i 0.999792 + 0.0204134i \(0.00649825\pi\)
−0.999792 + 0.0204134i \(0.993502\pi\)
\(450\) 0 0
\(451\) 73039.4 0.359091
\(452\) 0 0
\(453\) −216191. + 49714.6i −1.05352 + 0.242263i
\(454\) 0 0
\(455\) 32868.9i 0.158768i
\(456\) 0 0
\(457\) −180660. −0.865027 −0.432514 0.901627i \(-0.642373\pi\)
−0.432514 + 0.901627i \(0.642373\pi\)
\(458\) 0 0
\(459\) 140892. + 174914.i 0.668748 + 0.830232i
\(460\) 0 0
\(461\) 34875.9i 0.164106i −0.996628 0.0820529i \(-0.973852\pi\)
0.996628 0.0820529i \(-0.0261476\pi\)
\(462\) 0 0
\(463\) 206020. 0.961054 0.480527 0.876980i \(-0.340445\pi\)
0.480527 + 0.876980i \(0.340445\pi\)
\(464\) 0 0
\(465\) −7372.94 32062.3i −0.0340985 0.148282i
\(466\) 0 0
\(467\) 274766.i 1.25988i −0.776644 0.629940i \(-0.783079\pi\)
0.776644 0.629940i \(-0.216921\pi\)
\(468\) 0 0
\(469\) 99298.2 0.451436
\(470\) 0 0
\(471\) −12272.3 + 2822.11i −0.0553204 + 0.0127213i
\(472\) 0 0
\(473\) 51024.3i 0.228063i
\(474\) 0 0
\(475\) −45465.5 −0.201509
\(476\) 0 0
\(477\) 104914. + 216053.i 0.461101 + 0.949564i
\(478\) 0 0
\(479\) 160960.i 0.701533i 0.936463 + 0.350766i \(0.114079\pi\)
−0.936463 + 0.350766i \(0.885921\pi\)
\(480\) 0 0
\(481\) −9129.68 −0.0394608
\(482\) 0 0
\(483\) −4813.59 20932.6i −0.0206336 0.0897280i
\(484\) 0 0
\(485\) 110461.i 0.469597i
\(486\) 0 0
\(487\) 69827.5 0.294421 0.147210 0.989105i \(-0.452971\pi\)
0.147210 + 0.989105i \(0.452971\pi\)
\(488\) 0 0
\(489\) 70373.4 16182.9i 0.294300 0.0676764i
\(490\) 0 0
\(491\) 430893.i 1.78734i −0.448727 0.893669i \(-0.648122\pi\)
0.448727 0.893669i \(-0.351878\pi\)
\(492\) 0 0
\(493\) 482198. 1.98396
\(494\) 0 0
\(495\) −27687.6 + 13444.9i −0.112999 + 0.0548715i
\(496\) 0 0
\(497\) 30430.1i 0.123194i
\(498\) 0 0
\(499\) −282872. −1.13603 −0.568013 0.823019i \(-0.692288\pi\)
−0.568013 + 0.823019i \(0.692288\pi\)
\(500\) 0 0
\(501\) −42252.5 183741.i −0.168336 0.732032i
\(502\) 0 0
\(503\) 240734.i 0.951483i 0.879585 + 0.475742i \(0.157820\pi\)
−0.879585 + 0.475742i \(0.842180\pi\)
\(504\) 0 0
\(505\) 124322. 0.487491
\(506\) 0 0
\(507\) 111338. 25602.9i 0.433138 0.0996032i
\(508\) 0 0
\(509\) 225427.i 0.870102i −0.900406 0.435051i \(-0.856730\pi\)
0.900406 0.435051i \(-0.143270\pi\)
\(510\) 0 0
\(511\) −157961. −0.604933
\(512\) 0 0
\(513\) −206497. + 166332.i −0.784654 + 0.632035i
\(514\) 0 0
\(515\) 136909.i 0.516199i
\(516\) 0 0
\(517\) 66558.6 0.249014
\(518\) 0 0
\(519\) −41478.2 180374.i −0.153987 0.669635i
\(520\) 0 0
\(521\) 154960.i 0.570880i 0.958397 + 0.285440i \(0.0921397\pi\)
−0.958397 + 0.285440i \(0.907860\pi\)
\(522\) 0 0
\(523\) 128163. 0.468553 0.234277 0.972170i \(-0.424728\pi\)
0.234277 + 0.972170i \(0.424728\pi\)
\(524\) 0 0
\(525\) −25588.4 + 5884.22i −0.0928376 + 0.0213486i
\(526\) 0 0
\(527\) 100733.i 0.362701i
\(528\) 0 0
\(529\) 269385. 0.962635
\(530\) 0 0
\(531\) 178513. + 367618.i 0.633111 + 1.30379i
\(532\) 0 0
\(533\) 270700.i 0.952872i
\(534\) 0 0
\(535\) −7924.52 −0.0276863
\(536\) 0 0
\(537\) 65340.9 + 284144.i 0.226588 + 0.985349i
\(538\) 0 0
\(539\) 63090.9i 0.217165i
\(540\) 0 0
\(541\) −499660. −1.70718 −0.853591 0.520943i \(-0.825580\pi\)
−0.853591 + 0.520943i \(0.825580\pi\)
\(542\) 0 0
\(543\) −158365. + 36417.2i −0.537107 + 0.123511i
\(544\) 0 0
\(545\) 10156.3i 0.0341934i
\(546\) 0 0
\(547\) 244301. 0.816490 0.408245 0.912872i \(-0.366141\pi\)
0.408245 + 0.912872i \(0.366141\pi\)
\(548\) 0 0
\(549\) 53679.8 26066.5i 0.178101 0.0864845i
\(550\) 0 0
\(551\) 569264.i 1.87504i
\(552\) 0 0
\(553\) −148600. −0.485924
\(554\) 0 0
\(555\) 1634.40 + 7107.43i 0.00530608 + 0.0230742i
\(556\) 0 0
\(557\) 247875.i 0.798954i −0.916743 0.399477i \(-0.869192\pi\)
0.916743 0.399477i \(-0.130808\pi\)
\(558\) 0 0
\(559\) 189107. 0.605181
\(560\) 0 0
\(561\) 91845.2 21120.4i 0.291830 0.0671085i
\(562\) 0 0
\(563\) 265392.i 0.837279i −0.908152 0.418640i \(-0.862507\pi\)
0.908152 0.418640i \(-0.137493\pi\)
\(564\) 0 0
\(565\) −38474.5 −0.120525
\(566\) 0 0
\(567\) −94690.9 + 120338.i −0.294539 + 0.374315i
\(568\) 0 0
\(569\) 551671.i 1.70394i 0.523587 + 0.851972i \(0.324593\pi\)
−0.523587 + 0.851972i \(0.675407\pi\)
\(570\) 0 0
\(571\) −325456. −0.998205 −0.499102 0.866543i \(-0.666337\pi\)
−0.499102 + 0.866543i \(0.666337\pi\)
\(572\) 0 0
\(573\) −23640.5 102804.i −0.0720024 0.313113i
\(574\) 0 0
\(575\) 12782.0i 0.0386602i
\(576\) 0 0
\(577\) −262408. −0.788181 −0.394091 0.919072i \(-0.628940\pi\)
−0.394091 + 0.919072i \(0.628940\pi\)
\(578\) 0 0
\(579\) 247811. 56985.9i 0.739203 0.169985i
\(580\) 0 0
\(581\) 160855.i 0.476522i
\(582\) 0 0
\(583\) 100779. 0.296505
\(584\) 0 0
\(585\) 49829.7 + 102616.i 0.145605 + 0.299851i
\(586\) 0 0
\(587\) 427538.i 1.24079i 0.784290 + 0.620395i \(0.213028\pi\)
−0.784290 + 0.620395i \(0.786972\pi\)
\(588\) 0 0
\(589\) −118921. −0.342790
\(590\) 0 0
\(591\) −107529. 467605.i −0.307858 1.33876i
\(592\) 0 0
\(593\) 63018.6i 0.179209i 0.995977 + 0.0896043i \(0.0285603\pi\)
−0.995977 + 0.0896043i \(0.971440\pi\)
\(594\) 0 0
\(595\) 80393.0 0.227083
\(596\) 0 0
\(597\) 442628. 101785.i 1.24191 0.285586i
\(598\) 0 0
\(599\) 634561.i 1.76856i 0.466959 + 0.884279i \(0.345350\pi\)
−0.466959 + 0.884279i \(0.654650\pi\)
\(600\) 0 0
\(601\) −474806. −1.31452 −0.657260 0.753664i \(-0.728285\pi\)
−0.657260 + 0.753664i \(0.728285\pi\)
\(602\) 0 0
\(603\) −310008. + 150538.i −0.852587 + 0.414009i
\(604\) 0 0
\(605\) 150776.i 0.411929i
\(606\) 0 0
\(607\) 163861. 0.444731 0.222365 0.974963i \(-0.428622\pi\)
0.222365 + 0.974963i \(0.428622\pi\)
\(608\) 0 0
\(609\) 73675.1 + 320386.i 0.198649 + 0.863852i
\(610\) 0 0
\(611\) 246681.i 0.660775i
\(612\) 0 0
\(613\) 328099. 0.873139 0.436570 0.899670i \(-0.356193\pi\)
0.436570 + 0.899670i \(0.356193\pi\)
\(614\) 0 0
\(615\) −210739. + 48461.0i −0.557180 + 0.128127i
\(616\) 0 0
\(617\) 405778.i 1.06590i 0.846146 + 0.532952i \(0.178917\pi\)
−0.846146 + 0.532952i \(0.821083\pi\)
\(618\) 0 0
\(619\) −184587. −0.481747 −0.240874 0.970557i \(-0.577434\pi\)
−0.240874 + 0.970557i \(0.577434\pi\)
\(620\) 0 0
\(621\) 46762.0 + 58053.8i 0.121258 + 0.150538i
\(622\) 0 0
\(623\) 149411.i 0.384952i
\(624\) 0 0
\(625\) 15625.0 0.0400000
\(626\) 0 0
\(627\) 24933.9 + 108429.i 0.0634243 + 0.275810i
\(628\) 0 0
\(629\) 22330.0i 0.0564401i
\(630\) 0 0
\(631\) −712031. −1.78830 −0.894149 0.447769i \(-0.852219\pi\)
−0.894149 + 0.447769i \(0.852219\pi\)
\(632\) 0 0
\(633\) −590548. + 135801.i −1.47383 + 0.338918i
\(634\) 0 0
\(635\) 320300.i 0.794346i
\(636\) 0 0
\(637\) 233829. 0.576262
\(638\) 0 0
\(639\) −46132.4 95002.4i −0.112981 0.232666i
\(640\) 0 0
\(641\) 388033.i 0.944393i 0.881493 + 0.472196i \(0.156539\pi\)
−0.881493 + 0.472196i \(0.843461\pi\)
\(642\) 0 0
\(643\) 276131. 0.667872 0.333936 0.942596i \(-0.391623\pi\)
0.333936 + 0.942596i \(0.391623\pi\)
\(644\) 0 0
\(645\) −33854.2 147220.i −0.0813753 0.353872i
\(646\) 0 0
\(647\) 603278.i 1.44115i 0.693378 + 0.720574i \(0.256122\pi\)
−0.693378 + 0.720574i \(0.743878\pi\)
\(648\) 0 0
\(649\) 171477. 0.407114
\(650\) 0 0
\(651\) −66929.6 + 15390.9i −0.157927 + 0.0363164i
\(652\) 0 0
\(653\) 625614.i 1.46717i 0.679598 + 0.733584i \(0.262154\pi\)
−0.679598 + 0.733584i \(0.737846\pi\)
\(654\) 0 0
\(655\) −4480.67 −0.0104438
\(656\) 0 0
\(657\) 493152. 239471.i 1.14248 0.554781i
\(658\) 0 0
\(659\) 706201.i 1.62614i −0.582167 0.813069i \(-0.697795\pi\)
0.582167 0.813069i \(-0.302205\pi\)
\(660\) 0 0
\(661\) −296423. −0.678437 −0.339219 0.940708i \(-0.610163\pi\)
−0.339219 + 0.940708i \(0.610163\pi\)
\(662\) 0 0
\(663\) −78277.1 340399.i −0.178077 0.774392i
\(664\) 0 0
\(665\) 94908.8i 0.214617i
\(666\) 0 0
\(667\) 160041. 0.359733
\(668\) 0 0
\(669\) −496379. + 114146.i −1.10908 + 0.255040i
\(670\) 0 0
\(671\) 25039.1i 0.0556127i
\(672\) 0 0
\(673\) 52622.9 0.116184 0.0580918 0.998311i \(-0.481498\pi\)
0.0580918 + 0.998311i \(0.481498\pi\)
\(674\) 0 0
\(675\) 70966.0 57162.8i 0.155755 0.125460i
\(676\) 0 0
\(677\) 341720.i 0.745578i 0.927916 + 0.372789i \(0.121599\pi\)
−0.927916 + 0.372789i \(0.878401\pi\)
\(678\) 0 0
\(679\) 230586. 0.500143
\(680\) 0 0
\(681\) 38354.5 + 166790.i 0.0827032 + 0.359646i
\(682\) 0 0
\(683\) 247237.i 0.529996i 0.964249 + 0.264998i \(0.0853714\pi\)
−0.964249 + 0.264998i \(0.914629\pi\)
\(684\) 0 0
\(685\) −327334. −0.697606
\(686\) 0 0
\(687\) 693616. 159502.i 1.46962 0.337950i
\(688\) 0 0
\(689\) 373509.i 0.786796i
\(690\) 0 0
\(691\) −471510. −0.987496 −0.493748 0.869605i \(-0.664373\pi\)
−0.493748 + 0.869605i \(0.664373\pi\)
\(692\) 0 0
\(693\) 28066.0 + 57797.6i 0.0584406 + 0.120349i
\(694\) 0 0
\(695\) 20706.5i 0.0428683i
\(696\) 0 0
\(697\) 662097. 1.36288
\(698\) 0 0
\(699\) 73241.5 + 318501.i 0.149900 + 0.651863i
\(700\) 0 0
\(701\) 530831.i 1.08024i −0.841588 0.540120i \(-0.818379\pi\)
0.841588 0.540120i \(-0.181621\pi\)
\(702\) 0 0
\(703\) 26361.9 0.0533416
\(704\) 0 0
\(705\) −192041. + 44161.1i −0.386380 + 0.0888508i
\(706\) 0 0
\(707\) 259522.i 0.519200i
\(708\) 0 0
\(709\) −938943. −1.86787 −0.933936 0.357441i \(-0.883649\pi\)
−0.933936 + 0.357441i \(0.883649\pi\)
\(710\) 0 0
\(711\) 463928. 225280.i 0.917722 0.445639i
\(712\) 0 0
\(713\) 33433.1i 0.0657653i
\(714\) 0 0
\(715\) 47865.8 0.0936296
\(716\) 0 0
\(717\) −94361.3 410343.i −0.183551 0.798195i
\(718\) 0 0
\(719\) 918433.i 1.77660i −0.459263 0.888300i \(-0.651886\pi\)
0.459263 0.888300i \(-0.348114\pi\)
\(720\) 0 0
\(721\) −285796. −0.549776
\(722\) 0 0
\(723\) −268802. + 61812.8i −0.514228 + 0.118250i
\(724\) 0 0
\(725\) 195637.i 0.372199i
\(726\) 0 0
\(727\) 314965. 0.595928 0.297964 0.954577i \(-0.403692\pi\)
0.297964 + 0.954577i \(0.403692\pi\)
\(728\) 0 0
\(729\) 113190. 519247.i 0.212987 0.977055i
\(730\) 0 0
\(731\) 462532.i 0.865580i
\(732\) 0 0
\(733\) 958567. 1.78408 0.892040 0.451956i \(-0.149274\pi\)
0.892040 + 0.451956i \(0.149274\pi\)
\(734\) 0 0
\(735\) −41860.3 182035.i −0.0774868 0.336962i
\(736\) 0 0
\(737\) 144604.i 0.266224i
\(738\) 0 0
\(739\) −197682. −0.361976 −0.180988 0.983485i \(-0.557929\pi\)
−0.180988 + 0.983485i \(0.557929\pi\)
\(740\) 0 0
\(741\) 401861. 92410.8i 0.731880 0.168301i
\(742\) 0 0
\(743\) 81590.4i 0.147796i −0.997266 0.0738978i \(-0.976456\pi\)
0.997266 0.0738978i \(-0.0235439\pi\)
\(744\) 0 0
\(745\) 222545. 0.400964
\(746\) 0 0
\(747\) 243859. + 502189.i 0.437016 + 0.899965i
\(748\) 0 0
\(749\) 16542.3i 0.0294872i
\(750\) 0 0
\(751\) −132505. −0.234938 −0.117469 0.993077i \(-0.537478\pi\)
−0.117469 + 0.993077i \(0.537478\pi\)
\(752\) 0 0
\(753\) −231557. 1.00696e6i −0.408383 1.77591i
\(754\) 0 0
\(755\) 275575.i 0.483443i
\(756\) 0 0
\(757\) 997153. 1.74008 0.870042 0.492978i \(-0.164092\pi\)
0.870042 + 0.492978i \(0.164092\pi\)
\(758\) 0 0
\(759\) 30483.3 7009.85i 0.0529150 0.0121682i
\(760\) 0 0
\(761\) 316363.i 0.546281i −0.961974 0.273140i \(-0.911938\pi\)
0.961974 0.273140i \(-0.0880623\pi\)
\(762\) 0 0
\(763\) 21201.2 0.0364175
\(764\) 0 0
\(765\) −250986. + 121877.i −0.428872 + 0.208257i
\(766\) 0 0
\(767\) 635532.i 1.08031i
\(768\) 0 0
\(769\) 584632. 0.988621 0.494311 0.869285i \(-0.335421\pi\)
0.494311 + 0.869285i \(0.335421\pi\)
\(770\) 0 0
\(771\) −180726. 785913.i −0.304027 1.32210i
\(772\) 0 0
\(773\) 662736.i 1.10913i −0.832141 0.554564i \(-0.812885\pi\)
0.832141 0.554564i \(-0.187115\pi\)
\(774\) 0 0
\(775\) 40869.2 0.0680444
\(776\) 0 0
\(777\) 14836.7 3411.80i 0.0245751 0.00565121i
\(778\) 0 0
\(779\) 781646.i 1.28806i
\(780\) 0 0
\(781\) −44314.2 −0.0726509
\(782\) 0 0
\(783\) −715723. 888551.i −1.16740 1.44930i
\(784\) 0 0
\(785\) 15643.3i 0.0253857i
\(786\) 0 0
\(787\) 773806. 1.24935 0.624673 0.780886i \(-0.285232\pi\)
0.624673 + 0.780886i \(0.285232\pi\)
\(788\) 0 0
\(789\) −229718. 998959.i −0.369012 1.60470i
\(790\) 0 0
\(791\) 80315.0i 0.128364i
\(792\) 0 0
\(793\) −92800.7 −0.147572
\(794\) 0 0
\(795\) −290776. + 66865.9i −0.460070 + 0.105796i
\(796\) 0 0
\(797\) 481401.i 0.757863i 0.925425 + 0.378932i \(0.123708\pi\)
−0.925425 + 0.378932i \(0.876292\pi\)
\(798\) 0 0
\(799\) 603350. 0.945096
\(800\) 0 0
\(801\) −226509. 466460.i −0.353038 0.727025i
\(802\) 0 0
\(803\) 230032.i 0.356745i
\(804\) 0 0
\(805\) 26682.4 0.0411749
\(806\) 0 0
\(807\) −79130.4 344109.i −0.121506 0.528384i
\(808\) 0 0
\(809\) 391432.i 0.598081i 0.954240 + 0.299040i \(0.0966665\pi\)
−0.954240 + 0.299040i \(0.903333\pi\)
\(810\) 0 0
\(811\) −1.15536e6 −1.75661 −0.878305 0.478101i \(-0.841325\pi\)
−0.878305 + 0.478101i \(0.841325\pi\)
\(812\) 0 0
\(813\) 460916. 105991.i 0.697333 0.160357i
\(814\) 0 0
\(815\) 89703.7i 0.135050i
\(816\) 0 0
\(817\) −546047. −0.818061
\(818\) 0 0
\(819\) 214211. 104019.i 0.319355 0.155076i
\(820\) 0 0
\(821\) 299979.i 0.445045i 0.974928 + 0.222522i \(0.0714291\pi\)
−0.974928 + 0.222522i \(0.928571\pi\)
\(822\) 0 0
\(823\) −32530.4 −0.0480275 −0.0240138 0.999712i \(-0.507645\pi\)
−0.0240138 + 0.999712i \(0.507645\pi\)
\(824\) 0 0
\(825\) −8568.97 37263.4i −0.0125899 0.0547488i
\(826\) 0 0
\(827\) 764819.i 1.11827i −0.829076 0.559136i \(-0.811133\pi\)
0.829076 0.559136i \(-0.188867\pi\)
\(828\) 0 0
\(829\) −137003. −0.199352 −0.0996758 0.995020i \(-0.531781\pi\)
−0.0996758 + 0.995020i \(0.531781\pi\)
\(830\) 0 0
\(831\) 251794. 57901.8i 0.364622 0.0838475i
\(832\) 0 0
\(833\) 571916.i 0.824218i
\(834\) 0 0
\(835\) 234211. 0.335919
\(836\) 0 0
\(837\) 185621. 149517.i 0.264957 0.213422i
\(838\) 0 0
\(839\) 1.12228e6i 1.59433i 0.603759 + 0.797167i \(0.293669\pi\)
−0.603759 + 0.797167i \(0.706331\pi\)
\(840\) 0 0
\(841\) −1.74225e6 −2.46331
\(842\) 0 0
\(843\) 168492. + 732711.i 0.237096 + 1.03105i
\(844\) 0 0
\(845\) 141920.i 0.198761i
\(846\) 0 0
\(847\) −314744. −0.438723
\(848\) 0 0
\(849\) 1.11146e6 255589.i 1.54199 0.354590i
\(850\) 0 0
\(851\) 7411.31i 0.0102338i
\(852\) 0 0
\(853\) 43550.6 0.0598544 0.0299272 0.999552i \(-0.490472\pi\)
0.0299272 + 0.999552i \(0.490472\pi\)
\(854\) 0 0
\(855\) −143883. 296304.i −0.196824 0.405327i
\(856\) 0 0
\(857\) 300075.i 0.408572i 0.978911 + 0.204286i \(0.0654872\pi\)
−0.978911 + 0.204286i \(0.934513\pi\)
\(858\) 0 0
\(859\) 498647. 0.675782 0.337891 0.941185i \(-0.390287\pi\)
0.337891 + 0.941185i \(0.390287\pi\)
\(860\) 0 0
\(861\) 101162. + 439916.i 0.136462 + 0.593422i
\(862\) 0 0
\(863\) 13487.9i 0.0181102i 0.999959 + 0.00905512i \(0.00288237\pi\)
−0.999959 + 0.00905512i \(0.997118\pi\)
\(864\) 0 0
\(865\) 229919. 0.307286
\(866\) 0 0
\(867\) 100002. 22996.1i 0.133036 0.0305926i
\(868\) 0 0
\(869\) 216401.i 0.286562i
\(870\) 0 0
\(871\) 535936. 0.706443
\(872\) 0 0
\(873\) −719888. + 349572.i −0.944575 + 0.458678i
\(874\) 0 0
\(875\) 32617.0i 0.0426018i
\(876\) 0 0
\(877\) −944732. −1.22831 −0.614157 0.789184i \(-0.710504\pi\)
−0.614157 + 0.789184i \(0.710504\pi\)
\(878\) 0 0
\(879\) −139948. 608582.i −0.181129 0.787664i
\(880\) 0 0
\(881\) 1.28495e6i 1.65552i −0.561082 0.827760i \(-0.689615\pi\)
0.561082 0.827760i \(-0.310385\pi\)
\(882\) 0 0
\(883\) 1.22382e6 1.56963 0.784815 0.619731i \(-0.212758\pi\)
0.784815 + 0.619731i \(0.212758\pi\)
\(884\) 0 0
\(885\) −494760. + 113773.i −0.631695 + 0.145263i
\(886\) 0 0
\(887\) 755435.i 0.960173i 0.877221 + 0.480087i \(0.159395\pi\)
−0.877221 + 0.480087i \(0.840605\pi\)
\(888\) 0 0
\(889\) 668624. 0.846015
\(890\) 0 0
\(891\) −175244. 137895.i −0.220743 0.173697i
\(892\) 0 0
\(893\) 712291.i 0.893212i
\(894\) 0 0
\(895\) −362193. −0.452162
\(896\) 0 0
\(897\) −25980.1 112978.i −0.0322891 0.140414i
\(898\) 0 0
\(899\) 511714.i 0.633152i
\(900\) 0 0
\(901\) 913553. 1.12534
\(902\) 0 0
\(903\) −307319. + 70670.2i −0.376890 + 0.0866685i
\(904\) 0 0
\(905\) 201866.i 0.246471i
\(906\) 0 0
\(907\) −1.28653e6 −1.56389 −0.781946 0.623346i \(-0.785773\pi\)
−0.781946 + 0.623346i \(0.785773\pi\)
\(908\) 0 0
\(909\) 393439. + 810225.i 0.476156 + 0.980568i
\(910\) 0 0
\(911\) 501962.i 0.604831i −0.953176 0.302416i \(-0.902207\pi\)
0.953176 0.302416i \(-0.0977931\pi\)
\(912\) 0 0
\(913\) 234248. 0.281018
\(914\) 0 0
\(915\) 16613.3 + 72245.1i 0.0198432 + 0.0862911i
\(916\) 0 0
\(917\) 9353.35i 0.0111232i
\(918\) 0 0
\(919\) 252142. 0.298548 0.149274 0.988796i \(-0.452306\pi\)
0.149274 + 0.988796i \(0.452306\pi\)
\(920\) 0 0
\(921\) 560933. 128990.i 0.661289 0.152068i
\(922\) 0 0
\(923\) 164238.i 0.192784i
\(924\) 0 0
\(925\) −9059.72 −0.0105884
\(926\) 0 0
\(927\) 892253. 433271.i 1.03831 0.504197i
\(928\) 0 0
\(929\) 1.28900e6i 1.49356i 0.665074 + 0.746778i \(0.268400\pi\)
−0.665074 + 0.746778i \(0.731600\pi\)
\(930\) 0 0
\(931\) −675181. −0.778970
\(932\) 0 0
\(933\) 37932.1 + 164953.i 0.0435757 + 0.189495i
\(934\) 0 0
\(935\) 117073.i 0.133917i
\(936\) 0 0
\(937\) 596815. 0.679768 0.339884 0.940467i \(-0.389612\pi\)
0.339884 + 0.940467i \(0.389612\pi\)
\(938\) 0 0
\(939\) −550351. + 126557.i −0.624178 + 0.143534i
\(940\) 0 0
\(941\) 1.55891e6i 1.76052i 0.474493 + 0.880259i \(0.342631\pi\)
−0.474493 + 0.880259i \(0.657369\pi\)
\(942\) 0 0
\(943\) 219749. 0.247118
\(944\) 0 0
\(945\) −119327. 148141.i −0.133621 0.165887i
\(946\) 0 0
\(947\) 226143.i 0.252164i 0.992020 + 0.126082i \(0.0402402\pi\)
−0.992020 + 0.126082i \(0.959760\pi\)
\(948\) 0 0
\(949\) −852551. −0.946647
\(950\) 0 0
\(951\) 188440. + 819459.i 0.208359 + 0.906080i
\(952\) 0 0
\(953\) 1.71407e6i 1.88731i −0.330927 0.943656i \(-0.607361\pi\)
0.330927 0.943656i \(-0.392639\pi\)
\(954\) 0 0
\(955\) 131042. 0.143683
\(956\) 0 0
\(957\) −466567. + 107290.i −0.509436 + 0.117148i
\(958\) 0 0
\(959\) 683307.i 0.742982i
\(960\) 0 0
\(961\) −816622. −0.884249
\(962\) 0 0
\(963\) −25078.4 51645.1i −0.0270426 0.0556899i
\(964\) 0 0
\(965\) 315880.i 0.339210i
\(966\) 0 0
\(967\) −1.48328e6 −1.58625 −0.793123 0.609061i \(-0.791546\pi\)
−0.793123 + 0.609061i \(0.791546\pi\)
\(968\) 0 0
\(969\) 226025. + 982900.i 0.240718 + 1.04680i
\(970\) 0 0
\(971\) 25773.5i 0.0273360i −0.999907 0.0136680i \(-0.995649\pi\)
0.999907 0.0136680i \(-0.00435080\pi\)
\(972\) 0 0
\(973\) 43224.5 0.0456567
\(974\) 0 0
\(975\) −138106. + 31758.5i −0.145280 + 0.0334081i
\(976\) 0 0
\(977\) 1.63957e6i 1.71767i −0.512249 0.858837i \(-0.671187\pi\)
0.512249 0.858837i \(-0.328813\pi\)
\(978\) 0 0
\(979\) −217582. −0.227016
\(980\) 0 0
\(981\) −66189.9 + 32141.3i −0.0687786 + 0.0333984i
\(982\) 0 0
\(983\) 1.02737e6i 1.06322i 0.846991 + 0.531608i \(0.178412\pi\)
−0.846991 + 0.531608i \(0.821588\pi\)
\(984\) 0 0
\(985\) 596047. 0.614339
\(986\) 0 0
\(987\) 92185.8 + 400883.i 0.0946302 + 0.411513i
\(988\) 0 0
\(989\) 153514.i 0.156948i
\(990\) 0 0
\(991\) −101778. −0.103635 −0.0518174 0.998657i \(-0.516501\pi\)
−0.0518174 + 0.998657i \(0.516501\pi\)
\(992\) 0 0
\(993\) −628667. + 144566.i −0.637562 + 0.146612i
\(994\) 0 0
\(995\) 564210.i 0.569894i
\(996\) 0 0
\(997\) −466189. −0.468999 −0.234499 0.972116i \(-0.575345\pi\)
−0.234499 + 0.972116i \(0.575345\pi\)
\(998\) 0 0
\(999\) −41147.7 + 33144.3i −0.0412301 + 0.0332106i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.5.l.d.161.2 6
3.2 odd 2 inner 240.5.l.d.161.1 6
4.3 odd 2 15.5.c.a.11.6 yes 6
12.11 even 2 15.5.c.a.11.1 6
20.3 even 4 75.5.d.d.74.12 12
20.7 even 4 75.5.d.d.74.1 12
20.19 odd 2 75.5.c.i.26.1 6
60.23 odd 4 75.5.d.d.74.2 12
60.47 odd 4 75.5.d.d.74.11 12
60.59 even 2 75.5.c.i.26.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.5.c.a.11.1 6 12.11 even 2
15.5.c.a.11.6 yes 6 4.3 odd 2
75.5.c.i.26.1 6 20.19 odd 2
75.5.c.i.26.6 6 60.59 even 2
75.5.d.d.74.1 12 20.7 even 4
75.5.d.d.74.2 12 60.23 odd 4
75.5.d.d.74.11 12 60.47 odd 4
75.5.d.d.74.12 12 20.3 even 4
240.5.l.d.161.1 6 3.2 odd 2 inner
240.5.l.d.161.2 6 1.1 even 1 trivial