Properties

Label 15.5
Level 15
Weight 5
Dimension 20
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 80
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 15 = 3 \cdot 5 \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(80\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(15))\).

Total New Old
Modular forms 40 24 16
Cusp forms 24 20 4
Eisenstein series 16 4 12

Trace form

\( 20 q + 8 q^{3} - 8 q^{4} - 84 q^{5} - 32 q^{6} + 96 q^{7} + 180 q^{8} + 136 q^{9} - 116 q^{10} - 288 q^{11} - 812 q^{12} - 764 q^{13} + 764 q^{15} + 1536 q^{16} + 900 q^{17} + 1160 q^{18} + 512 q^{19} + 564 q^{20}+ \cdots + 37760 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(15))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
15.5.c \(\chi_{15}(11, \cdot)\) 15.5.c.a 6 1
15.5.d \(\chi_{15}(14, \cdot)\) 15.5.d.a 1 1
15.5.d.b 1
15.5.d.c 4
15.5.f \(\chi_{15}(7, \cdot)\) 15.5.f.a 8 2

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(15))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(15)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 1}\)