Properties

Label 1472.2.h.c.735.5
Level $1472$
Weight $2$
Character 1472.735
Analytic conductor $11.754$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1472,2,Mod(735,1472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1472.735"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1472.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7539791775\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 735.5
Character \(\chi\) \(=\) 1472.735
Dual form 1472.2.h.c.735.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.11141 q^{3} -2.66434 q^{5} +1.46622 q^{7} +1.45804 q^{9} +1.58217i q^{11} +3.11316i q^{13} +5.62551 q^{15} +1.72966i q^{17} -3.35877i q^{19} -3.09579 q^{21} +(4.35133 + 2.01641i) q^{23} +2.09870 q^{25} +3.25570 q^{27} +5.01617i q^{29} -3.47445i q^{31} -3.34060i q^{33} -3.90651 q^{35} -6.45456 q^{37} -6.57315i q^{39} -1.73936 q^{41} -2.59580i q^{43} -3.88472 q^{45} +0.722956i q^{47} -4.85019 q^{49} -3.65201i q^{51} +5.13424 q^{53} -4.21543i q^{55} +7.09173i q^{57} -0.758714 q^{59} -7.39852 q^{61} +2.13781 q^{63} -8.29451i q^{65} -16.0297i q^{67} +(-9.18744 - 4.25745i) q^{69} +5.65707i q^{71} -11.5896 q^{73} -4.43122 q^{75} +2.31981i q^{77} -7.61860 q^{79} -11.2482 q^{81} -14.3913i q^{83} -4.60840i q^{85} -10.5912i q^{87} -7.61860i q^{89} +4.56458i q^{91} +7.33598i q^{93} +8.94890i q^{95} -14.5916i q^{97} +2.30687i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 40 q^{9} + 32 q^{25} + 8 q^{41} + 48 q^{49} - 104 q^{73} + 112 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times\).

\(n\) \(645\) \(833\) \(1151\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.11141 −1.21902 −0.609511 0.792778i \(-0.708634\pi\)
−0.609511 + 0.792778i \(0.708634\pi\)
\(4\) 0 0
\(5\) −2.66434 −1.19153 −0.595764 0.803159i \(-0.703151\pi\)
−0.595764 + 0.803159i \(0.703151\pi\)
\(6\) 0 0
\(7\) 1.46622 0.554180 0.277090 0.960844i \(-0.410630\pi\)
0.277090 + 0.960844i \(0.410630\pi\)
\(8\) 0 0
\(9\) 1.45804 0.486014
\(10\) 0 0
\(11\) 1.58217i 0.477041i 0.971137 + 0.238521i \(0.0766625\pi\)
−0.971137 + 0.238521i \(0.923338\pi\)
\(12\) 0 0
\(13\) 3.11316i 0.863435i 0.902009 + 0.431718i \(0.142092\pi\)
−0.902009 + 0.431718i \(0.857908\pi\)
\(14\) 0 0
\(15\) 5.62551 1.45250
\(16\) 0 0
\(17\) 1.72966i 0.419504i 0.977755 + 0.209752i \(0.0672656\pi\)
−0.977755 + 0.209752i \(0.932734\pi\)
\(18\) 0 0
\(19\) 3.35877i 0.770554i −0.922801 0.385277i \(-0.874106\pi\)
0.922801 0.385277i \(-0.125894\pi\)
\(20\) 0 0
\(21\) −3.09579 −0.675557
\(22\) 0 0
\(23\) 4.35133 + 2.01641i 0.907316 + 0.420450i
\(24\) 0 0
\(25\) 2.09870 0.419740
\(26\) 0 0
\(27\) 3.25570 0.626560
\(28\) 0 0
\(29\) 5.01617i 0.931479i 0.884922 + 0.465739i \(0.154212\pi\)
−0.884922 + 0.465739i \(0.845788\pi\)
\(30\) 0 0
\(31\) 3.47445i 0.624029i −0.950077 0.312015i \(-0.898996\pi\)
0.950077 0.312015i \(-0.101004\pi\)
\(32\) 0 0
\(33\) 3.34060i 0.581524i
\(34\) 0 0
\(35\) −3.90651 −0.660321
\(36\) 0 0
\(37\) −6.45456 −1.06112 −0.530562 0.847646i \(-0.678019\pi\)
−0.530562 + 0.847646i \(0.678019\pi\)
\(38\) 0 0
\(39\) 6.57315i 1.05255i
\(40\) 0 0
\(41\) −1.73936 −0.271643 −0.135821 0.990733i \(-0.543367\pi\)
−0.135821 + 0.990733i \(0.543367\pi\)
\(42\) 0 0
\(43\) 2.59580i 0.395855i −0.980217 0.197928i \(-0.936579\pi\)
0.980217 0.197928i \(-0.0634211\pi\)
\(44\) 0 0
\(45\) −3.88472 −0.579100
\(46\) 0 0
\(47\) 0.722956i 0.105454i 0.998609 + 0.0527270i \(0.0167913\pi\)
−0.998609 + 0.0527270i \(0.983209\pi\)
\(48\) 0 0
\(49\) −4.85019 −0.692885
\(50\) 0 0
\(51\) 3.65201i 0.511384i
\(52\) 0 0
\(53\) 5.13424 0.705243 0.352621 0.935766i \(-0.385290\pi\)
0.352621 + 0.935766i \(0.385290\pi\)
\(54\) 0 0
\(55\) 4.21543i 0.568408i
\(56\) 0 0
\(57\) 7.09173i 0.939322i
\(58\) 0 0
\(59\) −0.758714 −0.0987761 −0.0493881 0.998780i \(-0.515727\pi\)
−0.0493881 + 0.998780i \(0.515727\pi\)
\(60\) 0 0
\(61\) −7.39852 −0.947284 −0.473642 0.880717i \(-0.657061\pi\)
−0.473642 + 0.880717i \(0.657061\pi\)
\(62\) 0 0
\(63\) 2.13781 0.269339
\(64\) 0 0
\(65\) 8.29451i 1.02881i
\(66\) 0 0
\(67\) 16.0297i 1.95834i −0.203030 0.979172i \(-0.565079\pi\)
0.203030 0.979172i \(-0.434921\pi\)
\(68\) 0 0
\(69\) −9.18744 4.25745i −1.10604 0.512537i
\(70\) 0 0
\(71\) 5.65707i 0.671370i 0.941974 + 0.335685i \(0.108968\pi\)
−0.941974 + 0.335685i \(0.891032\pi\)
\(72\) 0 0
\(73\) −11.5896 −1.35645 −0.678227 0.734852i \(-0.737252\pi\)
−0.678227 + 0.734852i \(0.737252\pi\)
\(74\) 0 0
\(75\) −4.43122 −0.511673
\(76\) 0 0
\(77\) 2.31981i 0.264367i
\(78\) 0 0
\(79\) −7.61860 −0.857159 −0.428580 0.903504i \(-0.640986\pi\)
−0.428580 + 0.903504i \(0.640986\pi\)
\(80\) 0 0
\(81\) −11.2482 −1.24980
\(82\) 0 0
\(83\) 14.3913i 1.57966i −0.613328 0.789828i \(-0.710170\pi\)
0.613328 0.789828i \(-0.289830\pi\)
\(84\) 0 0
\(85\) 4.60840i 0.499851i
\(86\) 0 0
\(87\) 10.5912i 1.13549i
\(88\) 0 0
\(89\) 7.61860i 0.807570i −0.914854 0.403785i \(-0.867694\pi\)
0.914854 0.403785i \(-0.132306\pi\)
\(90\) 0 0
\(91\) 4.56458i 0.478498i
\(92\) 0 0
\(93\) 7.33598i 0.760705i
\(94\) 0 0
\(95\) 8.94890i 0.918137i
\(96\) 0 0
\(97\) 14.5916i 1.48155i −0.671751 0.740777i \(-0.734458\pi\)
0.671751 0.740777i \(-0.265542\pi\)
\(98\) 0 0
\(99\) 2.30687i 0.231849i
\(100\) 0 0
\(101\) 0.316303i 0.0314733i −0.999876 0.0157367i \(-0.994991\pi\)
0.999876 0.0157367i \(-0.00500934\pi\)
\(102\) 0 0
\(103\) −6.94701 −0.684509 −0.342255 0.939607i \(-0.611191\pi\)
−0.342255 + 0.939607i \(0.611191\pi\)
\(104\) 0 0
\(105\) 8.24824 0.804946
\(106\) 0 0
\(107\) 0.680989i 0.0658337i −0.999458 0.0329169i \(-0.989520\pi\)
0.999458 0.0329169i \(-0.0104797\pi\)
\(108\) 0 0
\(109\) 2.48334 0.237861 0.118931 0.992903i \(-0.462053\pi\)
0.118931 + 0.992903i \(0.462053\pi\)
\(110\) 0 0
\(111\) 13.6282 1.29353
\(112\) 0 0
\(113\) 18.7509i 1.76394i −0.471310 0.881968i \(-0.656219\pi\)
0.471310 0.881968i \(-0.343781\pi\)
\(114\) 0 0
\(115\) −11.5934 5.37239i −1.08109 0.500978i
\(116\) 0 0
\(117\) 4.53912i 0.419642i
\(118\) 0 0
\(119\) 2.53606i 0.232480i
\(120\) 0 0
\(121\) 8.49675 0.772432
\(122\) 0 0
\(123\) 3.67250 0.331138
\(124\) 0 0
\(125\) 7.73004 0.691396
\(126\) 0 0
\(127\) 4.03709i 0.358234i −0.983828 0.179117i \(-0.942676\pi\)
0.983828 0.179117i \(-0.0573240\pi\)
\(128\) 0 0
\(129\) 5.48079i 0.482556i
\(130\) 0 0
\(131\) −8.72331 −0.762159 −0.381079 0.924542i \(-0.624448\pi\)
−0.381079 + 0.924542i \(0.624448\pi\)
\(132\) 0 0
\(133\) 4.92470i 0.427026i
\(134\) 0 0
\(135\) −8.67429 −0.746564
\(136\) 0 0
\(137\) 12.0673i 1.03098i 0.856895 + 0.515490i \(0.172390\pi\)
−0.856895 + 0.515490i \(0.827610\pi\)
\(138\) 0 0
\(139\) −4.01442 −0.340498 −0.170249 0.985401i \(-0.554457\pi\)
−0.170249 + 0.985401i \(0.554457\pi\)
\(140\) 0 0
\(141\) 1.52646i 0.128551i
\(142\) 0 0
\(143\) −4.92554 −0.411894
\(144\) 0 0
\(145\) 13.3648i 1.10988i
\(146\) 0 0
\(147\) 10.2407 0.844642
\(148\) 0 0
\(149\) 10.3133 0.844900 0.422450 0.906386i \(-0.361170\pi\)
0.422450 + 0.906386i \(0.361170\pi\)
\(150\) 0 0
\(151\) 10.2197i 0.831668i 0.909441 + 0.415834i \(0.136510\pi\)
−0.909441 + 0.415834i \(0.863490\pi\)
\(152\) 0 0
\(153\) 2.52191i 0.203885i
\(154\) 0 0
\(155\) 9.25711i 0.743549i
\(156\) 0 0
\(157\) −13.7666 −1.09869 −0.549347 0.835595i \(-0.685123\pi\)
−0.549347 + 0.835595i \(0.685123\pi\)
\(158\) 0 0
\(159\) −10.8405 −0.859706
\(160\) 0 0
\(161\) 6.38002 + 2.95650i 0.502816 + 0.233005i
\(162\) 0 0
\(163\) −14.1472 −1.10810 −0.554049 0.832484i \(-0.686918\pi\)
−0.554049 + 0.832484i \(0.686918\pi\)
\(164\) 0 0
\(165\) 8.90049i 0.692902i
\(166\) 0 0
\(167\) 15.5443i 1.20286i 0.798926 + 0.601429i \(0.205402\pi\)
−0.798926 + 0.601429i \(0.794598\pi\)
\(168\) 0 0
\(169\) 3.30824 0.254480
\(170\) 0 0
\(171\) 4.89722i 0.374500i
\(172\) 0 0
\(173\) 13.9388i 1.05975i −0.848075 0.529875i \(-0.822239\pi\)
0.848075 0.529875i \(-0.177761\pi\)
\(174\) 0 0
\(175\) 3.07716 0.232612
\(176\) 0 0
\(177\) 1.60195 0.120410
\(178\) 0 0
\(179\) 7.53535 0.563218 0.281609 0.959529i \(-0.409132\pi\)
0.281609 + 0.959529i \(0.409132\pi\)
\(180\) 0 0
\(181\) 5.82867 0.433242 0.216621 0.976256i \(-0.430496\pi\)
0.216621 + 0.976256i \(0.430496\pi\)
\(182\) 0 0
\(183\) 15.6213 1.15476
\(184\) 0 0
\(185\) 17.1971 1.26436
\(186\) 0 0
\(187\) −2.73661 −0.200121
\(188\) 0 0
\(189\) 4.77358 0.347227
\(190\) 0 0
\(191\) −9.37426 −0.678298 −0.339149 0.940733i \(-0.610139\pi\)
−0.339149 + 0.940733i \(0.610139\pi\)
\(192\) 0 0
\(193\) −26.2326 −1.88826 −0.944132 0.329567i \(-0.893097\pi\)
−0.944132 + 0.329567i \(0.893097\pi\)
\(194\) 0 0
\(195\) 17.5131i 1.25414i
\(196\) 0 0
\(197\) 25.3147i 1.80360i 0.432156 + 0.901799i \(0.357753\pi\)
−0.432156 + 0.901799i \(0.642247\pi\)
\(198\) 0 0
\(199\) 15.3819 1.09040 0.545198 0.838308i \(-0.316455\pi\)
0.545198 + 0.838308i \(0.316455\pi\)
\(200\) 0 0
\(201\) 33.8453i 2.38726i
\(202\) 0 0
\(203\) 7.35481i 0.516207i
\(204\) 0 0
\(205\) 4.63425 0.323670
\(206\) 0 0
\(207\) 6.34443 + 2.94000i 0.440968 + 0.204344i
\(208\) 0 0
\(209\) 5.31413 0.367586
\(210\) 0 0
\(211\) 16.6186 1.14407 0.572037 0.820228i \(-0.306153\pi\)
0.572037 + 0.820228i \(0.306153\pi\)
\(212\) 0 0
\(213\) 11.9444i 0.818415i
\(214\) 0 0
\(215\) 6.91608i 0.471673i
\(216\) 0 0
\(217\) 5.09431i 0.345824i
\(218\) 0 0
\(219\) 24.4703 1.65355
\(220\) 0 0
\(221\) −5.38470 −0.362214
\(222\) 0 0
\(223\) 3.06913i 0.205524i −0.994706 0.102762i \(-0.967232\pi\)
0.994706 0.102762i \(-0.0327680\pi\)
\(224\) 0 0
\(225\) 3.06000 0.204000
\(226\) 0 0
\(227\) 9.68856i 0.643052i 0.946901 + 0.321526i \(0.104196\pi\)
−0.946901 + 0.321526i \(0.895804\pi\)
\(228\) 0 0
\(229\) −7.81202 −0.516233 −0.258116 0.966114i \(-0.583102\pi\)
−0.258116 + 0.966114i \(0.583102\pi\)
\(230\) 0 0
\(231\) 4.89806i 0.322269i
\(232\) 0 0
\(233\) 10.7063 0.701392 0.350696 0.936489i \(-0.385945\pi\)
0.350696 + 0.936489i \(0.385945\pi\)
\(234\) 0 0
\(235\) 1.92620i 0.125651i
\(236\) 0 0
\(237\) 16.0860 1.04490
\(238\) 0 0
\(239\) 27.2014i 1.75951i −0.475425 0.879756i \(-0.657706\pi\)
0.475425 0.879756i \(-0.342294\pi\)
\(240\) 0 0
\(241\) 3.05116i 0.196543i 0.995160 + 0.0982713i \(0.0313313\pi\)
−0.995160 + 0.0982713i \(0.968669\pi\)
\(242\) 0 0
\(243\) 13.9825 0.896979
\(244\) 0 0
\(245\) 12.9226 0.825592
\(246\) 0 0
\(247\) 10.4564 0.665324
\(248\) 0 0
\(249\) 30.3860i 1.92563i
\(250\) 0 0
\(251\) 2.20805i 0.139371i 0.997569 + 0.0696856i \(0.0221996\pi\)
−0.997569 + 0.0696856i \(0.977800\pi\)
\(252\) 0 0
\(253\) −3.19029 + 6.88454i −0.200572 + 0.432827i
\(254\) 0 0
\(255\) 9.73020i 0.609329i
\(256\) 0 0
\(257\) −15.7902 −0.984965 −0.492483 0.870322i \(-0.663911\pi\)
−0.492483 + 0.870322i \(0.663911\pi\)
\(258\) 0 0
\(259\) −9.46382 −0.588053
\(260\) 0 0
\(261\) 7.31378i 0.452712i
\(262\) 0 0
\(263\) −22.0915 −1.36222 −0.681110 0.732181i \(-0.738502\pi\)
−0.681110 + 0.732181i \(0.738502\pi\)
\(264\) 0 0
\(265\) −13.6794 −0.840317
\(266\) 0 0
\(267\) 16.0860i 0.984445i
\(268\) 0 0
\(269\) 24.7133i 1.50680i −0.657564 0.753399i \(-0.728413\pi\)
0.657564 0.753399i \(-0.271587\pi\)
\(270\) 0 0
\(271\) 27.7746i 1.68718i −0.536984 0.843592i \(-0.680437\pi\)
0.536984 0.843592i \(-0.319563\pi\)
\(272\) 0 0
\(273\) 9.63770i 0.583300i
\(274\) 0 0
\(275\) 3.32050i 0.200233i
\(276\) 0 0
\(277\) 5.01617i 0.301392i −0.988580 0.150696i \(-0.951848\pi\)
0.988580 0.150696i \(-0.0481515\pi\)
\(278\) 0 0
\(279\) 5.06589i 0.303287i
\(280\) 0 0
\(281\) 31.1806i 1.86008i 0.367457 + 0.930040i \(0.380228\pi\)
−0.367457 + 0.930040i \(0.619772\pi\)
\(282\) 0 0
\(283\) 11.5640i 0.687407i −0.939078 0.343703i \(-0.888319\pi\)
0.939078 0.343703i \(-0.111681\pi\)
\(284\) 0 0
\(285\) 18.8948i 1.11923i
\(286\) 0 0
\(287\) −2.55029 −0.150539
\(288\) 0 0
\(289\) 14.0083 0.824017
\(290\) 0 0
\(291\) 30.8088i 1.80605i
\(292\) 0 0
\(293\) −12.2384 −0.714975 −0.357487 0.933918i \(-0.616367\pi\)
−0.357487 + 0.933918i \(0.616367\pi\)
\(294\) 0 0
\(295\) 2.02147 0.117695
\(296\) 0 0
\(297\) 5.15106i 0.298895i
\(298\) 0 0
\(299\) −6.27739 + 13.5464i −0.363031 + 0.783408i
\(300\) 0 0
\(301\) 3.80602i 0.219375i
\(302\) 0 0
\(303\) 0.667845i 0.0383667i
\(304\) 0 0
\(305\) 19.7122 1.12872
\(306\) 0 0
\(307\) 12.6116 0.719783 0.359891 0.932994i \(-0.382814\pi\)
0.359891 + 0.932994i \(0.382814\pi\)
\(308\) 0 0
\(309\) 14.6680 0.834431
\(310\) 0 0
\(311\) 23.9349i 1.35722i −0.734498 0.678611i \(-0.762582\pi\)
0.734498 0.678611i \(-0.237418\pi\)
\(312\) 0 0
\(313\) 18.4374i 1.04214i −0.853513 0.521072i \(-0.825532\pi\)
0.853513 0.521072i \(-0.174468\pi\)
\(314\) 0 0
\(315\) −5.69586 −0.320925
\(316\) 0 0
\(317\) 28.1428i 1.58066i −0.612684 0.790328i \(-0.709910\pi\)
0.612684 0.790328i \(-0.290090\pi\)
\(318\) 0 0
\(319\) −7.93641 −0.444354
\(320\) 0 0
\(321\) 1.43785i 0.0802527i
\(322\) 0 0
\(323\) 5.80952 0.323250
\(324\) 0 0
\(325\) 6.53359i 0.362419i
\(326\) 0 0
\(327\) −5.24335 −0.289958
\(328\) 0 0
\(329\) 1.06001i 0.0584405i
\(330\) 0 0
\(331\) 6.23373 0.342637 0.171318 0.985216i \(-0.445197\pi\)
0.171318 + 0.985216i \(0.445197\pi\)
\(332\) 0 0
\(333\) −9.41102 −0.515721
\(334\) 0 0
\(335\) 42.7087i 2.33342i
\(336\) 0 0
\(337\) 28.0992i 1.53066i 0.643639 + 0.765329i \(0.277424\pi\)
−0.643639 + 0.765329i \(0.722576\pi\)
\(338\) 0 0
\(339\) 39.5908i 2.15028i
\(340\) 0 0
\(341\) 5.49716 0.297688
\(342\) 0 0
\(343\) −17.3750 −0.938163
\(344\) 0 0
\(345\) 24.4785 + 11.3433i 1.31788 + 0.610703i
\(346\) 0 0
\(347\) 9.79092 0.525604 0.262802 0.964850i \(-0.415353\pi\)
0.262802 + 0.964850i \(0.415353\pi\)
\(348\) 0 0
\(349\) 6.93723i 0.371341i 0.982612 + 0.185671i \(0.0594458\pi\)
−0.982612 + 0.185671i \(0.940554\pi\)
\(350\) 0 0
\(351\) 10.1355i 0.540994i
\(352\) 0 0
\(353\) −19.6224 −1.04439 −0.522197 0.852825i \(-0.674887\pi\)
−0.522197 + 0.852825i \(0.674887\pi\)
\(354\) 0 0
\(355\) 15.0723i 0.799957i
\(356\) 0 0
\(357\) 5.35466i 0.283399i
\(358\) 0 0
\(359\) −9.92951 −0.524059 −0.262030 0.965060i \(-0.584392\pi\)
−0.262030 + 0.965060i \(0.584392\pi\)
\(360\) 0 0
\(361\) 7.71868 0.406246
\(362\) 0 0
\(363\) −17.9401 −0.941611
\(364\) 0 0
\(365\) 30.8785 1.61625
\(366\) 0 0
\(367\) 23.0308 1.20220 0.601100 0.799174i \(-0.294729\pi\)
0.601100 + 0.799174i \(0.294729\pi\)
\(368\) 0 0
\(369\) −2.53606 −0.132022
\(370\) 0 0
\(371\) 7.52794 0.390831
\(372\) 0 0
\(373\) 19.7874 1.02456 0.512278 0.858820i \(-0.328802\pi\)
0.512278 + 0.858820i \(0.328802\pi\)
\(374\) 0 0
\(375\) −16.3213 −0.842827
\(376\) 0 0
\(377\) −15.6161 −0.804272
\(378\) 0 0
\(379\) 14.4027i 0.739819i −0.929068 0.369910i \(-0.879389\pi\)
0.929068 0.369910i \(-0.120611\pi\)
\(380\) 0 0
\(381\) 8.52394i 0.436694i
\(382\) 0 0
\(383\) −20.0483 −1.02442 −0.512211 0.858860i \(-0.671174\pi\)
−0.512211 + 0.858860i \(0.671174\pi\)
\(384\) 0 0
\(385\) 6.18075i 0.315000i
\(386\) 0 0
\(387\) 3.78478i 0.192391i
\(388\) 0 0
\(389\) 25.3993 1.28780 0.643898 0.765111i \(-0.277316\pi\)
0.643898 + 0.765111i \(0.277316\pi\)
\(390\) 0 0
\(391\) −3.48769 + 7.52632i −0.176380 + 0.380622i
\(392\) 0 0
\(393\) 18.4185 0.929088
\(394\) 0 0
\(395\) 20.2985 1.02133
\(396\) 0 0
\(397\) 21.1050i 1.05923i 0.848238 + 0.529616i \(0.177664\pi\)
−0.848238 + 0.529616i \(0.822336\pi\)
\(398\) 0 0
\(399\) 10.3980i 0.520553i
\(400\) 0 0
\(401\) 25.5268i 1.27475i −0.770556 0.637373i \(-0.780021\pi\)
0.770556 0.637373i \(-0.219979\pi\)
\(402\) 0 0
\(403\) 10.8165 0.538809
\(404\) 0 0
\(405\) 29.9691 1.48918
\(406\) 0 0
\(407\) 10.2122i 0.506199i
\(408\) 0 0
\(409\) −14.0204 −0.693265 −0.346632 0.938001i \(-0.612675\pi\)
−0.346632 + 0.938001i \(0.612675\pi\)
\(410\) 0 0
\(411\) 25.4790i 1.25679i
\(412\) 0 0
\(413\) −1.11244 −0.0547397
\(414\) 0 0
\(415\) 38.3434i 1.88221i
\(416\) 0 0
\(417\) 8.47607 0.415075
\(418\) 0 0
\(419\) 28.0377i 1.36973i 0.728670 + 0.684865i \(0.240139\pi\)
−0.728670 + 0.684865i \(0.759861\pi\)
\(420\) 0 0
\(421\) −33.8484 −1.64967 −0.824835 0.565373i \(-0.808732\pi\)
−0.824835 + 0.565373i \(0.808732\pi\)
\(422\) 0 0
\(423\) 1.05410i 0.0512521i
\(424\) 0 0
\(425\) 3.63004i 0.176083i
\(426\) 0 0
\(427\) −10.8479 −0.524966
\(428\) 0 0
\(429\) 10.3998 0.502108
\(430\) 0 0
\(431\) 22.0915 1.06411 0.532055 0.846710i \(-0.321420\pi\)
0.532055 + 0.846710i \(0.321420\pi\)
\(432\) 0 0
\(433\) 21.7780i 1.04658i −0.852153 0.523292i \(-0.824704\pi\)
0.852153 0.523292i \(-0.175296\pi\)
\(434\) 0 0
\(435\) 28.2185i 1.35297i
\(436\) 0 0
\(437\) 6.77264 14.6151i 0.323979 0.699136i
\(438\) 0 0
\(439\) 27.7194i 1.32298i 0.749955 + 0.661489i \(0.230075\pi\)
−0.749955 + 0.661489i \(0.769925\pi\)
\(440\) 0 0
\(441\) −7.07179 −0.336752
\(442\) 0 0
\(443\) −39.1547 −1.86029 −0.930147 0.367187i \(-0.880321\pi\)
−0.930147 + 0.367187i \(0.880321\pi\)
\(444\) 0 0
\(445\) 20.2985i 0.962243i
\(446\) 0 0
\(447\) −21.7756 −1.02995
\(448\) 0 0
\(449\) −20.0742 −0.947359 −0.473679 0.880697i \(-0.657074\pi\)
−0.473679 + 0.880697i \(0.657074\pi\)
\(450\) 0 0
\(451\) 2.75196i 0.129585i
\(452\) 0 0
\(453\) 21.5780i 1.01382i
\(454\) 0 0
\(455\) 12.1616i 0.570144i
\(456\) 0 0
\(457\) 19.0187i 0.889655i −0.895616 0.444828i \(-0.853265\pi\)
0.895616 0.444828i \(-0.146735\pi\)
\(458\) 0 0
\(459\) 5.63125i 0.262844i
\(460\) 0 0
\(461\) 11.7746i 0.548398i 0.961673 + 0.274199i \(0.0884126\pi\)
−0.961673 + 0.274199i \(0.911587\pi\)
\(462\) 0 0
\(463\) 5.32036i 0.247258i −0.992328 0.123629i \(-0.960547\pi\)
0.992328 0.123629i \(-0.0394533\pi\)
\(464\) 0 0
\(465\) 19.5455i 0.906402i
\(466\) 0 0
\(467\) 16.3781i 0.757888i −0.925420 0.378944i \(-0.876287\pi\)
0.925420 0.378944i \(-0.123713\pi\)
\(468\) 0 0
\(469\) 23.5032i 1.08528i
\(470\) 0 0
\(471\) 29.0669 1.33933
\(472\) 0 0
\(473\) 4.10698 0.188839
\(474\) 0 0
\(475\) 7.04905i 0.323433i
\(476\) 0 0
\(477\) 7.48594 0.342758
\(478\) 0 0
\(479\) −14.5959 −0.666905 −0.333453 0.942767i \(-0.608214\pi\)
−0.333453 + 0.942767i \(0.608214\pi\)
\(480\) 0 0
\(481\) 20.0941i 0.916211i
\(482\) 0 0
\(483\) −13.4708 6.24237i −0.612944 0.284038i
\(484\) 0 0
\(485\) 38.8770i 1.76531i
\(486\) 0 0
\(487\) 12.6716i 0.574204i −0.957900 0.287102i \(-0.907308\pi\)
0.957900 0.287102i \(-0.0926919\pi\)
\(488\) 0 0
\(489\) 29.8706 1.35080
\(490\) 0 0
\(491\) 19.8743 0.896916 0.448458 0.893804i \(-0.351973\pi\)
0.448458 + 0.893804i \(0.351973\pi\)
\(492\) 0 0
\(493\) −8.67626 −0.390759
\(494\) 0 0
\(495\) 6.14627i 0.276254i
\(496\) 0 0
\(497\) 8.29451i 0.372060i
\(498\) 0 0
\(499\) −18.7044 −0.837325 −0.418662 0.908142i \(-0.637501\pi\)
−0.418662 + 0.908142i \(0.637501\pi\)
\(500\) 0 0
\(501\) 32.8204i 1.46631i
\(502\) 0 0
\(503\) −27.2828 −1.21648 −0.608241 0.793752i \(-0.708125\pi\)
−0.608241 + 0.793752i \(0.708125\pi\)
\(504\) 0 0
\(505\) 0.842739i 0.0375014i
\(506\) 0 0
\(507\) −6.98503 −0.310216
\(508\) 0 0
\(509\) 24.1960i 1.07247i −0.844069 0.536235i \(-0.819846\pi\)
0.844069 0.536235i \(-0.180154\pi\)
\(510\) 0 0
\(511\) −16.9929 −0.751720
\(512\) 0 0
\(513\) 10.9351i 0.482798i
\(514\) 0 0
\(515\) 18.5092 0.815612
\(516\) 0 0
\(517\) −1.14384 −0.0503059
\(518\) 0 0
\(519\) 29.4306i 1.29186i
\(520\) 0 0
\(521\) 0.794631i 0.0348134i 0.999848 + 0.0174067i \(0.00554100\pi\)
−0.999848 + 0.0174067i \(0.994459\pi\)
\(522\) 0 0
\(523\) 37.9703i 1.66033i −0.557520 0.830164i \(-0.688247\pi\)
0.557520 0.830164i \(-0.311753\pi\)
\(524\) 0 0
\(525\) −6.49714 −0.283559
\(526\) 0 0
\(527\) 6.00961 0.261783
\(528\) 0 0
\(529\) 14.8682 + 17.5481i 0.646444 + 0.762961i
\(530\) 0 0
\(531\) −1.10624 −0.0480066
\(532\) 0 0
\(533\) 5.41491i 0.234546i
\(534\) 0 0
\(535\) 1.81439i 0.0784428i
\(536\) 0 0
\(537\) −15.9102 −0.686575
\(538\) 0 0
\(539\) 7.67381i 0.330535i
\(540\) 0 0
\(541\) 36.8184i 1.58295i 0.611203 + 0.791474i \(0.290686\pi\)
−0.611203 + 0.791474i \(0.709314\pi\)
\(542\) 0 0
\(543\) −12.3067 −0.528131
\(544\) 0 0
\(545\) −6.61647 −0.283418
\(546\) 0 0
\(547\) −16.0683 −0.687031 −0.343516 0.939147i \(-0.611618\pi\)
−0.343516 + 0.939147i \(0.611618\pi\)
\(548\) 0 0
\(549\) −10.7874 −0.460393
\(550\) 0 0
\(551\) 16.8481 0.717755
\(552\) 0 0
\(553\) −11.1706 −0.475020
\(554\) 0 0
\(555\) −36.3102 −1.54128
\(556\) 0 0
\(557\) 6.24669 0.264681 0.132340 0.991204i \(-0.457751\pi\)
0.132340 + 0.991204i \(0.457751\pi\)
\(558\) 0 0
\(559\) 8.08113 0.341795
\(560\) 0 0
\(561\) 5.77809 0.243951
\(562\) 0 0
\(563\) 9.92670i 0.418361i −0.977877 0.209180i \(-0.932920\pi\)
0.977877 0.209180i \(-0.0670796\pi\)
\(564\) 0 0
\(565\) 49.9587i 2.10178i
\(566\) 0 0
\(567\) −16.4924 −0.692616
\(568\) 0 0
\(569\) 1.82432i 0.0764795i −0.999269 0.0382398i \(-0.987825\pi\)
0.999269 0.0382398i \(-0.0121751\pi\)
\(570\) 0 0
\(571\) 12.2767i 0.513763i 0.966443 + 0.256881i \(0.0826949\pi\)
−0.966443 + 0.256881i \(0.917305\pi\)
\(572\) 0 0
\(573\) 19.7929 0.826860
\(574\) 0 0
\(575\) 9.13215 + 4.23183i 0.380837 + 0.176480i
\(576\) 0 0
\(577\) 14.8857 0.619698 0.309849 0.950786i \(-0.399721\pi\)
0.309849 + 0.950786i \(0.399721\pi\)
\(578\) 0 0
\(579\) 55.3877 2.30183
\(580\) 0 0
\(581\) 21.1009i 0.875413i
\(582\) 0 0
\(583\) 8.12323i 0.336430i
\(584\) 0 0
\(585\) 12.0937i 0.500015i
\(586\) 0 0
\(587\) 30.4240 1.25573 0.627866 0.778322i \(-0.283929\pi\)
0.627866 + 0.778322i \(0.283929\pi\)
\(588\) 0 0
\(589\) −11.6699 −0.480848
\(590\) 0 0
\(591\) 53.4497i 2.19862i
\(592\) 0 0
\(593\) −39.8878 −1.63799 −0.818997 0.573797i \(-0.805470\pi\)
−0.818997 + 0.573797i \(0.805470\pi\)
\(594\) 0 0
\(595\) 6.75693i 0.277007i
\(596\) 0 0
\(597\) −32.4775 −1.32922
\(598\) 0 0
\(599\) 5.15809i 0.210754i 0.994432 + 0.105377i \(0.0336049\pi\)
−0.994432 + 0.105377i \(0.966395\pi\)
\(600\) 0 0
\(601\) 16.6407 0.678787 0.339393 0.940645i \(-0.389778\pi\)
0.339393 + 0.940645i \(0.389778\pi\)
\(602\) 0 0
\(603\) 23.3720i 0.951783i
\(604\) 0 0
\(605\) −22.6382 −0.920374
\(606\) 0 0
\(607\) 33.0231i 1.34037i −0.742196 0.670183i \(-0.766216\pi\)
0.742196 0.670183i \(-0.233784\pi\)
\(608\) 0 0
\(609\) 15.5290i 0.629267i
\(610\) 0 0
\(611\) −2.25068 −0.0910527
\(612\) 0 0
\(613\) −26.6072 −1.07465 −0.537327 0.843374i \(-0.680566\pi\)
−0.537327 + 0.843374i \(0.680566\pi\)
\(614\) 0 0
\(615\) −9.78479 −0.394561
\(616\) 0 0
\(617\) 36.9911i 1.48921i 0.667507 + 0.744604i \(0.267362\pi\)
−0.667507 + 0.744604i \(0.732638\pi\)
\(618\) 0 0
\(619\) 15.2679i 0.613669i −0.951763 0.306834i \(-0.900730\pi\)
0.951763 0.306834i \(-0.0992697\pi\)
\(620\) 0 0
\(621\) 14.1666 + 6.56481i 0.568488 + 0.263437i
\(622\) 0 0
\(623\) 11.1706i 0.447539i
\(624\) 0 0
\(625\) −31.0890 −1.24356
\(626\) 0 0
\(627\) −11.2203 −0.448095
\(628\) 0 0
\(629\) 11.1642i 0.445145i
\(630\) 0 0
\(631\) 35.9855 1.43256 0.716280 0.697813i \(-0.245843\pi\)
0.716280 + 0.697813i \(0.245843\pi\)
\(632\) 0 0
\(633\) −35.0887 −1.39465
\(634\) 0 0
\(635\) 10.7562i 0.426845i
\(636\) 0 0
\(637\) 15.0994i 0.598261i
\(638\) 0 0
\(639\) 8.24824i 0.326295i
\(640\) 0 0
\(641\) 23.9182i 0.944712i 0.881408 + 0.472356i \(0.156596\pi\)
−0.881408 + 0.472356i \(0.843404\pi\)
\(642\) 0 0
\(643\) 35.9185i 1.41649i −0.705969 0.708243i \(-0.749488\pi\)
0.705969 0.708243i \(-0.250512\pi\)
\(644\) 0 0
\(645\) 14.6027i 0.574980i
\(646\) 0 0
\(647\) 21.8459i 0.858852i −0.903102 0.429426i \(-0.858716\pi\)
0.903102 0.429426i \(-0.141284\pi\)
\(648\) 0 0
\(649\) 1.20041i 0.0471203i
\(650\) 0 0
\(651\) 10.7562i 0.421567i
\(652\) 0 0
\(653\) 2.12784i 0.0832689i −0.999133 0.0416344i \(-0.986744\pi\)
0.999133 0.0416344i \(-0.0132565\pi\)
\(654\) 0 0
\(655\) 23.2418 0.908134
\(656\) 0 0
\(657\) −16.8981 −0.659256
\(658\) 0 0
\(659\) 26.4501i 1.03035i 0.857085 + 0.515174i \(0.172273\pi\)
−0.857085 + 0.515174i \(0.827727\pi\)
\(660\) 0 0
\(661\) −29.2769 −1.13874 −0.569371 0.822081i \(-0.692813\pi\)
−0.569371 + 0.822081i \(0.692813\pi\)
\(662\) 0 0
\(663\) 11.3693 0.441547
\(664\) 0 0
\(665\) 13.1211i 0.508813i
\(666\) 0 0
\(667\) −10.1146 + 21.8270i −0.391640 + 0.845146i
\(668\) 0 0
\(669\) 6.48018i 0.250538i
\(670\) 0 0
\(671\) 11.7057i 0.451894i
\(672\) 0 0
\(673\) 37.4959 1.44536 0.722680 0.691182i \(-0.242910\pi\)
0.722680 + 0.691182i \(0.242910\pi\)
\(674\) 0 0
\(675\) 6.83275 0.262993
\(676\) 0 0
\(677\) −13.1407 −0.505038 −0.252519 0.967592i \(-0.581259\pi\)
−0.252519 + 0.967592i \(0.581259\pi\)
\(678\) 0 0
\(679\) 21.3945i 0.821047i
\(680\) 0 0
\(681\) 20.4565i 0.783895i
\(682\) 0 0
\(683\) −5.96670 −0.228309 −0.114155 0.993463i \(-0.536416\pi\)
−0.114155 + 0.993463i \(0.536416\pi\)
\(684\) 0 0
\(685\) 32.1514i 1.22844i
\(686\) 0 0
\(687\) 16.4944 0.629299
\(688\) 0 0
\(689\) 15.9837i 0.608931i
\(690\) 0 0
\(691\) −41.7217 −1.58717 −0.793583 0.608462i \(-0.791787\pi\)
−0.793583 + 0.608462i \(0.791787\pi\)
\(692\) 0 0
\(693\) 3.38238i 0.128486i
\(694\) 0 0
\(695\) 10.6958 0.405713
\(696\) 0 0
\(697\) 3.00850i 0.113955i
\(698\) 0 0
\(699\) −22.6053 −0.855012
\(700\) 0 0
\(701\) −23.9934 −0.906219 −0.453109 0.891455i \(-0.649685\pi\)
−0.453109 + 0.891455i \(0.649685\pi\)
\(702\) 0 0
\(703\) 21.6794i 0.817653i
\(704\) 0 0
\(705\) 4.06699i 0.153172i
\(706\) 0 0
\(707\) 0.463771i 0.0174419i
\(708\) 0 0
\(709\) 2.88884 0.108493 0.0542464 0.998528i \(-0.482724\pi\)
0.0542464 + 0.998528i \(0.482724\pi\)
\(710\) 0 0
\(711\) −11.1082 −0.416592
\(712\) 0 0
\(713\) 7.00590 15.1185i 0.262373 0.566192i
\(714\) 0 0
\(715\) 13.1233 0.490784
\(716\) 0 0
\(717\) 57.4333i 2.14488i
\(718\) 0 0
\(719\) 17.2400i 0.642942i −0.946919 0.321471i \(-0.895823\pi\)
0.946919 0.321471i \(-0.104177\pi\)
\(720\) 0 0
\(721\) −10.1859 −0.379341
\(722\) 0 0
\(723\) 6.44224i 0.239590i
\(724\) 0 0
\(725\) 10.5274i 0.390979i
\(726\) 0 0
\(727\) 50.2190 1.86252 0.931260 0.364355i \(-0.118710\pi\)
0.931260 + 0.364355i \(0.118710\pi\)
\(728\) 0 0
\(729\) 4.22193 0.156368
\(730\) 0 0
\(731\) 4.48984 0.166063
\(732\) 0 0
\(733\) −29.2975 −1.08213 −0.541063 0.840982i \(-0.681978\pi\)
−0.541063 + 0.840982i \(0.681978\pi\)
\(734\) 0 0
\(735\) −27.2848 −1.00641
\(736\) 0 0
\(737\) 25.3617 0.934211
\(738\) 0 0
\(739\) −17.5545 −0.645753 −0.322877 0.946441i \(-0.604650\pi\)
−0.322877 + 0.946441i \(0.604650\pi\)
\(740\) 0 0
\(741\) −22.0777 −0.811044
\(742\) 0 0
\(743\) 13.9441 0.511558 0.255779 0.966735i \(-0.417668\pi\)
0.255779 + 0.966735i \(0.417668\pi\)
\(744\) 0 0
\(745\) −27.4782 −1.00672
\(746\) 0 0
\(747\) 20.9832i 0.767735i
\(748\) 0 0
\(749\) 0.998481i 0.0364837i
\(750\) 0 0
\(751\) 45.7458 1.66929 0.834644 0.550789i \(-0.185673\pi\)
0.834644 + 0.550789i \(0.185673\pi\)
\(752\) 0 0
\(753\) 4.66210i 0.169896i
\(754\) 0 0
\(755\) 27.2288i 0.990956i
\(756\) 0 0
\(757\) −36.3497 −1.32115 −0.660576 0.750759i \(-0.729688\pi\)
−0.660576 + 0.750759i \(0.729688\pi\)
\(758\) 0 0
\(759\) 6.73600 14.5361i 0.244501 0.527626i
\(760\) 0 0
\(761\) 4.32626 0.156827 0.0784134 0.996921i \(-0.475015\pi\)
0.0784134 + 0.996921i \(0.475015\pi\)
\(762\) 0 0
\(763\) 3.64113 0.131818
\(764\) 0 0
\(765\) 6.71923i 0.242934i
\(766\) 0 0
\(767\) 2.36200i 0.0852868i
\(768\) 0 0
\(769\) 12.4755i 0.449877i 0.974373 + 0.224939i \(0.0722182\pi\)
−0.974373 + 0.224939i \(0.927782\pi\)
\(770\) 0 0
\(771\) 33.3395 1.20069
\(772\) 0 0
\(773\) −14.6923 −0.528445 −0.264222 0.964462i \(-0.585115\pi\)
−0.264222 + 0.964462i \(0.585115\pi\)
\(774\) 0 0
\(775\) 7.29183i 0.261930i
\(776\) 0 0
\(777\) 19.9820 0.716849
\(778\) 0 0
\(779\) 5.84211i 0.209315i
\(780\) 0 0
\(781\) −8.95042 −0.320271
\(782\) 0 0
\(783\) 16.3311i 0.583627i
\(784\) 0 0
\(785\) 36.6789 1.30912
\(786\) 0 0
\(787\) 10.2156i 0.364148i −0.983285 0.182074i \(-0.941719\pi\)
0.983285 0.182074i \(-0.0582811\pi\)
\(788\) 0 0
\(789\) 46.6441 1.66058
\(790\) 0 0
\(791\) 27.4930i 0.977538i
\(792\) 0 0
\(793\) 23.0328i 0.817918i
\(794\) 0 0
\(795\) 28.8827 1.02436
\(796\) 0 0
\(797\) −10.5503 −0.373712 −0.186856 0.982387i \(-0.559830\pi\)
−0.186856 + 0.982387i \(0.559830\pi\)
\(798\) 0 0
\(799\) −1.25047 −0.0442384
\(800\) 0 0
\(801\) 11.1082i 0.392490i
\(802\) 0 0
\(803\) 18.3366i 0.647085i
\(804\) 0 0
\(805\) −16.9985 7.87711i −0.599120 0.277632i
\(806\) 0 0
\(807\) 52.1799i 1.83682i
\(808\) 0 0
\(809\) −24.4161 −0.858423 −0.429212 0.903204i \(-0.641209\pi\)
−0.429212 + 0.903204i \(0.641209\pi\)
\(810\) 0 0
\(811\) −28.3512 −0.995544 −0.497772 0.867308i \(-0.665848\pi\)
−0.497772 + 0.867308i \(0.665848\pi\)
\(812\) 0 0
\(813\) 58.6434i 2.05671i
\(814\) 0 0
\(815\) 37.6931 1.32033
\(816\) 0 0
\(817\) −8.71868 −0.305028
\(818\) 0 0
\(819\) 6.65535i 0.232557i
\(820\) 0 0
\(821\) 12.3341i 0.430463i 0.976563 + 0.215231i \(0.0690505\pi\)
−0.976563 + 0.215231i \(0.930949\pi\)
\(822\) 0 0
\(823\) 53.4349i 1.86262i −0.364225 0.931311i \(-0.618666\pi\)
0.364225 0.931311i \(-0.381334\pi\)
\(824\) 0 0
\(825\) 7.01092i 0.244089i
\(826\) 0 0
\(827\) 42.1604i 1.46606i 0.680196 + 0.733031i \(0.261895\pi\)
−0.680196 + 0.733031i \(0.738105\pi\)
\(828\) 0 0
\(829\) 50.8436i 1.76587i 0.469496 + 0.882935i \(0.344436\pi\)
−0.469496 + 0.882935i \(0.655564\pi\)
\(830\) 0 0
\(831\) 10.5912i 0.367404i
\(832\) 0 0
\(833\) 8.38918i 0.290668i
\(834\) 0 0
\(835\) 41.4154i 1.43324i
\(836\) 0 0
\(837\) 11.3118i 0.390992i
\(838\) 0 0
\(839\) −38.0306 −1.31296 −0.656481 0.754342i \(-0.727956\pi\)
−0.656481 + 0.754342i \(0.727956\pi\)
\(840\) 0 0
\(841\) 3.83806 0.132347
\(842\) 0 0
\(843\) 65.8350i 2.26748i
\(844\) 0 0
\(845\) −8.81426 −0.303220
\(846\) 0 0
\(847\) 12.4581 0.428066
\(848\) 0 0
\(849\) 24.4163i 0.837964i
\(850\) 0 0
\(851\) −28.0859 13.0150i −0.962774 0.446149i
\(852\) 0 0
\(853\) 52.0135i 1.78091i 0.455074 + 0.890454i \(0.349613\pi\)
−0.455074 + 0.890454i \(0.650387\pi\)
\(854\) 0 0
\(855\) 13.0479i 0.446228i
\(856\) 0 0
\(857\) 24.8381 0.848452 0.424226 0.905556i \(-0.360546\pi\)
0.424226 + 0.905556i \(0.360546\pi\)
\(858\) 0 0
\(859\) 34.0470 1.16167 0.580835 0.814021i \(-0.302726\pi\)
0.580835 + 0.814021i \(0.302726\pi\)
\(860\) 0 0
\(861\) 5.38470 0.183510
\(862\) 0 0
\(863\) 27.6866i 0.942464i 0.882009 + 0.471232i \(0.156191\pi\)
−0.882009 + 0.471232i \(0.843809\pi\)
\(864\) 0 0
\(865\) 37.1378i 1.26272i
\(866\) 0 0
\(867\) −29.5772 −1.00449
\(868\) 0 0
\(869\) 12.0539i 0.408900i
\(870\) 0 0
\(871\) 49.9032 1.69090
\(872\) 0 0
\(873\) 21.2752i 0.720056i
\(874\) 0 0
\(875\) 11.3340 0.383158
\(876\) 0 0
\(877\) 33.8386i 1.14265i −0.820724 0.571325i \(-0.806430\pi\)
0.820724 0.571325i \(-0.193570\pi\)
\(878\) 0 0
\(879\) 25.8402 0.871570
\(880\) 0 0
\(881\) 3.48337i 0.117358i 0.998277 + 0.0586789i \(0.0186888\pi\)
−0.998277 + 0.0586789i \(0.981311\pi\)
\(882\) 0 0
\(883\) −23.9456 −0.805833 −0.402916 0.915237i \(-0.632003\pi\)
−0.402916 + 0.915237i \(0.632003\pi\)
\(884\) 0 0
\(885\) −4.26815 −0.143472
\(886\) 0 0
\(887\) 22.2229i 0.746173i 0.927796 + 0.373087i \(0.121701\pi\)
−0.927796 + 0.373087i \(0.878299\pi\)
\(888\) 0 0
\(889\) 5.91927i 0.198526i
\(890\) 0 0
\(891\) 17.7966i 0.596208i
\(892\) 0 0
\(893\) 2.42824 0.0812580
\(894\) 0 0
\(895\) −20.0767 −0.671091
\(896\) 0 0
\(897\) 13.2541 28.6020i 0.442543 0.954992i
\(898\) 0 0
\(899\) 17.4284 0.581270
\(900\) 0 0
\(901\) 8.88049i 0.295852i
\(902\) 0 0
\(903\) 8.03605i 0.267423i
\(904\) 0 0
\(905\) −15.5296 −0.516220
\(906\) 0 0
\(907\) 30.6008i 1.01608i 0.861333 + 0.508041i \(0.169630\pi\)
−0.861333 + 0.508041i \(0.830370\pi\)
\(908\) 0 0
\(909\) 0.461183i 0.0152965i
\(910\) 0 0
\(911\) −0.910974 −0.0301819 −0.0150910 0.999886i \(-0.504804\pi\)
−0.0150910 + 0.999886i \(0.504804\pi\)
\(912\) 0 0
\(913\) 22.7695 0.753561
\(914\) 0 0
\(915\) −41.6204 −1.37593
\(916\) 0 0
\(917\) −12.7903 −0.422373
\(918\) 0 0
\(919\) −53.5999 −1.76810 −0.884049 0.467394i \(-0.845193\pi\)
−0.884049 + 0.467394i \(0.845193\pi\)
\(920\) 0 0
\(921\) −26.6283 −0.877431
\(922\) 0 0
\(923\) −17.6113 −0.579685
\(924\) 0 0
\(925\) −13.5462 −0.445396
\(926\) 0 0
\(927\) −10.1290 −0.332681
\(928\) 0 0
\(929\) −0.265952 −0.00872559 −0.00436279 0.999990i \(-0.501389\pi\)
−0.00436279 + 0.999990i \(0.501389\pi\)
\(930\) 0 0
\(931\) 16.2907i 0.533905i
\(932\) 0 0
\(933\) 50.5363i 1.65448i
\(934\) 0 0
\(935\) 7.29125 0.238449
\(936\) 0 0
\(937\) 39.7886i 1.29984i −0.760003 0.649919i \(-0.774803\pi\)
0.760003 0.649919i \(-0.225197\pi\)
\(938\) 0 0
\(939\) 38.9289i 1.27040i
\(940\) 0 0
\(941\) −26.0669 −0.849755 −0.424878 0.905251i \(-0.639683\pi\)
−0.424878 + 0.905251i \(0.639683\pi\)
\(942\) 0 0
\(943\) −7.56854 3.50726i −0.246466 0.114212i
\(944\) 0 0
\(945\) −12.7184 −0.413731
\(946\) 0 0
\(947\) −5.78406 −0.187957 −0.0939783 0.995574i \(-0.529958\pi\)
−0.0939783 + 0.995574i \(0.529958\pi\)
\(948\) 0 0
\(949\) 36.0801i 1.17121i
\(950\) 0 0
\(951\) 59.4209i 1.92685i
\(952\) 0 0
\(953\) 3.77518i 0.122290i 0.998129 + 0.0611451i \(0.0194752\pi\)
−0.998129 + 0.0611451i \(0.980525\pi\)
\(954\) 0 0
\(955\) 24.9762 0.808211
\(956\) 0 0
\(957\) 16.7570 0.541677
\(958\) 0 0
\(959\) 17.6934i 0.571349i
\(960\) 0 0
\(961\) 18.9282 0.610588
\(962\) 0 0
\(963\) 0.992911i 0.0319961i
\(964\) 0 0
\(965\) 69.8925 2.24992
\(966\) 0 0
\(967\) 7.04359i 0.226507i −0.993566 0.113253i \(-0.963873\pi\)
0.993566 0.113253i \(-0.0361272\pi\)
\(968\) 0 0
\(969\) −12.2663 −0.394049
\(970\) 0 0
\(971\) 10.0392i 0.322172i −0.986940 0.161086i \(-0.948500\pi\)
0.986940 0.161086i \(-0.0514996\pi\)
\(972\) 0 0
\(973\) −5.88602 −0.188697
\(974\) 0 0
\(975\) 13.7951i 0.441796i
\(976\) 0 0
\(977\) 8.19985i 0.262336i 0.991360 + 0.131168i \(0.0418728\pi\)
−0.991360 + 0.131168i \(0.958127\pi\)
\(978\) 0 0
\(979\) 12.0539 0.385244
\(980\) 0 0
\(981\) 3.62082 0.115604
\(982\) 0 0
\(983\) 26.2027 0.835735 0.417868 0.908508i \(-0.362778\pi\)
0.417868 + 0.908508i \(0.362778\pi\)
\(984\) 0 0
\(985\) 67.4469i 2.14904i
\(986\) 0 0
\(987\) 2.23812i 0.0712402i
\(988\) 0 0
\(989\) 5.23418 11.2952i 0.166437 0.359166i
\(990\) 0 0
\(991\) 10.3292i 0.328117i −0.986451 0.164059i \(-0.947541\pi\)
0.986451 0.164059i \(-0.0524586\pi\)
\(992\) 0 0
\(993\) −13.1619 −0.417681
\(994\) 0 0
\(995\) −40.9826 −1.29924
\(996\) 0 0
\(997\) 5.29547i 0.167709i 0.996478 + 0.0838546i \(0.0267231\pi\)
−0.996478 + 0.0838546i \(0.973277\pi\)
\(998\) 0 0
\(999\) −21.0141 −0.664857
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.2.h.c.735.5 32
4.3 odd 2 inner 1472.2.h.c.735.27 yes 32
8.3 odd 2 inner 1472.2.h.c.735.6 yes 32
8.5 even 2 inner 1472.2.h.c.735.28 yes 32
23.22 odd 2 inner 1472.2.h.c.735.7 yes 32
92.91 even 2 inner 1472.2.h.c.735.25 yes 32
184.45 odd 2 inner 1472.2.h.c.735.26 yes 32
184.91 even 2 inner 1472.2.h.c.735.8 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1472.2.h.c.735.5 32 1.1 even 1 trivial
1472.2.h.c.735.6 yes 32 8.3 odd 2 inner
1472.2.h.c.735.7 yes 32 23.22 odd 2 inner
1472.2.h.c.735.8 yes 32 184.91 even 2 inner
1472.2.h.c.735.25 yes 32 92.91 even 2 inner
1472.2.h.c.735.26 yes 32 184.45 odd 2 inner
1472.2.h.c.735.27 yes 32 4.3 odd 2 inner
1472.2.h.c.735.28 yes 32 8.5 even 2 inner