Defining parameters
Level: | \( N \) | \(=\) | \( 1472 = 2^{6} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1472.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 184 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1472, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 204 | 48 | 156 |
Cusp forms | 180 | 48 | 132 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1472, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1472.2.h.a | $8$ | $11.754$ | 8.0.\(\cdots\).3 | \(\Q(\sqrt{-46}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{5}-3q^{9}-\beta _{4}q^{11}+\beta _{7}q^{19}+\cdots\) |
1472.2.h.b | $8$ | $11.754$ | 8.0.157351936.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{4}q^{3}+\beta _{3}q^{5}+\beta _{7}q^{7}+4q^{9}-\beta _{5}q^{11}+\cdots\) |
1472.2.h.c | $32$ | $11.754$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1472, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1472, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(736, [\chi])\)\(^{\oplus 2}\)