Properties

Label 1472.2.h.c
Level $1472$
Weight $2$
Character orbit 1472.h
Analytic conductor $11.754$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1472,2,Mod(735,1472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1472.735"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1472.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7539791775\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q + 40 q^{9} + 32 q^{25} + 8 q^{41} + 48 q^{49} - 104 q^{73} + 112 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
735.1 0 −3.22426 0 −3.21270 0 −2.55933 0 7.39585 0
735.2 0 −3.22426 0 3.21270 0 2.55933 0 7.39585 0
735.3 0 −3.22426 0 3.21270 0 2.55933 0 7.39585 0
735.4 0 −3.22426 0 −3.21270 0 −2.55933 0 7.39585 0
735.5 0 −2.11141 0 −2.66434 0 1.46622 0 1.45804 0
735.6 0 −2.11141 0 2.66434 0 −1.46622 0 1.45804 0
735.7 0 −2.11141 0 2.66434 0 −1.46622 0 1.45804 0
735.8 0 −2.11141 0 −2.66434 0 1.46622 0 1.45804 0
735.9 0 −1.29814 0 −0.128981 0 1.95094 0 −1.31484 0
735.10 0 −1.29814 0 0.128981 0 −1.95094 0 −1.31484 0
735.11 0 −1.29814 0 0.128981 0 −1.95094 0 −1.31484 0
735.12 0 −1.29814 0 −0.128981 0 1.95094 0 −1.31484 0
735.13 0 −0.678936 0 2.56187 0 4.63615 0 −2.53905 0
735.14 0 −0.678936 0 −2.56187 0 −4.63615 0 −2.53905 0
735.15 0 −0.678936 0 −2.56187 0 −4.63615 0 −2.53905 0
735.16 0 −0.678936 0 2.56187 0 4.63615 0 −2.53905 0
735.17 0 0.678936 0 2.56187 0 −4.63615 0 −2.53905 0
735.18 0 0.678936 0 −2.56187 0 4.63615 0 −2.53905 0
735.19 0 0.678936 0 −2.56187 0 4.63615 0 −2.53905 0
735.20 0 0.678936 0 2.56187 0 −4.63615 0 −2.53905 0
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 735.32
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
23.b odd 2 1 inner
92.b even 2 1 inner
184.e odd 2 1 inner
184.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1472.2.h.c 32
4.b odd 2 1 inner 1472.2.h.c 32
8.b even 2 1 inner 1472.2.h.c 32
8.d odd 2 1 inner 1472.2.h.c 32
23.b odd 2 1 inner 1472.2.h.c 32
92.b even 2 1 inner 1472.2.h.c 32
184.e odd 2 1 inner 1472.2.h.c 32
184.h even 2 1 inner 1472.2.h.c 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1472.2.h.c 32 1.a even 1 1 trivial
1472.2.h.c 32 4.b odd 2 1 inner
1472.2.h.c 32 8.b even 2 1 inner
1472.2.h.c 32 8.d odd 2 1 inner
1472.2.h.c 32 23.b odd 2 1 inner
1472.2.h.c 32 92.b even 2 1 inner
1472.2.h.c 32 184.e odd 2 1 inner
1472.2.h.c 32 184.h even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} - 17T_{3}^{6} + 79T_{3}^{4} - 111T_{3}^{2} + 36 \) acting on \(S_{2}^{\mathrm{new}}(1472, [\chi])\). Copy content Toggle raw display