Newspace parameters
Level: | \( N \) | \(=\) | \( 1472 = 2^{6} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1472.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(11.7539791775\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
735.1 | 0 | −3.22426 | 0 | −3.21270 | 0 | −2.55933 | 0 | 7.39585 | 0 | ||||||||||||||||||
735.2 | 0 | −3.22426 | 0 | 3.21270 | 0 | 2.55933 | 0 | 7.39585 | 0 | ||||||||||||||||||
735.3 | 0 | −3.22426 | 0 | 3.21270 | 0 | 2.55933 | 0 | 7.39585 | 0 | ||||||||||||||||||
735.4 | 0 | −3.22426 | 0 | −3.21270 | 0 | −2.55933 | 0 | 7.39585 | 0 | ||||||||||||||||||
735.5 | 0 | −2.11141 | 0 | −2.66434 | 0 | 1.46622 | 0 | 1.45804 | 0 | ||||||||||||||||||
735.6 | 0 | −2.11141 | 0 | 2.66434 | 0 | −1.46622 | 0 | 1.45804 | 0 | ||||||||||||||||||
735.7 | 0 | −2.11141 | 0 | 2.66434 | 0 | −1.46622 | 0 | 1.45804 | 0 | ||||||||||||||||||
735.8 | 0 | −2.11141 | 0 | −2.66434 | 0 | 1.46622 | 0 | 1.45804 | 0 | ||||||||||||||||||
735.9 | 0 | −1.29814 | 0 | −0.128981 | 0 | 1.95094 | 0 | −1.31484 | 0 | ||||||||||||||||||
735.10 | 0 | −1.29814 | 0 | 0.128981 | 0 | −1.95094 | 0 | −1.31484 | 0 | ||||||||||||||||||
735.11 | 0 | −1.29814 | 0 | 0.128981 | 0 | −1.95094 | 0 | −1.31484 | 0 | ||||||||||||||||||
735.12 | 0 | −1.29814 | 0 | −0.128981 | 0 | 1.95094 | 0 | −1.31484 | 0 | ||||||||||||||||||
735.13 | 0 | −0.678936 | 0 | 2.56187 | 0 | 4.63615 | 0 | −2.53905 | 0 | ||||||||||||||||||
735.14 | 0 | −0.678936 | 0 | −2.56187 | 0 | −4.63615 | 0 | −2.53905 | 0 | ||||||||||||||||||
735.15 | 0 | −0.678936 | 0 | −2.56187 | 0 | −4.63615 | 0 | −2.53905 | 0 | ||||||||||||||||||
735.16 | 0 | −0.678936 | 0 | 2.56187 | 0 | 4.63615 | 0 | −2.53905 | 0 | ||||||||||||||||||
735.17 | 0 | 0.678936 | 0 | 2.56187 | 0 | −4.63615 | 0 | −2.53905 | 0 | ||||||||||||||||||
735.18 | 0 | 0.678936 | 0 | −2.56187 | 0 | 4.63615 | 0 | −2.53905 | 0 | ||||||||||||||||||
735.19 | 0 | 0.678936 | 0 | −2.56187 | 0 | 4.63615 | 0 | −2.53905 | 0 | ||||||||||||||||||
735.20 | 0 | 0.678936 | 0 | 2.56187 | 0 | −4.63615 | 0 | −2.53905 | 0 | ||||||||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
23.b | odd | 2 | 1 | inner |
92.b | even | 2 | 1 | inner |
184.e | odd | 2 | 1 | inner |
184.h | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1472.2.h.c | ✓ | 32 |
4.b | odd | 2 | 1 | inner | 1472.2.h.c | ✓ | 32 |
8.b | even | 2 | 1 | inner | 1472.2.h.c | ✓ | 32 |
8.d | odd | 2 | 1 | inner | 1472.2.h.c | ✓ | 32 |
23.b | odd | 2 | 1 | inner | 1472.2.h.c | ✓ | 32 |
92.b | even | 2 | 1 | inner | 1472.2.h.c | ✓ | 32 |
184.e | odd | 2 | 1 | inner | 1472.2.h.c | ✓ | 32 |
184.h | even | 2 | 1 | inner | 1472.2.h.c | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1472.2.h.c | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
1472.2.h.c | ✓ | 32 | 4.b | odd | 2 | 1 | inner |
1472.2.h.c | ✓ | 32 | 8.b | even | 2 | 1 | inner |
1472.2.h.c | ✓ | 32 | 8.d | odd | 2 | 1 | inner |
1472.2.h.c | ✓ | 32 | 23.b | odd | 2 | 1 | inner |
1472.2.h.c | ✓ | 32 | 92.b | even | 2 | 1 | inner |
1472.2.h.c | ✓ | 32 | 184.e | odd | 2 | 1 | inner |
1472.2.h.c | ✓ | 32 | 184.h | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{8} - 17T_{3}^{6} + 79T_{3}^{4} - 111T_{3}^{2} + 36 \)
acting on \(S_{2}^{\mathrm{new}}(1472, [\chi])\).