Properties

Label 1472.2.h.c.735.14
Level $1472$
Weight $2$
Character 1472.735
Analytic conductor $11.754$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1472,2,Mod(735,1472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1472.735"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1472.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7539791775\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 735.14
Character \(\chi\) \(=\) 1472.735
Dual form 1472.2.h.c.735.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.678936 q^{3} -2.56187 q^{5} -4.63615 q^{7} -2.53905 q^{9} -0.0824776i q^{11} -5.74743i q^{13} +1.73935 q^{15} +2.55509i q^{17} +4.26667i q^{19} +3.14765 q^{21} +(-2.75394 - 3.92629i) q^{23} +1.56320 q^{25} +3.76066 q^{27} -4.77193i q^{29} +6.46534i q^{31} +0.0559970i q^{33} +11.8772 q^{35} +7.41432 q^{37} +3.90214i q^{39} -4.66545 q^{41} +0.420821i q^{43} +6.50472 q^{45} +9.59174i q^{47} +14.4939 q^{49} -1.73474i q^{51} +9.22547 q^{53} +0.211297i q^{55} -2.89680i q^{57} +2.10623 q^{59} -6.94097 q^{61} +11.7714 q^{63} +14.7242i q^{65} -0.188823i q^{67} +(1.86975 + 2.66570i) q^{69} +3.17595i q^{71} +4.82843 q^{73} -1.06131 q^{75} +0.382378i q^{77} -11.4857 q^{79} +5.06389 q^{81} +7.33792i q^{83} -6.54582i q^{85} +3.23984i q^{87} -11.4857i q^{89} +26.6459i q^{91} -4.38956i q^{93} -10.9307i q^{95} -3.42270i q^{97} +0.209414i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 40 q^{9} + 32 q^{25} + 8 q^{41} + 48 q^{49} - 104 q^{73} + 112 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times\).

\(n\) \(645\) \(833\) \(1151\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.678936 −0.391984 −0.195992 0.980605i \(-0.562793\pi\)
−0.195992 + 0.980605i \(0.562793\pi\)
\(4\) 0 0
\(5\) −2.56187 −1.14571 −0.572853 0.819658i \(-0.694163\pi\)
−0.572853 + 0.819658i \(0.694163\pi\)
\(6\) 0 0
\(7\) −4.63615 −1.75230 −0.876150 0.482039i \(-0.839896\pi\)
−0.876150 + 0.482039i \(0.839896\pi\)
\(8\) 0 0
\(9\) −2.53905 −0.846348
\(10\) 0 0
\(11\) 0.0824776i 0.0248679i −0.999923 0.0124340i \(-0.996042\pi\)
0.999923 0.0124340i \(-0.00395796\pi\)
\(12\) 0 0
\(13\) 5.74743i 1.59405i −0.603947 0.797025i \(-0.706406\pi\)
0.603947 0.797025i \(-0.293594\pi\)
\(14\) 0 0
\(15\) 1.73935 0.449098
\(16\) 0 0
\(17\) 2.55509i 0.619701i 0.950785 + 0.309850i \(0.100279\pi\)
−0.950785 + 0.309850i \(0.899721\pi\)
\(18\) 0 0
\(19\) 4.26667i 0.978842i 0.872048 + 0.489421i \(0.162792\pi\)
−0.872048 + 0.489421i \(0.837208\pi\)
\(20\) 0 0
\(21\) 3.14765 0.686874
\(22\) 0 0
\(23\) −2.75394 3.92629i −0.574237 0.818689i
\(24\) 0 0
\(25\) 1.56320 0.312640
\(26\) 0 0
\(27\) 3.76066 0.723739
\(28\) 0 0
\(29\) 4.77193i 0.886126i −0.896491 0.443063i \(-0.853892\pi\)
0.896491 0.443063i \(-0.146108\pi\)
\(30\) 0 0
\(31\) 6.46534i 1.16121i 0.814186 + 0.580605i \(0.197184\pi\)
−0.814186 + 0.580605i \(0.802816\pi\)
\(32\) 0 0
\(33\) 0.0559970i 0.00974783i
\(34\) 0 0
\(35\) 11.8772 2.00762
\(36\) 0 0
\(37\) 7.41432 1.21891 0.609454 0.792822i \(-0.291389\pi\)
0.609454 + 0.792822i \(0.291389\pi\)
\(38\) 0 0
\(39\) 3.90214i 0.624842i
\(40\) 0 0
\(41\) −4.66545 −0.728621 −0.364310 0.931278i \(-0.618695\pi\)
−0.364310 + 0.931278i \(0.618695\pi\)
\(42\) 0 0
\(43\) 0.420821i 0.0641746i 0.999485 + 0.0320873i \(0.0102155\pi\)
−0.999485 + 0.0320873i \(0.989785\pi\)
\(44\) 0 0
\(45\) 6.50472 0.969666
\(46\) 0 0
\(47\) 9.59174i 1.39910i 0.714584 + 0.699550i \(0.246616\pi\)
−0.714584 + 0.699550i \(0.753384\pi\)
\(48\) 0 0
\(49\) 14.4939 2.07055
\(50\) 0 0
\(51\) 1.73474i 0.242913i
\(52\) 0 0
\(53\) 9.22547 1.26722 0.633608 0.773655i \(-0.281573\pi\)
0.633608 + 0.773655i \(0.281573\pi\)
\(54\) 0 0
\(55\) 0.211297i 0.0284913i
\(56\) 0 0
\(57\) 2.89680i 0.383690i
\(58\) 0 0
\(59\) 2.10623 0.274208 0.137104 0.990557i \(-0.456221\pi\)
0.137104 + 0.990557i \(0.456221\pi\)
\(60\) 0 0
\(61\) −6.94097 −0.888700 −0.444350 0.895853i \(-0.646565\pi\)
−0.444350 + 0.895853i \(0.646565\pi\)
\(62\) 0 0
\(63\) 11.7714 1.48306
\(64\) 0 0
\(65\) 14.7242i 1.82631i
\(66\) 0 0
\(67\) 0.188823i 0.0230684i −0.999933 0.0115342i \(-0.996328\pi\)
0.999933 0.0115342i \(-0.00367153\pi\)
\(68\) 0 0
\(69\) 1.86975 + 2.66570i 0.225092 + 0.320913i
\(70\) 0 0
\(71\) 3.17595i 0.376916i 0.982081 + 0.188458i \(0.0603490\pi\)
−0.982081 + 0.188458i \(0.939651\pi\)
\(72\) 0 0
\(73\) 4.82843 0.565125 0.282563 0.959249i \(-0.408815\pi\)
0.282563 + 0.959249i \(0.408815\pi\)
\(74\) 0 0
\(75\) −1.06131 −0.122550
\(76\) 0 0
\(77\) 0.382378i 0.0435761i
\(78\) 0 0
\(79\) −11.4857 −1.29224 −0.646120 0.763236i \(-0.723610\pi\)
−0.646120 + 0.763236i \(0.723610\pi\)
\(80\) 0 0
\(81\) 5.06389 0.562654
\(82\) 0 0
\(83\) 7.33792i 0.805442i 0.915323 + 0.402721i \(0.131935\pi\)
−0.915323 + 0.402721i \(0.868065\pi\)
\(84\) 0 0
\(85\) 6.54582i 0.709994i
\(86\) 0 0
\(87\) 3.23984i 0.347347i
\(88\) 0 0
\(89\) 11.4857i 1.21748i −0.793370 0.608740i \(-0.791675\pi\)
0.793370 0.608740i \(-0.208325\pi\)
\(90\) 0 0
\(91\) 26.6459i 2.79325i
\(92\) 0 0
\(93\) 4.38956i 0.455176i
\(94\) 0 0
\(95\) 10.9307i 1.12146i
\(96\) 0 0
\(97\) 3.42270i 0.347523i −0.984788 0.173761i \(-0.944408\pi\)
0.984788 0.173761i \(-0.0555922\pi\)
\(98\) 0 0
\(99\) 0.209414i 0.0210469i
\(100\) 0 0
\(101\) 13.2351i 1.31694i −0.752606 0.658471i \(-0.771203\pi\)
0.752606 0.658471i \(-0.228797\pi\)
\(102\) 0 0
\(103\) 4.92186 0.484965 0.242483 0.970156i \(-0.422038\pi\)
0.242483 + 0.970156i \(0.422038\pi\)
\(104\) 0 0
\(105\) −8.06389 −0.786955
\(106\) 0 0
\(107\) 15.4743i 1.49596i −0.663722 0.747979i \(-0.731024\pi\)
0.663722 0.747979i \(-0.268976\pi\)
\(108\) 0 0
\(109\) −15.6393 −1.49797 −0.748985 0.662587i \(-0.769459\pi\)
−0.748985 + 0.662587i \(0.769459\pi\)
\(110\) 0 0
\(111\) −5.03385 −0.477792
\(112\) 0 0
\(113\) 9.79820i 0.921737i −0.887468 0.460869i \(-0.847538\pi\)
0.887468 0.460869i \(-0.152462\pi\)
\(114\) 0 0
\(115\) 7.05526 + 10.0587i 0.657906 + 0.937976i
\(116\) 0 0
\(117\) 14.5930i 1.34912i
\(118\) 0 0
\(119\) 11.8458i 1.08590i
\(120\) 0 0
\(121\) 10.9932 0.999382
\(122\) 0 0
\(123\) 3.16754 0.285608
\(124\) 0 0
\(125\) 8.80465 0.787511
\(126\) 0 0
\(127\) 7.94365i 0.704885i −0.935833 0.352442i \(-0.885351\pi\)
0.935833 0.352442i \(-0.114649\pi\)
\(128\) 0 0
\(129\) 0.285711i 0.0251554i
\(130\) 0 0
\(131\) 5.62797 0.491718 0.245859 0.969306i \(-0.420930\pi\)
0.245859 + 0.969306i \(0.420930\pi\)
\(132\) 0 0
\(133\) 19.7809i 1.71522i
\(134\) 0 0
\(135\) −9.63434 −0.829192
\(136\) 0 0
\(137\) 21.9113i 1.87201i 0.351988 + 0.936005i \(0.385506\pi\)
−0.351988 + 0.936005i \(0.614494\pi\)
\(138\) 0 0
\(139\) −1.65443 −0.140327 −0.0701635 0.997536i \(-0.522352\pi\)
−0.0701635 + 0.997536i \(0.522352\pi\)
\(140\) 0 0
\(141\) 6.51218i 0.548425i
\(142\) 0 0
\(143\) −0.474034 −0.0396407
\(144\) 0 0
\(145\) 12.2251i 1.01524i
\(146\) 0 0
\(147\) −9.84042 −0.811625
\(148\) 0 0
\(149\) −14.4078 −1.18034 −0.590168 0.807281i \(-0.700938\pi\)
−0.590168 + 0.807281i \(0.700938\pi\)
\(150\) 0 0
\(151\) 21.5849i 1.75656i 0.478149 + 0.878279i \(0.341308\pi\)
−0.478149 + 0.878279i \(0.658692\pi\)
\(152\) 0 0
\(153\) 6.48749i 0.524483i
\(154\) 0 0
\(155\) 16.5634i 1.33040i
\(156\) 0 0
\(157\) 15.2030 1.21333 0.606666 0.794957i \(-0.292506\pi\)
0.606666 + 0.794957i \(0.292506\pi\)
\(158\) 0 0
\(159\) −6.26351 −0.496728
\(160\) 0 0
\(161\) 12.7677 + 18.2029i 1.00624 + 1.43459i
\(162\) 0 0
\(163\) 21.7177 1.70106 0.850529 0.525928i \(-0.176282\pi\)
0.850529 + 0.525928i \(0.176282\pi\)
\(164\) 0 0
\(165\) 0.143457i 0.0111681i
\(166\) 0 0
\(167\) 2.37428i 0.183727i −0.995772 0.0918637i \(-0.970718\pi\)
0.995772 0.0918637i \(-0.0292824\pi\)
\(168\) 0 0
\(169\) −20.0329 −1.54099
\(170\) 0 0
\(171\) 10.8333i 0.828441i
\(172\) 0 0
\(173\) 21.4211i 1.62862i 0.580433 + 0.814308i \(0.302883\pi\)
−0.580433 + 0.814308i \(0.697117\pi\)
\(174\) 0 0
\(175\) −7.24724 −0.547840
\(176\) 0 0
\(177\) −1.43000 −0.107485
\(178\) 0 0
\(179\) −15.4108 −1.15185 −0.575927 0.817501i \(-0.695359\pi\)
−0.575927 + 0.817501i \(0.695359\pi\)
\(180\) 0 0
\(181\) 2.39692 0.178162 0.0890808 0.996024i \(-0.471607\pi\)
0.0890808 + 0.996024i \(0.471607\pi\)
\(182\) 0 0
\(183\) 4.71248 0.348356
\(184\) 0 0
\(185\) −18.9946 −1.39651
\(186\) 0 0
\(187\) 0.210738 0.0154107
\(188\) 0 0
\(189\) −17.4350 −1.26821
\(190\) 0 0
\(191\) −10.8997 −0.788671 −0.394336 0.918966i \(-0.629025\pi\)
−0.394336 + 0.918966i \(0.629025\pi\)
\(192\) 0 0
\(193\) 8.63951 0.621886 0.310943 0.950429i \(-0.399355\pi\)
0.310943 + 0.950429i \(0.399355\pi\)
\(194\) 0 0
\(195\) 9.99679i 0.715885i
\(196\) 0 0
\(197\) 24.6529i 1.75645i 0.478248 + 0.878225i \(0.341272\pi\)
−0.478248 + 0.878225i \(0.658728\pi\)
\(198\) 0 0
\(199\) 24.9964 1.77195 0.885975 0.463733i \(-0.153490\pi\)
0.885975 + 0.463733i \(0.153490\pi\)
\(200\) 0 0
\(201\) 0.128199i 0.00904245i
\(202\) 0 0
\(203\) 22.1234i 1.55276i
\(204\) 0 0
\(205\) 11.9523 0.834785
\(206\) 0 0
\(207\) 6.99239 + 9.96904i 0.486005 + 0.692896i
\(208\) 0 0
\(209\) 0.351905 0.0243418
\(210\) 0 0
\(211\) −1.10255 −0.0759027 −0.0379514 0.999280i \(-0.512083\pi\)
−0.0379514 + 0.999280i \(0.512083\pi\)
\(212\) 0 0
\(213\) 2.15627i 0.147745i
\(214\) 0 0
\(215\) 1.07809i 0.0735252i
\(216\) 0 0
\(217\) 29.9743i 2.03479i
\(218\) 0 0
\(219\) −3.27820 −0.221520
\(220\) 0 0
\(221\) 14.6852 0.987834
\(222\) 0 0
\(223\) 19.5930i 1.31204i −0.754742 0.656021i \(-0.772238\pi\)
0.754742 0.656021i \(-0.227762\pi\)
\(224\) 0 0
\(225\) −3.96904 −0.264603
\(226\) 0 0
\(227\) 22.2729i 1.47831i −0.673538 0.739153i \(-0.735226\pi\)
0.673538 0.739153i \(-0.264774\pi\)
\(228\) 0 0
\(229\) 10.5155 0.694885 0.347443 0.937701i \(-0.387050\pi\)
0.347443 + 0.937701i \(0.387050\pi\)
\(230\) 0 0
\(231\) 0.259611i 0.0170811i
\(232\) 0 0
\(233\) −9.60293 −0.629109 −0.314555 0.949239i \(-0.601855\pi\)
−0.314555 + 0.949239i \(0.601855\pi\)
\(234\) 0 0
\(235\) 24.5728i 1.60296i
\(236\) 0 0
\(237\) 7.79805 0.506538
\(238\) 0 0
\(239\) 6.80167i 0.439964i −0.975504 0.219982i \(-0.929400\pi\)
0.975504 0.219982i \(-0.0705998\pi\)
\(240\) 0 0
\(241\) 4.10612i 0.264498i −0.991217 0.132249i \(-0.957780\pi\)
0.991217 0.132249i \(-0.0422199\pi\)
\(242\) 0 0
\(243\) −14.7200 −0.944291
\(244\) 0 0
\(245\) −37.1315 −2.37225
\(246\) 0 0
\(247\) 24.5224 1.56032
\(248\) 0 0
\(249\) 4.98198i 0.315720i
\(250\) 0 0
\(251\) 9.89372i 0.624486i −0.950002 0.312243i \(-0.898920\pi\)
0.950002 0.312243i \(-0.101080\pi\)
\(252\) 0 0
\(253\) −0.323831 + 0.227139i −0.0203591 + 0.0142801i
\(254\) 0 0
\(255\) 4.44420i 0.278307i
\(256\) 0 0
\(257\) −3.47516 −0.216774 −0.108387 0.994109i \(-0.534569\pi\)
−0.108387 + 0.994109i \(0.534569\pi\)
\(258\) 0 0
\(259\) −34.3739 −2.13589
\(260\) 0 0
\(261\) 12.1162i 0.749971i
\(262\) 0 0
\(263\) −9.74221 −0.600730 −0.300365 0.953824i \(-0.597109\pi\)
−0.300365 + 0.953824i \(0.597109\pi\)
\(264\) 0 0
\(265\) −23.6345 −1.45186
\(266\) 0 0
\(267\) 7.79805i 0.477233i
\(268\) 0 0
\(269\) 7.59833i 0.463279i 0.972802 + 0.231639i \(0.0744089\pi\)
−0.972802 + 0.231639i \(0.925591\pi\)
\(270\) 0 0
\(271\) 3.10047i 0.188340i 0.995556 + 0.0941700i \(0.0300197\pi\)
−0.995556 + 0.0941700i \(0.969980\pi\)
\(272\) 0 0
\(273\) 18.0909i 1.09491i
\(274\) 0 0
\(275\) 0.128929i 0.00777472i
\(276\) 0 0
\(277\) 4.77193i 0.286718i 0.989671 + 0.143359i \(0.0457903\pi\)
−0.989671 + 0.143359i \(0.954210\pi\)
\(278\) 0 0
\(279\) 16.4158i 0.982788i
\(280\) 0 0
\(281\) 26.0257i 1.55256i −0.630387 0.776281i \(-0.717104\pi\)
0.630387 0.776281i \(-0.282896\pi\)
\(282\) 0 0
\(283\) 16.3540i 0.972143i 0.873919 + 0.486072i \(0.161571\pi\)
−0.873919 + 0.486072i \(0.838429\pi\)
\(284\) 0 0
\(285\) 7.42124i 0.439596i
\(286\) 0 0
\(287\) 21.6297 1.27676
\(288\) 0 0
\(289\) 10.4715 0.615971
\(290\) 0 0
\(291\) 2.32380i 0.136223i
\(292\) 0 0
\(293\) −27.8414 −1.62651 −0.813255 0.581908i \(-0.802306\pi\)
−0.813255 + 0.581908i \(0.802306\pi\)
\(294\) 0 0
\(295\) −5.39589 −0.314161
\(296\) 0 0
\(297\) 0.310170i 0.0179979i
\(298\) 0 0
\(299\) −22.5661 + 15.8281i −1.30503 + 0.915362i
\(300\) 0 0
\(301\) 1.95099i 0.112453i
\(302\) 0 0
\(303\) 8.98580i 0.516221i
\(304\) 0 0
\(305\) 17.7819 1.01819
\(306\) 0 0
\(307\) 24.6029 1.40416 0.702081 0.712097i \(-0.252254\pi\)
0.702081 + 0.712097i \(0.252254\pi\)
\(308\) 0 0
\(309\) −3.34163 −0.190099
\(310\) 0 0
\(311\) 11.9177i 0.675791i 0.941184 + 0.337896i \(0.109715\pi\)
−0.941184 + 0.337896i \(0.890285\pi\)
\(312\) 0 0
\(313\) 21.7271i 1.22809i 0.789271 + 0.614044i \(0.210458\pi\)
−0.789271 + 0.614044i \(0.789542\pi\)
\(314\) 0 0
\(315\) −30.1568 −1.69915
\(316\) 0 0
\(317\) 0.110656i 0.00621504i 0.999995 + 0.00310752i \(0.000989156\pi\)
−0.999995 + 0.00310752i \(0.999011\pi\)
\(318\) 0 0
\(319\) −0.393577 −0.0220361
\(320\) 0 0
\(321\) 10.5061i 0.586392i
\(322\) 0 0
\(323\) −10.9017 −0.606589
\(324\) 0 0
\(325\) 8.98439i 0.498364i
\(326\) 0 0
\(327\) 10.6181 0.587181
\(328\) 0 0
\(329\) 44.4688i 2.45164i
\(330\) 0 0
\(331\) 15.8650 0.872021 0.436011 0.899942i \(-0.356391\pi\)
0.436011 + 0.899942i \(0.356391\pi\)
\(332\) 0 0
\(333\) −18.8253 −1.03162
\(334\) 0 0
\(335\) 0.483741i 0.0264296i
\(336\) 0 0
\(337\) 23.8390i 1.29859i 0.760536 + 0.649296i \(0.224936\pi\)
−0.760536 + 0.649296i \(0.775064\pi\)
\(338\) 0 0
\(339\) 6.65236i 0.361306i
\(340\) 0 0
\(341\) 0.533246 0.0288769
\(342\) 0 0
\(343\) −34.7428 −1.87593
\(344\) 0 0
\(345\) −4.79007 6.82920i −0.257889 0.367672i
\(346\) 0 0
\(347\) −21.8590 −1.17345 −0.586726 0.809786i \(-0.699583\pi\)
−0.586726 + 0.809786i \(0.699583\pi\)
\(348\) 0 0
\(349\) 17.6528i 0.944935i 0.881348 + 0.472468i \(0.156637\pi\)
−0.881348 + 0.472468i \(0.843363\pi\)
\(350\) 0 0
\(351\) 21.6141i 1.15368i
\(352\) 0 0
\(353\) 8.68102 0.462044 0.231022 0.972948i \(-0.425793\pi\)
0.231022 + 0.972948i \(0.425793\pi\)
\(354\) 0 0
\(355\) 8.13639i 0.431835i
\(356\) 0 0
\(357\) 8.04254i 0.425656i
\(358\) 0 0
\(359\) −10.1399 −0.535164 −0.267582 0.963535i \(-0.586225\pi\)
−0.267582 + 0.963535i \(0.586225\pi\)
\(360\) 0 0
\(361\) 0.795505 0.0418687
\(362\) 0 0
\(363\) −7.46368 −0.391742
\(364\) 0 0
\(365\) −12.3698 −0.647467
\(366\) 0 0
\(367\) −9.27643 −0.484226 −0.242113 0.970248i \(-0.577840\pi\)
−0.242113 + 0.970248i \(0.577840\pi\)
\(368\) 0 0
\(369\) 11.8458 0.616667
\(370\) 0 0
\(371\) −42.7706 −2.22054
\(372\) 0 0
\(373\) 18.4449 0.955038 0.477519 0.878621i \(-0.341536\pi\)
0.477519 + 0.878621i \(0.341536\pi\)
\(374\) 0 0
\(375\) −5.97779 −0.308692
\(376\) 0 0
\(377\) −27.4263 −1.41253
\(378\) 0 0
\(379\) 33.1301i 1.70178i −0.525346 0.850888i \(-0.676064\pi\)
0.525346 0.850888i \(-0.323936\pi\)
\(380\) 0 0
\(381\) 5.39323i 0.276304i
\(382\) 0 0
\(383\) 24.3382 1.24362 0.621812 0.783167i \(-0.286397\pi\)
0.621812 + 0.783167i \(0.286397\pi\)
\(384\) 0 0
\(385\) 0.979605i 0.0499253i
\(386\) 0 0
\(387\) 1.06848i 0.0543141i
\(388\) 0 0
\(389\) −1.15612 −0.0586175 −0.0293087 0.999570i \(-0.509331\pi\)
−0.0293087 + 0.999570i \(0.509331\pi\)
\(390\) 0 0
\(391\) 10.0320 7.03658i 0.507342 0.355855i
\(392\) 0 0
\(393\) −3.82103 −0.192746
\(394\) 0 0
\(395\) 29.4249 1.48053
\(396\) 0 0
\(397\) 3.93528i 0.197506i −0.995112 0.0987530i \(-0.968515\pi\)
0.995112 0.0987530i \(-0.0314854\pi\)
\(398\) 0 0
\(399\) 13.4300i 0.672341i
\(400\) 0 0
\(401\) 12.6228i 0.630353i 0.949033 + 0.315176i \(0.102064\pi\)
−0.949033 + 0.315176i \(0.897936\pi\)
\(402\) 0 0
\(403\) 37.1591 1.85103
\(404\) 0 0
\(405\) −12.9730 −0.644636
\(406\) 0 0
\(407\) 0.611515i 0.0303117i
\(408\) 0 0
\(409\) 11.2510 0.556328 0.278164 0.960534i \(-0.410274\pi\)
0.278164 + 0.960534i \(0.410274\pi\)
\(410\) 0 0
\(411\) 14.8764i 0.733798i
\(412\) 0 0
\(413\) −9.76479 −0.480494
\(414\) 0 0
\(415\) 18.7988i 0.922799i
\(416\) 0 0
\(417\) 1.12325 0.0550060
\(418\) 0 0
\(419\) 0.916971i 0.0447970i 0.999749 + 0.0223985i \(0.00713025\pi\)
−0.999749 + 0.0223985i \(0.992870\pi\)
\(420\) 0 0
\(421\) 8.43308 0.411003 0.205502 0.978657i \(-0.434117\pi\)
0.205502 + 0.978657i \(0.434117\pi\)
\(422\) 0 0
\(423\) 24.3539i 1.18413i
\(424\) 0 0
\(425\) 3.99412i 0.193743i
\(426\) 0 0
\(427\) 32.1794 1.55727
\(428\) 0 0
\(429\) 0.321839 0.0155385
\(430\) 0 0
\(431\) 9.74221 0.469266 0.234633 0.972084i \(-0.424611\pi\)
0.234633 + 0.972084i \(0.424611\pi\)
\(432\) 0 0
\(433\) 21.7831i 1.04683i 0.852078 + 0.523415i \(0.175342\pi\)
−0.852078 + 0.523415i \(0.824658\pi\)
\(434\) 0 0
\(435\) 8.30006i 0.397958i
\(436\) 0 0
\(437\) 16.7522 11.7502i 0.801367 0.562087i
\(438\) 0 0
\(439\) 3.70641i 0.176898i −0.996081 0.0884488i \(-0.971809\pi\)
0.996081 0.0884488i \(-0.0281910\pi\)
\(440\) 0 0
\(441\) −36.8006 −1.75241
\(442\) 0 0
\(443\) −0.424823 −0.0201840 −0.0100920 0.999949i \(-0.503212\pi\)
−0.0100920 + 0.999949i \(0.503212\pi\)
\(444\) 0 0
\(445\) 29.4249i 1.39487i
\(446\) 0 0
\(447\) 9.78200 0.462673
\(448\) 0 0
\(449\) −27.8873 −1.31608 −0.658041 0.752982i \(-0.728615\pi\)
−0.658041 + 0.752982i \(0.728615\pi\)
\(450\) 0 0
\(451\) 0.384795i 0.0181193i
\(452\) 0 0
\(453\) 14.6548i 0.688543i
\(454\) 0 0
\(455\) 68.2635i 3.20024i
\(456\) 0 0
\(457\) 25.6280i 1.19883i 0.800440 + 0.599413i \(0.204599\pi\)
−0.800440 + 0.599413i \(0.795401\pi\)
\(458\) 0 0
\(459\) 9.60883i 0.448502i
\(460\) 0 0
\(461\) 24.0316i 1.11927i 0.828741 + 0.559633i \(0.189058\pi\)
−0.828741 + 0.559633i \(0.810942\pi\)
\(462\) 0 0
\(463\) 39.7555i 1.84759i 0.382884 + 0.923796i \(0.374931\pi\)
−0.382884 + 0.923796i \(0.625069\pi\)
\(464\) 0 0
\(465\) 11.2455i 0.521497i
\(466\) 0 0
\(467\) 31.4758i 1.45653i −0.685298 0.728263i \(-0.740328\pi\)
0.685298 0.728263i \(-0.259672\pi\)
\(468\) 0 0
\(469\) 0.875412i 0.0404228i
\(470\) 0 0
\(471\) −10.3219 −0.475607
\(472\) 0 0
\(473\) 0.0347083 0.00159589
\(474\) 0 0
\(475\) 6.66967i 0.306025i
\(476\) 0 0
\(477\) −23.4239 −1.07251
\(478\) 0 0
\(479\) 39.1947 1.79085 0.895426 0.445210i \(-0.146871\pi\)
0.895426 + 0.445210i \(0.146871\pi\)
\(480\) 0 0
\(481\) 42.6133i 1.94300i
\(482\) 0 0
\(483\) −8.66845 12.3586i −0.394428 0.562336i
\(484\) 0 0
\(485\) 8.76854i 0.398159i
\(486\) 0 0
\(487\) 33.4599i 1.51621i 0.652131 + 0.758107i \(0.273875\pi\)
−0.652131 + 0.758107i \(0.726125\pi\)
\(488\) 0 0
\(489\) −14.7449 −0.666788
\(490\) 0 0
\(491\) 2.65811 0.119959 0.0599794 0.998200i \(-0.480897\pi\)
0.0599794 + 0.998200i \(0.480897\pi\)
\(492\) 0 0
\(493\) 12.1927 0.549133
\(494\) 0 0
\(495\) 0.536493i 0.0241136i
\(496\) 0 0
\(497\) 14.7242i 0.660470i
\(498\) 0 0
\(499\) −14.3246 −0.641257 −0.320629 0.947205i \(-0.603894\pi\)
−0.320629 + 0.947205i \(0.603894\pi\)
\(500\) 0 0
\(501\) 1.61199i 0.0720182i
\(502\) 0 0
\(503\) −5.40637 −0.241058 −0.120529 0.992710i \(-0.538459\pi\)
−0.120529 + 0.992710i \(0.538459\pi\)
\(504\) 0 0
\(505\) 33.9067i 1.50883i
\(506\) 0 0
\(507\) 13.6011 0.604045
\(508\) 0 0
\(509\) 6.82300i 0.302424i −0.988501 0.151212i \(-0.951682\pi\)
0.988501 0.151212i \(-0.0483177\pi\)
\(510\) 0 0
\(511\) −22.3853 −0.990269
\(512\) 0 0
\(513\) 16.0455i 0.708426i
\(514\) 0 0
\(515\) −12.6092 −0.555627
\(516\) 0 0
\(517\) 0.791104 0.0347927
\(518\) 0 0
\(519\) 14.5436i 0.638392i
\(520\) 0 0
\(521\) 21.0437i 0.921941i −0.887415 0.460970i \(-0.847501\pi\)
0.887415 0.460970i \(-0.152499\pi\)
\(522\) 0 0
\(523\) 10.8726i 0.475425i −0.971336 0.237712i \(-0.923602\pi\)
0.971336 0.237712i \(-0.0763975\pi\)
\(524\) 0 0
\(525\) 4.92041 0.214744
\(526\) 0 0
\(527\) −16.5195 −0.719602
\(528\) 0 0
\(529\) −7.83158 + 21.6256i −0.340504 + 0.940243i
\(530\) 0 0
\(531\) −5.34781 −0.232075
\(532\) 0 0
\(533\) 26.8143i 1.16146i
\(534\) 0 0
\(535\) 39.6433i 1.71393i
\(536\) 0 0
\(537\) 10.4629 0.451508
\(538\) 0 0
\(539\) 1.19542i 0.0514904i
\(540\) 0 0
\(541\) 38.0421i 1.63556i −0.575533 0.817779i \(-0.695205\pi\)
0.575533 0.817779i \(-0.304795\pi\)
\(542\) 0 0
\(543\) −1.62736 −0.0698365
\(544\) 0 0
\(545\) 40.0659 1.71623
\(546\) 0 0
\(547\) −0.707120 −0.0302343 −0.0151171 0.999886i \(-0.504812\pi\)
−0.0151171 + 0.999886i \(0.504812\pi\)
\(548\) 0 0
\(549\) 17.6234 0.752150
\(550\) 0 0
\(551\) 20.3603 0.867377
\(552\) 0 0
\(553\) 53.2493 2.26439
\(554\) 0 0
\(555\) 12.8961 0.547409
\(556\) 0 0
\(557\) 18.9903 0.804643 0.402322 0.915498i \(-0.368203\pi\)
0.402322 + 0.915498i \(0.368203\pi\)
\(558\) 0 0
\(559\) 2.41864 0.102297
\(560\) 0 0
\(561\) −0.143078 −0.00604074
\(562\) 0 0
\(563\) 41.5571i 1.75142i 0.482836 + 0.875711i \(0.339607\pi\)
−0.482836 + 0.875711i \(0.660393\pi\)
\(564\) 0 0
\(565\) 25.1018i 1.05604i
\(566\) 0 0
\(567\) −23.4769 −0.985939
\(568\) 0 0
\(569\) 19.7539i 0.828127i 0.910248 + 0.414064i \(0.135891\pi\)
−0.910248 + 0.414064i \(0.864109\pi\)
\(570\) 0 0
\(571\) 23.7036i 0.991965i 0.868332 + 0.495983i \(0.165192\pi\)
−0.868332 + 0.495983i \(0.834808\pi\)
\(572\) 0 0
\(573\) 7.40017 0.309147
\(574\) 0 0
\(575\) −4.30497 6.13759i −0.179530 0.255955i
\(576\) 0 0
\(577\) −3.13883 −0.130671 −0.0653355 0.997863i \(-0.520812\pi\)
−0.0653355 + 0.997863i \(0.520812\pi\)
\(578\) 0 0
\(579\) −5.86568 −0.243769
\(580\) 0 0
\(581\) 34.0197i 1.41138i
\(582\) 0 0
\(583\) 0.760894i 0.0315130i
\(584\) 0 0
\(585\) 37.3854i 1.54570i
\(586\) 0 0
\(587\) −21.3071 −0.879438 −0.439719 0.898135i \(-0.644922\pi\)
−0.439719 + 0.898135i \(0.644922\pi\)
\(588\) 0 0
\(589\) −27.5855 −1.13664
\(590\) 0 0
\(591\) 16.7378i 0.688500i
\(592\) 0 0
\(593\) 35.1731 1.44439 0.722194 0.691691i \(-0.243134\pi\)
0.722194 + 0.691691i \(0.243134\pi\)
\(594\) 0 0
\(595\) 30.3474i 1.24412i
\(596\) 0 0
\(597\) −16.9710 −0.694576
\(598\) 0 0
\(599\) 20.9654i 0.856623i 0.903631 + 0.428311i \(0.140891\pi\)
−0.903631 + 0.428311i \(0.859109\pi\)
\(600\) 0 0
\(601\) 20.1022 0.819988 0.409994 0.912088i \(-0.365531\pi\)
0.409994 + 0.912088i \(0.365531\pi\)
\(602\) 0 0
\(603\) 0.479431i 0.0195239i
\(604\) 0 0
\(605\) −28.1632 −1.14500
\(606\) 0 0
\(607\) 20.9566i 0.850603i −0.905052 0.425301i \(-0.860168\pi\)
0.905052 0.425301i \(-0.139832\pi\)
\(608\) 0 0
\(609\) 15.0204i 0.608657i
\(610\) 0 0
\(611\) 55.1279 2.23023
\(612\) 0 0
\(613\) 33.0144 1.33344 0.666719 0.745309i \(-0.267698\pi\)
0.666719 + 0.745309i \(0.267698\pi\)
\(614\) 0 0
\(615\) −8.11485 −0.327222
\(616\) 0 0
\(617\) 26.2869i 1.05827i −0.848537 0.529136i \(-0.822516\pi\)
0.848537 0.529136i \(-0.177484\pi\)
\(618\) 0 0
\(619\) 13.6417i 0.548305i 0.961686 + 0.274152i \(0.0883972\pi\)
−0.961686 + 0.274152i \(0.911603\pi\)
\(620\) 0 0
\(621\) −10.3566 14.7655i −0.415598 0.592517i
\(622\) 0 0
\(623\) 53.2493i 2.13339i
\(624\) 0 0
\(625\) −30.3724 −1.21490
\(626\) 0 0
\(627\) −0.238921 −0.00954159
\(628\) 0 0
\(629\) 18.9443i 0.755358i
\(630\) 0 0
\(631\) −0.101515 −0.00404124 −0.00202062 0.999998i \(-0.500643\pi\)
−0.00202062 + 0.999998i \(0.500643\pi\)
\(632\) 0 0
\(633\) 0.748562 0.0297527
\(634\) 0 0
\(635\) 20.3506i 0.807590i
\(636\) 0 0
\(637\) 83.3025i 3.30057i
\(638\) 0 0
\(639\) 8.06389i 0.319002i
\(640\) 0 0
\(641\) 22.0128i 0.869454i −0.900562 0.434727i \(-0.856845\pi\)
0.900562 0.434727i \(-0.143155\pi\)
\(642\) 0 0
\(643\) 20.8023i 0.820364i −0.912004 0.410182i \(-0.865465\pi\)
0.912004 0.410182i \(-0.134535\pi\)
\(644\) 0 0
\(645\) 0.731955i 0.0288207i
\(646\) 0 0
\(647\) 13.2901i 0.522489i 0.965273 + 0.261244i \(0.0841328\pi\)
−0.965273 + 0.261244i \(0.915867\pi\)
\(648\) 0 0
\(649\) 0.173717i 0.00681897i
\(650\) 0 0
\(651\) 20.3506i 0.797604i
\(652\) 0 0
\(653\) 38.7635i 1.51693i −0.651713 0.758466i \(-0.725949\pi\)
0.651713 0.758466i \(-0.274051\pi\)
\(654\) 0 0
\(655\) −14.4181 −0.563364
\(656\) 0 0
\(657\) −12.2596 −0.478293
\(658\) 0 0
\(659\) 12.0441i 0.469173i 0.972095 + 0.234586i \(0.0753736\pi\)
−0.972095 + 0.234586i \(0.924626\pi\)
\(660\) 0 0
\(661\) 41.4972 1.61405 0.807026 0.590515i \(-0.201076\pi\)
0.807026 + 0.590515i \(0.201076\pi\)
\(662\) 0 0
\(663\) −9.97032 −0.387215
\(664\) 0 0
\(665\) 50.6763i 1.96514i
\(666\) 0 0
\(667\) −18.7360 + 13.1416i −0.725462 + 0.508846i
\(668\) 0 0
\(669\) 13.3024i 0.514300i
\(670\) 0 0
\(671\) 0.572475i 0.0221001i
\(672\) 0 0
\(673\) 12.9027 0.497362 0.248681 0.968585i \(-0.420003\pi\)
0.248681 + 0.968585i \(0.420003\pi\)
\(674\) 0 0
\(675\) 5.87867 0.226270
\(676\) 0 0
\(677\) 5.39177 0.207223 0.103611 0.994618i \(-0.466960\pi\)
0.103611 + 0.994618i \(0.466960\pi\)
\(678\) 0 0
\(679\) 15.8682i 0.608964i
\(680\) 0 0
\(681\) 15.1219i 0.579472i
\(682\) 0 0
\(683\) −18.2981 −0.700159 −0.350079 0.936720i \(-0.613845\pi\)
−0.350079 + 0.936720i \(0.613845\pi\)
\(684\) 0 0
\(685\) 56.1340i 2.14477i
\(686\) 0 0
\(687\) −7.13937 −0.272384
\(688\) 0 0
\(689\) 53.0227i 2.02000i
\(690\) 0 0
\(691\) 41.4679 1.57751 0.788757 0.614705i \(-0.210725\pi\)
0.788757 + 0.614705i \(0.210725\pi\)
\(692\) 0 0
\(693\) 0.970876i 0.0368805i
\(694\) 0 0
\(695\) 4.23844 0.160773
\(696\) 0 0
\(697\) 11.9207i 0.451527i
\(698\) 0 0
\(699\) 6.51978 0.246601
\(700\) 0 0
\(701\) 44.3405 1.67472 0.837359 0.546654i \(-0.184099\pi\)
0.837359 + 0.546654i \(0.184099\pi\)
\(702\) 0 0
\(703\) 31.6345i 1.19312i
\(704\) 0 0
\(705\) 16.6834i 0.628333i
\(706\) 0 0
\(707\) 61.3599i 2.30768i
\(708\) 0 0
\(709\) −21.8376 −0.820128 −0.410064 0.912057i \(-0.634494\pi\)
−0.410064 + 0.912057i \(0.634494\pi\)
\(710\) 0 0
\(711\) 29.1627 1.09369
\(712\) 0 0
\(713\) 25.3848 17.8052i 0.950669 0.666809i
\(714\) 0 0
\(715\) 1.21442 0.0454166
\(716\) 0 0
\(717\) 4.61790i 0.172459i
\(718\) 0 0
\(719\) 4.46461i 0.166502i −0.996529 0.0832509i \(-0.973470\pi\)
0.996529 0.0832509i \(-0.0265303\pi\)
\(720\) 0 0
\(721\) −22.8185 −0.849805
\(722\) 0 0
\(723\) 2.78779i 0.103679i
\(724\) 0 0
\(725\) 7.45950i 0.277039i
\(726\) 0 0
\(727\) 18.4390 0.683863 0.341932 0.939725i \(-0.388919\pi\)
0.341932 + 0.939725i \(0.388919\pi\)
\(728\) 0 0
\(729\) −5.19769 −0.192507
\(730\) 0 0
\(731\) −1.07524 −0.0397690
\(732\) 0 0
\(733\) 29.9637 1.10673 0.553367 0.832937i \(-0.313343\pi\)
0.553367 + 0.832937i \(0.313343\pi\)
\(734\) 0 0
\(735\) 25.2099 0.929882
\(736\) 0 0
\(737\) −0.0155737 −0.000573664
\(738\) 0 0
\(739\) −2.27573 −0.0837141 −0.0418570 0.999124i \(-0.513327\pi\)
−0.0418570 + 0.999124i \(0.513327\pi\)
\(740\) 0 0
\(741\) −16.6491 −0.611622
\(742\) 0 0
\(743\) 14.4903 0.531599 0.265800 0.964028i \(-0.414364\pi\)
0.265800 + 0.964028i \(0.414364\pi\)
\(744\) 0 0
\(745\) 36.9110 1.35232
\(746\) 0 0
\(747\) 18.6313i 0.681684i
\(748\) 0 0
\(749\) 71.7412i 2.62137i
\(750\) 0 0
\(751\) −38.0771 −1.38945 −0.694726 0.719275i \(-0.744474\pi\)
−0.694726 + 0.719275i \(0.744474\pi\)
\(752\) 0 0
\(753\) 6.71721i 0.244789i
\(754\) 0 0
\(755\) 55.2979i 2.01250i
\(756\) 0 0
\(757\) 12.3254 0.447974 0.223987 0.974592i \(-0.428093\pi\)
0.223987 + 0.974592i \(0.428093\pi\)
\(758\) 0 0
\(759\) 0.219861 0.154213i 0.00798044 0.00559757i
\(760\) 0 0
\(761\) −22.3706 −0.810935 −0.405467 0.914110i \(-0.632891\pi\)
−0.405467 + 0.914110i \(0.632891\pi\)
\(762\) 0 0
\(763\) 72.5060 2.62489
\(764\) 0 0
\(765\) 16.6201i 0.600903i
\(766\) 0 0
\(767\) 12.1054i 0.437101i
\(768\) 0 0
\(769\) 31.1276i 1.12249i 0.827650 + 0.561245i \(0.189677\pi\)
−0.827650 + 0.561245i \(0.810323\pi\)
\(770\) 0 0
\(771\) 2.35941 0.0849721
\(772\) 0 0
\(773\) 47.7339 1.71687 0.858434 0.512924i \(-0.171438\pi\)
0.858434 + 0.512924i \(0.171438\pi\)
\(774\) 0 0
\(775\) 10.1066i 0.363041i
\(776\) 0 0
\(777\) 23.3377 0.837235
\(778\) 0 0
\(779\) 19.9059i 0.713204i
\(780\) 0 0
\(781\) 0.261945 0.00937312
\(782\) 0 0
\(783\) 17.9456i 0.641324i
\(784\) 0 0
\(785\) −38.9482 −1.39012
\(786\) 0 0
\(787\) 42.1873i 1.50381i 0.659269 + 0.751907i \(0.270866\pi\)
−0.659269 + 0.751907i \(0.729134\pi\)
\(788\) 0 0
\(789\) 6.61434 0.235477
\(790\) 0 0
\(791\) 45.4259i 1.61516i
\(792\) 0 0
\(793\) 39.8927i 1.41663i
\(794\) 0 0
\(795\) 16.0463 0.569104
\(796\) 0 0
\(797\) 16.0156 0.567303 0.283651 0.958927i \(-0.408454\pi\)
0.283651 + 0.958927i \(0.408454\pi\)
\(798\) 0 0
\(799\) −24.5078 −0.867023
\(800\) 0 0
\(801\) 29.1627i 1.03041i
\(802\) 0 0
\(803\) 0.398237i 0.0140535i
\(804\) 0 0
\(805\) −32.7092 46.6335i −1.15285 1.64362i
\(806\) 0 0
\(807\) 5.15879i 0.181598i
\(808\) 0 0
\(809\) −24.0923 −0.847040 −0.423520 0.905887i \(-0.639206\pi\)
−0.423520 + 0.905887i \(0.639206\pi\)
\(810\) 0 0
\(811\) 0.407214 0.0142992 0.00714960 0.999974i \(-0.497724\pi\)
0.00714960 + 0.999974i \(0.497724\pi\)
\(812\) 0 0
\(813\) 2.10502i 0.0738263i
\(814\) 0 0
\(815\) −55.6379 −1.94891
\(816\) 0 0
\(817\) −1.79551 −0.0628168
\(818\) 0 0
\(819\) 67.6552i 2.36407i
\(820\) 0 0
\(821\) 30.6108i 1.06832i −0.845382 0.534162i \(-0.820627\pi\)
0.845382 0.534162i \(-0.179373\pi\)
\(822\) 0 0
\(823\) 25.2527i 0.880253i −0.897936 0.440126i \(-0.854934\pi\)
0.897936 0.440126i \(-0.145066\pi\)
\(824\) 0 0
\(825\) 0.0875347i 0.00304757i
\(826\) 0 0
\(827\) 21.6754i 0.753729i −0.926268 0.376864i \(-0.877002\pi\)
0.926268 0.376864i \(-0.122998\pi\)
\(828\) 0 0
\(829\) 5.58090i 0.193833i −0.995293 0.0969164i \(-0.969102\pi\)
0.995293 0.0969164i \(-0.0308979\pi\)
\(830\) 0 0
\(831\) 3.23984i 0.112389i
\(832\) 0 0
\(833\) 37.0332i 1.28312i
\(834\) 0 0
\(835\) 6.08261i 0.210497i
\(836\) 0 0
\(837\) 24.3139i 0.840413i
\(838\) 0 0
\(839\) −3.36258 −0.116089 −0.0580446 0.998314i \(-0.518487\pi\)
−0.0580446 + 0.998314i \(0.518487\pi\)
\(840\) 0 0
\(841\) 6.22865 0.214781
\(842\) 0 0
\(843\) 17.6698i 0.608580i
\(844\) 0 0
\(845\) 51.3219 1.76553
\(846\) 0 0
\(847\) −50.9661 −1.75122
\(848\) 0 0
\(849\) 11.1033i 0.381065i
\(850\) 0 0
\(851\) −20.4186 29.1108i −0.699942 0.997906i
\(852\) 0 0
\(853\) 17.2474i 0.590540i −0.955414 0.295270i \(-0.904590\pi\)
0.955414 0.295270i \(-0.0954096\pi\)
\(854\) 0 0
\(855\) 27.7535i 0.949149i
\(856\) 0 0
\(857\) 27.2287 0.930113 0.465057 0.885281i \(-0.346034\pi\)
0.465057 + 0.885281i \(0.346034\pi\)
\(858\) 0 0
\(859\) 29.7496 1.01504 0.507522 0.861639i \(-0.330562\pi\)
0.507522 + 0.861639i \(0.330562\pi\)
\(860\) 0 0
\(861\) −14.6852 −0.500470
\(862\) 0 0
\(863\) 8.14618i 0.277299i 0.990342 + 0.138650i \(0.0442761\pi\)
−0.990342 + 0.138650i \(0.955724\pi\)
\(864\) 0 0
\(865\) 54.8782i 1.86591i
\(866\) 0 0
\(867\) −7.10949 −0.241451
\(868\) 0 0
\(869\) 0.947311i 0.0321353i
\(870\) 0 0
\(871\) −1.08525 −0.0367722
\(872\) 0 0
\(873\) 8.69040i 0.294125i
\(874\) 0 0
\(875\) −40.8197 −1.37996
\(876\) 0 0
\(877\) 30.0462i 1.01459i −0.861773 0.507294i \(-0.830646\pi\)
0.861773 0.507294i \(-0.169354\pi\)
\(878\) 0 0
\(879\) 18.9025 0.637566
\(880\) 0 0
\(881\) 32.5854i 1.09783i 0.835878 + 0.548915i \(0.184959\pi\)
−0.835878 + 0.548915i \(0.815041\pi\)
\(882\) 0 0
\(883\) 16.2167 0.545737 0.272869 0.962051i \(-0.412028\pi\)
0.272869 + 0.962051i \(0.412028\pi\)
\(884\) 0 0
\(885\) 3.66347 0.123146
\(886\) 0 0
\(887\) 38.7621i 1.30150i 0.759290 + 0.650752i \(0.225546\pi\)
−0.759290 + 0.650752i \(0.774454\pi\)
\(888\) 0 0
\(889\) 36.8279i 1.23517i
\(890\) 0 0
\(891\) 0.417657i 0.0139920i
\(892\) 0 0
\(893\) −40.9248 −1.36950
\(894\) 0 0
\(895\) 39.4804 1.31969
\(896\) 0 0
\(897\) 15.3209 10.7463i 0.511551 0.358808i
\(898\) 0 0
\(899\) 30.8522 1.02898
\(900\) 0 0
\(901\) 23.5719i 0.785294i
\(902\) 0 0
\(903\) 1.32460i 0.0440798i
\(904\) 0 0
\(905\) −6.14061 −0.204121
\(906\) 0 0
\(907\) 1.31020i 0.0435044i 0.999763 + 0.0217522i \(0.00692449\pi\)
−0.999763 + 0.0217522i \(0.993076\pi\)
\(908\) 0 0
\(909\) 33.6045i 1.11459i
\(910\) 0 0
\(911\) 3.87640 0.128431 0.0642155 0.997936i \(-0.479545\pi\)
0.0642155 + 0.997936i \(0.479545\pi\)
\(912\) 0 0
\(913\) 0.605214 0.0200297
\(914\) 0 0
\(915\) −12.0728 −0.399114
\(916\) 0 0
\(917\) −26.0921 −0.861637
\(918\) 0 0
\(919\) −14.3573 −0.473604 −0.236802 0.971558i \(-0.576099\pi\)
−0.236802 + 0.971558i \(0.576099\pi\)
\(920\) 0 0
\(921\) −16.7038 −0.550409
\(922\) 0 0
\(923\) 18.2536 0.600823
\(924\) 0 0
\(925\) 11.5901 0.381080
\(926\) 0 0
\(927\) −12.4968 −0.410450
\(928\) 0 0
\(929\) −23.7498 −0.779207 −0.389604 0.920983i \(-0.627388\pi\)
−0.389604 + 0.920983i \(0.627388\pi\)
\(930\) 0 0
\(931\) 61.8407i 2.02675i
\(932\) 0 0
\(933\) 8.09137i 0.264900i
\(934\) 0 0
\(935\) −0.539884 −0.0176561
\(936\) 0 0
\(937\) 9.22456i 0.301353i 0.988583 + 0.150677i \(0.0481452\pi\)
−0.988583 + 0.150677i \(0.951855\pi\)
\(938\) 0 0
\(939\) 14.7513i 0.481391i
\(940\) 0 0
\(941\) −36.6211 −1.19381 −0.596906 0.802311i \(-0.703604\pi\)
−0.596906 + 0.802311i \(0.703604\pi\)
\(942\) 0 0
\(943\) 12.8484 + 18.3179i 0.418401 + 0.596514i
\(944\) 0 0
\(945\) 44.6662 1.45299
\(946\) 0 0
\(947\) 59.7109 1.94034 0.970172 0.242418i \(-0.0779404\pi\)
0.970172 + 0.242418i \(0.0779404\pi\)
\(948\) 0 0
\(949\) 27.7511i 0.900838i
\(950\) 0 0
\(951\) 0.0751282i 0.00243620i
\(952\) 0 0
\(953\) 24.6344i 0.797986i 0.916954 + 0.398993i \(0.130640\pi\)
−0.916954 + 0.398993i \(0.869360\pi\)
\(954\) 0 0
\(955\) 27.9236 0.903585
\(956\) 0 0
\(957\) 0.267214 0.00863781
\(958\) 0 0
\(959\) 101.584i 3.28032i
\(960\) 0 0
\(961\) −10.8006 −0.348407
\(962\) 0 0
\(963\) 39.2900i 1.26610i
\(964\) 0 0
\(965\) −22.1333 −0.712498
\(966\) 0 0
\(967\) 5.95725i 0.191572i −0.995402 0.0957862i \(-0.969463\pi\)
0.995402 0.0957862i \(-0.0305365\pi\)
\(968\) 0 0
\(969\) 7.40159 0.237773
\(970\) 0 0
\(971\) 26.3386i 0.845246i 0.906306 + 0.422623i \(0.138891\pi\)
−0.906306 + 0.422623i \(0.861109\pi\)
\(972\) 0 0
\(973\) 7.67019 0.245895
\(974\) 0 0
\(975\) 6.09983i 0.195351i
\(976\) 0 0
\(977\) 7.58482i 0.242660i 0.992612 + 0.121330i \(0.0387159\pi\)
−0.992612 + 0.121330i \(0.961284\pi\)
\(978\) 0 0
\(979\) −0.947311 −0.0302762
\(980\) 0 0
\(981\) 39.7088 1.26781
\(982\) 0 0
\(983\) −38.8327 −1.23857 −0.619285 0.785166i \(-0.712577\pi\)
−0.619285 + 0.785166i \(0.712577\pi\)
\(984\) 0 0
\(985\) 63.1578i 2.01237i
\(986\) 0 0
\(987\) 30.1915i 0.961005i
\(988\) 0 0
\(989\) 1.65227 1.15892i 0.0525390 0.0368514i
\(990\) 0 0
\(991\) 31.9580i 1.01518i −0.861599 0.507589i \(-0.830537\pi\)
0.861599 0.507589i \(-0.169463\pi\)
\(992\) 0 0
\(993\) −10.7713 −0.341818
\(994\) 0 0
\(995\) −64.0377 −2.03013
\(996\) 0 0
\(997\) 29.7509i 0.942220i −0.882074 0.471110i \(-0.843853\pi\)
0.882074 0.471110i \(-0.156147\pi\)
\(998\) 0 0
\(999\) 27.8827 0.882171
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.2.h.c.735.14 yes 32
4.3 odd 2 inner 1472.2.h.c.735.19 yes 32
8.3 odd 2 inner 1472.2.h.c.735.13 32
8.5 even 2 inner 1472.2.h.c.735.20 yes 32
23.22 odd 2 inner 1472.2.h.c.735.16 yes 32
92.91 even 2 inner 1472.2.h.c.735.17 yes 32
184.45 odd 2 inner 1472.2.h.c.735.18 yes 32
184.91 even 2 inner 1472.2.h.c.735.15 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1472.2.h.c.735.13 32 8.3 odd 2 inner
1472.2.h.c.735.14 yes 32 1.1 even 1 trivial
1472.2.h.c.735.15 yes 32 184.91 even 2 inner
1472.2.h.c.735.16 yes 32 23.22 odd 2 inner
1472.2.h.c.735.17 yes 32 92.91 even 2 inner
1472.2.h.c.735.18 yes 32 184.45 odd 2 inner
1472.2.h.c.735.19 yes 32 4.3 odd 2 inner
1472.2.h.c.735.20 yes 32 8.5 even 2 inner