Properties

Label 1456.2.cc.g.673.12
Level $1456$
Weight $2$
Character 1456.673
Analytic conductor $11.626$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1456,2,Mod(225,1456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1456, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1456.225"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.cc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,2,0,0,0,0,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6262185343\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 673.12
Character \(\chi\) \(=\) 1456.673
Dual form 1456.2.cc.g.225.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.56651 + 2.71328i) q^{3} +2.28231i q^{5} +(-0.866025 - 0.500000i) q^{7} +(-3.40791 + 5.90267i) q^{9} +(-4.77925 + 2.75930i) q^{11} +(-2.83231 - 2.23115i) q^{13} +(-6.19254 + 3.57527i) q^{15} +(2.80387 - 4.85644i) q^{17} +(4.25993 + 2.45947i) q^{19} -3.13302i q^{21} +(0.971308 + 1.68235i) q^{23} -0.208948 q^{25} -11.9550 q^{27} +(-1.89756 - 3.28666i) q^{29} +0.689198i q^{31} +(-14.9735 - 8.64496i) q^{33} +(1.14116 - 1.97654i) q^{35} +(-5.40812 + 3.12238i) q^{37} +(1.61688 - 11.1800i) q^{39} +(-3.61843 + 2.08910i) q^{41} +(-4.11581 + 7.12880i) q^{43} +(-13.4717 - 7.77791i) q^{45} -5.55704i q^{47} +(0.500000 + 0.866025i) q^{49} +17.5692 q^{51} +6.06641 q^{53} +(-6.29759 - 10.9077i) q^{55} +15.4112i q^{57} +(12.9109 + 7.45409i) q^{59} +(3.70884 - 6.42391i) q^{61} +(5.90267 - 3.40791i) q^{63} +(5.09218 - 6.46421i) q^{65} +(-7.90904 + 4.56629i) q^{67} +(-3.04313 + 5.27085i) q^{69} +(10.7813 + 6.22456i) q^{71} -5.00071i q^{73} +(-0.327319 - 0.566933i) q^{75} +5.51861 q^{77} -6.90219 q^{79} +(-8.50397 - 14.7293i) q^{81} +15.8599i q^{83} +(11.0839 + 6.39930i) q^{85} +(5.94508 - 10.2972i) q^{87} +(-7.21272 + 4.16427i) q^{89} +(1.33728 + 3.34839i) q^{91} +(-1.86999 + 1.07964i) q^{93} +(-5.61329 + 9.72250i) q^{95} +(3.58245 + 2.06833i) q^{97} -37.6138i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{3} - 18 q^{9} - 12 q^{11} + 8 q^{17} + 12 q^{19} - 2 q^{23} - 28 q^{25} + 20 q^{27} + 2 q^{29} - 18 q^{33} + 8 q^{35} + 60 q^{37} - 18 q^{39} - 6 q^{41} - 24 q^{43} - 72 q^{45} + 12 q^{49} + 72 q^{51}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).

\(n\) \(561\) \(911\) \(1093\) \(1249\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.56651 + 2.71328i 0.904425 + 1.56651i 0.821687 + 0.569939i \(0.193033\pi\)
0.0827383 + 0.996571i \(0.473633\pi\)
\(4\) 0 0
\(5\) 2.28231i 1.02068i 0.859972 + 0.510340i \(0.170481\pi\)
−0.859972 + 0.510340i \(0.829519\pi\)
\(6\) 0 0
\(7\) −0.866025 0.500000i −0.327327 0.188982i
\(8\) 0 0
\(9\) −3.40791 + 5.90267i −1.13597 + 1.96756i
\(10\) 0 0
\(11\) −4.77925 + 2.75930i −1.44100 + 0.831961i −0.997916 0.0645194i \(-0.979449\pi\)
−0.443083 + 0.896481i \(0.646115\pi\)
\(12\) 0 0
\(13\) −2.83231 2.23115i −0.785541 0.618809i
\(14\) 0 0
\(15\) −6.19254 + 3.57527i −1.59891 + 0.923130i
\(16\) 0 0
\(17\) 2.80387 4.85644i 0.680038 1.17786i −0.294931 0.955519i \(-0.595297\pi\)
0.974969 0.222342i \(-0.0713701\pi\)
\(18\) 0 0
\(19\) 4.25993 + 2.45947i 0.977296 + 0.564242i 0.901453 0.432878i \(-0.142502\pi\)
0.0758432 + 0.997120i \(0.475835\pi\)
\(20\) 0 0
\(21\) 3.13302i 0.683681i
\(22\) 0 0
\(23\) 0.971308 + 1.68235i 0.202532 + 0.350795i 0.949343 0.314240i \(-0.101750\pi\)
−0.746812 + 0.665035i \(0.768416\pi\)
\(24\) 0 0
\(25\) −0.208948 −0.0417896
\(26\) 0 0
\(27\) −11.9550 −2.30075
\(28\) 0 0
\(29\) −1.89756 3.28666i −0.352367 0.610318i 0.634297 0.773090i \(-0.281290\pi\)
−0.986664 + 0.162772i \(0.947957\pi\)
\(30\) 0 0
\(31\) 0.689198i 0.123784i 0.998083 + 0.0618918i \(0.0197134\pi\)
−0.998083 + 0.0618918i \(0.980287\pi\)
\(32\) 0 0
\(33\) −14.9735 8.64496i −2.60655 1.50489i
\(34\) 0 0
\(35\) 1.14116 1.97654i 0.192891 0.334096i
\(36\) 0 0
\(37\) −5.40812 + 3.12238i −0.889090 + 0.513316i −0.873645 0.486564i \(-0.838250\pi\)
−0.0154451 + 0.999881i \(0.504917\pi\)
\(38\) 0 0
\(39\) 1.61688 11.1800i 0.258908 1.79023i
\(40\) 0 0
\(41\) −3.61843 + 2.08910i −0.565103 + 0.326263i −0.755191 0.655504i \(-0.772456\pi\)
0.190088 + 0.981767i \(0.439123\pi\)
\(42\) 0 0
\(43\) −4.11581 + 7.12880i −0.627656 + 1.08713i 0.360365 + 0.932811i \(0.382652\pi\)
−0.988021 + 0.154320i \(0.950681\pi\)
\(44\) 0 0
\(45\) −13.4717 7.77791i −2.00825 1.15946i
\(46\) 0 0
\(47\) 5.55704i 0.810578i −0.914189 0.405289i \(-0.867171\pi\)
0.914189 0.405289i \(-0.132829\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 0 0
\(51\) 17.5692 2.46017
\(52\) 0 0
\(53\) 6.06641 0.833286 0.416643 0.909070i \(-0.363207\pi\)
0.416643 + 0.909070i \(0.363207\pi\)
\(54\) 0 0
\(55\) −6.29759 10.9077i −0.849167 1.47080i
\(56\) 0 0
\(57\) 15.4112i 2.04126i
\(58\) 0 0
\(59\) 12.9109 + 7.45409i 1.68085 + 0.970440i 0.961097 + 0.276212i \(0.0890793\pi\)
0.719755 + 0.694228i \(0.244254\pi\)
\(60\) 0 0
\(61\) 3.70884 6.42391i 0.474869 0.822497i −0.524717 0.851277i \(-0.675829\pi\)
0.999586 + 0.0287799i \(0.00916220\pi\)
\(62\) 0 0
\(63\) 5.90267 3.40791i 0.743667 0.429356i
\(64\) 0 0
\(65\) 5.09218 6.46421i 0.631607 0.801787i
\(66\) 0 0
\(67\) −7.90904 + 4.56629i −0.966243 + 0.557861i −0.898089 0.439814i \(-0.855044\pi\)
−0.0681541 + 0.997675i \(0.521711\pi\)
\(68\) 0 0
\(69\) −3.04313 + 5.27085i −0.366349 + 0.634536i
\(70\) 0 0
\(71\) 10.7813 + 6.22456i 1.27950 + 0.738719i 0.976756 0.214353i \(-0.0687643\pi\)
0.302743 + 0.953072i \(0.402098\pi\)
\(72\) 0 0
\(73\) 5.00071i 0.585289i −0.956221 0.292645i \(-0.905465\pi\)
0.956221 0.292645i \(-0.0945353\pi\)
\(74\) 0 0
\(75\) −0.327319 0.566933i −0.0377956 0.0654638i
\(76\) 0 0
\(77\) 5.51861 0.628904
\(78\) 0 0
\(79\) −6.90219 −0.776557 −0.388279 0.921542i \(-0.626930\pi\)
−0.388279 + 0.921542i \(0.626930\pi\)
\(80\) 0 0
\(81\) −8.50397 14.7293i −0.944885 1.63659i
\(82\) 0 0
\(83\) 15.8599i 1.74085i 0.492299 + 0.870426i \(0.336157\pi\)
−0.492299 + 0.870426i \(0.663843\pi\)
\(84\) 0 0
\(85\) 11.0839 + 6.39930i 1.20222 + 0.694102i
\(86\) 0 0
\(87\) 5.94508 10.2972i 0.637380 1.10397i
\(88\) 0 0
\(89\) −7.21272 + 4.16427i −0.764547 + 0.441411i −0.830926 0.556383i \(-0.812189\pi\)
0.0663791 + 0.997794i \(0.478855\pi\)
\(90\) 0 0
\(91\) 1.33728 + 3.34839i 0.140185 + 0.351006i
\(92\) 0 0
\(93\) −1.86999 + 1.07964i −0.193908 + 0.111953i
\(94\) 0 0
\(95\) −5.61329 + 9.72250i −0.575911 + 0.997507i
\(96\) 0 0
\(97\) 3.58245 + 2.06833i 0.363743 + 0.210007i 0.670721 0.741709i \(-0.265985\pi\)
−0.306979 + 0.951716i \(0.599318\pi\)
\(98\) 0 0
\(99\) 37.6138i 3.78033i
\(100\) 0 0
\(101\) 1.78834 + 3.09750i 0.177947 + 0.308213i 0.941177 0.337914i \(-0.109721\pi\)
−0.763230 + 0.646127i \(0.776388\pi\)
\(102\) 0 0
\(103\) −14.3212 −1.41111 −0.705553 0.708658i \(-0.749301\pi\)
−0.705553 + 0.708658i \(0.749301\pi\)
\(104\) 0 0
\(105\) 7.15053 0.697820
\(106\) 0 0
\(107\) −1.68911 2.92562i −0.163292 0.282830i 0.772755 0.634704i \(-0.218878\pi\)
−0.936047 + 0.351874i \(0.885545\pi\)
\(108\) 0 0
\(109\) 4.47958i 0.429066i 0.976717 + 0.214533i \(0.0688229\pi\)
−0.976717 + 0.214533i \(0.931177\pi\)
\(110\) 0 0
\(111\) −16.9438 9.78248i −1.60823 0.928512i
\(112\) 0 0
\(113\) −1.24684 + 2.15960i −0.117293 + 0.203158i −0.918694 0.394970i \(-0.870755\pi\)
0.801401 + 0.598128i \(0.204088\pi\)
\(114\) 0 0
\(115\) −3.83966 + 2.21683i −0.358050 + 0.206720i
\(116\) 0 0
\(117\) 22.8220 9.11464i 2.10989 0.842649i
\(118\) 0 0
\(119\) −4.85644 + 2.80387i −0.445189 + 0.257030i
\(120\) 0 0
\(121\) 9.72751 16.8485i 0.884319 1.53169i
\(122\) 0 0
\(123\) −11.3366 6.54519i −1.02219 0.590160i
\(124\) 0 0
\(125\) 10.9347i 0.978027i
\(126\) 0 0
\(127\) 1.59450 + 2.76176i 0.141489 + 0.245066i 0.928058 0.372437i \(-0.121478\pi\)
−0.786568 + 0.617503i \(0.788144\pi\)
\(128\) 0 0
\(129\) −25.7899 −2.27067
\(130\) 0 0
\(131\) 6.25472 0.546477 0.273239 0.961946i \(-0.411905\pi\)
0.273239 + 0.961946i \(0.411905\pi\)
\(132\) 0 0
\(133\) −2.45947 4.25993i −0.213263 0.369383i
\(134\) 0 0
\(135\) 27.2851i 2.34833i
\(136\) 0 0
\(137\) −10.6367 6.14108i −0.908751 0.524668i −0.0287222 0.999587i \(-0.509144\pi\)
−0.880029 + 0.474920i \(0.842477\pi\)
\(138\) 0 0
\(139\) −7.98744 + 13.8347i −0.677486 + 1.17344i 0.298250 + 0.954488i \(0.403597\pi\)
−0.975736 + 0.218952i \(0.929736\pi\)
\(140\) 0 0
\(141\) 15.0778 8.70517i 1.26978 0.733107i
\(142\) 0 0
\(143\) 19.6927 + 2.84803i 1.64679 + 0.238164i
\(144\) 0 0
\(145\) 7.50119 4.33081i 0.622940 0.359654i
\(146\) 0 0
\(147\) −1.56651 + 2.71328i −0.129204 + 0.223787i
\(148\) 0 0
\(149\) 11.1484 + 6.43654i 0.913313 + 0.527302i 0.881496 0.472192i \(-0.156537\pi\)
0.0318176 + 0.999494i \(0.489870\pi\)
\(150\) 0 0
\(151\) 20.8187i 1.69421i −0.531429 0.847103i \(-0.678345\pi\)
0.531429 0.847103i \(-0.321655\pi\)
\(152\) 0 0
\(153\) 19.1107 + 33.1006i 1.54501 + 2.67603i
\(154\) 0 0
\(155\) −1.57297 −0.126344
\(156\) 0 0
\(157\) 8.72747 0.696528 0.348264 0.937397i \(-0.386771\pi\)
0.348264 + 0.937397i \(0.386771\pi\)
\(158\) 0 0
\(159\) 9.50309 + 16.4598i 0.753644 + 1.30535i
\(160\) 0 0
\(161\) 1.94262i 0.153100i
\(162\) 0 0
\(163\) −8.58558 4.95689i −0.672475 0.388253i 0.124539 0.992215i \(-0.460255\pi\)
−0.797014 + 0.603961i \(0.793588\pi\)
\(164\) 0 0
\(165\) 19.7305 34.1742i 1.53602 2.66046i
\(166\) 0 0
\(167\) −8.32845 + 4.80843i −0.644475 + 0.372088i −0.786336 0.617799i \(-0.788025\pi\)
0.141861 + 0.989887i \(0.454691\pi\)
\(168\) 0 0
\(169\) 3.04395 + 12.6386i 0.234150 + 0.972201i
\(170\) 0 0
\(171\) −29.0349 + 16.7633i −2.22036 + 1.28192i
\(172\) 0 0
\(173\) 1.61275 2.79336i 0.122615 0.212375i −0.798183 0.602415i \(-0.794205\pi\)
0.920798 + 0.390040i \(0.127539\pi\)
\(174\) 0 0
\(175\) 0.180954 + 0.104474i 0.0136789 + 0.00789749i
\(176\) 0 0
\(177\) 46.7077i 3.51076i
\(178\) 0 0
\(179\) −7.90651 13.6945i −0.590961 1.02357i −0.994103 0.108437i \(-0.965416\pi\)
0.403143 0.915137i \(-0.367918\pi\)
\(180\) 0 0
\(181\) −23.4244 −1.74112 −0.870561 0.492061i \(-0.836244\pi\)
−0.870561 + 0.492061i \(0.836244\pi\)
\(182\) 0 0
\(183\) 23.2398 1.71793
\(184\) 0 0
\(185\) −7.12625 12.3430i −0.523932 0.907477i
\(186\) 0 0
\(187\) 30.9469i 2.26306i
\(188\) 0 0
\(189\) 10.3534 + 5.97752i 0.753097 + 0.434801i
\(190\) 0 0
\(191\) 11.8735 20.5655i 0.859136 1.48807i −0.0136190 0.999907i \(-0.504335\pi\)
0.872755 0.488159i \(-0.162331\pi\)
\(192\) 0 0
\(193\) −13.4735 + 7.77890i −0.969840 + 0.559938i −0.899188 0.437563i \(-0.855842\pi\)
−0.0706528 + 0.997501i \(0.522508\pi\)
\(194\) 0 0
\(195\) 25.5161 + 3.69023i 1.82725 + 0.264263i
\(196\) 0 0
\(197\) 13.8500 7.99633i 0.986775 0.569715i 0.0824661 0.996594i \(-0.473720\pi\)
0.904309 + 0.426879i \(0.140387\pi\)
\(198\) 0 0
\(199\) −4.93072 + 8.54025i −0.349529 + 0.605402i −0.986166 0.165762i \(-0.946992\pi\)
0.636637 + 0.771164i \(0.280325\pi\)
\(200\) 0 0
\(201\) −24.7792 14.3063i −1.74779 1.00909i
\(202\) 0 0
\(203\) 3.79511i 0.266365i
\(204\) 0 0
\(205\) −4.76798 8.25838i −0.333010 0.576790i
\(206\) 0 0
\(207\) −13.2405 −0.920279
\(208\) 0 0
\(209\) −27.1457 −1.87771
\(210\) 0 0
\(211\) −1.00748 1.74501i −0.0693580 0.120132i 0.829261 0.558862i \(-0.188762\pi\)
−0.898619 + 0.438730i \(0.855428\pi\)
\(212\) 0 0
\(213\) 39.0033i 2.67246i
\(214\) 0 0
\(215\) −16.2701 9.39357i −1.10961 0.640636i
\(216\) 0 0
\(217\) 0.344599 0.596863i 0.0233929 0.0405177i
\(218\) 0 0
\(219\) 13.5683 7.83367i 0.916862 0.529350i
\(220\) 0 0
\(221\) −18.7769 + 7.49910i −1.26307 + 0.504444i
\(222\) 0 0
\(223\) −0.0881439 + 0.0508899i −0.00590255 + 0.00340784i −0.502948 0.864316i \(-0.667751\pi\)
0.497046 + 0.867724i \(0.334418\pi\)
\(224\) 0 0
\(225\) 0.712076 1.23335i 0.0474717 0.0822234i
\(226\) 0 0
\(227\) 4.54259 + 2.62266i 0.301502 + 0.174072i 0.643117 0.765768i \(-0.277641\pi\)
−0.341615 + 0.939840i \(0.610974\pi\)
\(228\) 0 0
\(229\) 21.4484i 1.41735i 0.705535 + 0.708675i \(0.250707\pi\)
−0.705535 + 0.708675i \(0.749293\pi\)
\(230\) 0 0
\(231\) 8.64496 + 14.9735i 0.568796 + 0.985184i
\(232\) 0 0
\(233\) 24.3319 1.59403 0.797017 0.603957i \(-0.206410\pi\)
0.797017 + 0.603957i \(0.206410\pi\)
\(234\) 0 0
\(235\) 12.6829 0.827342
\(236\) 0 0
\(237\) −10.8124 18.7275i −0.702338 1.21648i
\(238\) 0 0
\(239\) 10.7950i 0.698273i 0.937072 + 0.349137i \(0.113525\pi\)
−0.937072 + 0.349137i \(0.886475\pi\)
\(240\) 0 0
\(241\) 12.3164 + 7.11090i 0.793372 + 0.458053i 0.841148 0.540805i \(-0.181880\pi\)
−0.0477765 + 0.998858i \(0.515214\pi\)
\(242\) 0 0
\(243\) 8.71055 15.0871i 0.558782 0.967839i
\(244\) 0 0
\(245\) −1.97654 + 1.14116i −0.126277 + 0.0729058i
\(246\) 0 0
\(247\) −6.57800 16.4705i −0.418548 1.04800i
\(248\) 0 0
\(249\) −43.0323 + 24.8447i −2.72706 + 1.57447i
\(250\) 0 0
\(251\) 13.7068 23.7408i 0.865163 1.49851i −0.00172317 0.999999i \(-0.500549\pi\)
0.866886 0.498507i \(-0.166118\pi\)
\(252\) 0 0
\(253\) −9.28425 5.36027i −0.583696 0.336997i
\(254\) 0 0
\(255\) 40.0983i 2.51105i
\(256\) 0 0
\(257\) 11.3311 + 19.6261i 0.706816 + 1.22424i 0.966032 + 0.258422i \(0.0832025\pi\)
−0.259216 + 0.965819i \(0.583464\pi\)
\(258\) 0 0
\(259\) 6.24476 0.388031
\(260\) 0 0
\(261\) 25.8668 1.60111
\(262\) 0 0
\(263\) 11.4268 + 19.7918i 0.704606 + 1.22041i 0.966834 + 0.255407i \(0.0822095\pi\)
−0.262228 + 0.965006i \(0.584457\pi\)
\(264\) 0 0
\(265\) 13.8454i 0.850519i
\(266\) 0 0
\(267\) −22.5976 13.0467i −1.38295 0.798447i
\(268\) 0 0
\(269\) 4.81428 8.33858i 0.293532 0.508412i −0.681110 0.732181i \(-0.738503\pi\)
0.974642 + 0.223769i \(0.0718360\pi\)
\(270\) 0 0
\(271\) 13.5355 7.81473i 0.822223 0.474711i −0.0289592 0.999581i \(-0.509219\pi\)
0.851183 + 0.524870i \(0.175886\pi\)
\(272\) 0 0
\(273\) −6.99024 + 8.87368i −0.423068 + 0.537060i
\(274\) 0 0
\(275\) 0.998615 0.576551i 0.0602188 0.0347673i
\(276\) 0 0
\(277\) 2.09131 3.62225i 0.125655 0.217640i −0.796334 0.604857i \(-0.793230\pi\)
0.921989 + 0.387217i \(0.126564\pi\)
\(278\) 0 0
\(279\) −4.06811 2.34873i −0.243552 0.140615i
\(280\) 0 0
\(281\) 5.13123i 0.306103i 0.988218 + 0.153052i \(0.0489101\pi\)
−0.988218 + 0.153052i \(0.951090\pi\)
\(282\) 0 0
\(283\) −3.11540 5.39603i −0.185191 0.320761i 0.758450 0.651732i \(-0.225957\pi\)
−0.943641 + 0.330971i \(0.892624\pi\)
\(284\) 0 0
\(285\) −35.1731 −2.08347
\(286\) 0 0
\(287\) 4.17820 0.246631
\(288\) 0 0
\(289\) −7.22336 12.5112i −0.424903 0.735954i
\(290\) 0 0
\(291\) 12.9602i 0.759742i
\(292\) 0 0
\(293\) 6.08862 + 3.51526i 0.355701 + 0.205364i 0.667193 0.744885i \(-0.267496\pi\)
−0.311492 + 0.950249i \(0.600829\pi\)
\(294\) 0 0
\(295\) −17.0126 + 29.4666i −0.990510 + 1.71561i
\(296\) 0 0
\(297\) 57.1362 32.9876i 3.31538 1.91413i
\(298\) 0 0
\(299\) 1.00254 6.93208i 0.0579784 0.400892i
\(300\) 0 0
\(301\) 7.12880 4.11581i 0.410897 0.237232i
\(302\) 0 0
\(303\) −5.60292 + 9.70454i −0.321879 + 0.557511i
\(304\) 0 0
\(305\) 14.6614 + 8.46474i 0.839507 + 0.484689i
\(306\) 0 0
\(307\) 6.83879i 0.390311i 0.980772 + 0.195155i \(0.0625211\pi\)
−0.980772 + 0.195155i \(0.937479\pi\)
\(308\) 0 0
\(309\) −22.4342 38.8572i −1.27624 2.21051i
\(310\) 0 0
\(311\) −14.5179 −0.823237 −0.411619 0.911356i \(-0.635036\pi\)
−0.411619 + 0.911356i \(0.635036\pi\)
\(312\) 0 0
\(313\) 30.8100 1.74148 0.870742 0.491741i \(-0.163639\pi\)
0.870742 + 0.491741i \(0.163639\pi\)
\(314\) 0 0
\(315\) 7.77791 + 13.4717i 0.438236 + 0.759047i
\(316\) 0 0
\(317\) 6.78232i 0.380933i −0.981694 0.190467i \(-0.939000\pi\)
0.981694 0.190467i \(-0.0610001\pi\)
\(318\) 0 0
\(319\) 18.1378 + 10.4719i 1.01552 + 0.586312i
\(320\) 0 0
\(321\) 5.29201 9.16602i 0.295371 0.511598i
\(322\) 0 0
\(323\) 23.8886 13.7921i 1.32920 0.767412i
\(324\) 0 0
\(325\) 0.591805 + 0.466194i 0.0328274 + 0.0258598i
\(326\) 0 0
\(327\) −12.1543 + 7.01731i −0.672136 + 0.388058i
\(328\) 0 0
\(329\) −2.77852 + 4.81254i −0.153185 + 0.265324i
\(330\) 0 0
\(331\) 3.53558 + 2.04127i 0.194333 + 0.112198i 0.594010 0.804458i \(-0.297544\pi\)
−0.399676 + 0.916656i \(0.630877\pi\)
\(332\) 0 0
\(333\) 42.5632i 2.33245i
\(334\) 0 0
\(335\) −10.4217 18.0509i −0.569398 0.986226i
\(336\) 0 0
\(337\) 24.1656 1.31638 0.658192 0.752850i \(-0.271321\pi\)
0.658192 + 0.752850i \(0.271321\pi\)
\(338\) 0 0
\(339\) −7.81278 −0.424332
\(340\) 0 0
\(341\) −1.90171 3.29385i −0.102983 0.178372i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −12.0297 6.94537i −0.647659 0.373926i
\(346\) 0 0
\(347\) 4.56601 7.90855i 0.245116 0.424553i −0.717048 0.697024i \(-0.754507\pi\)
0.962164 + 0.272470i \(0.0878406\pi\)
\(348\) 0 0
\(349\) 22.8546 13.1951i 1.22338 0.706317i 0.257741 0.966214i \(-0.417022\pi\)
0.965636 + 0.259897i \(0.0836885\pi\)
\(350\) 0 0
\(351\) 33.8604 + 26.6735i 1.80733 + 1.42373i
\(352\) 0 0
\(353\) −10.2461 + 5.91561i −0.545346 + 0.314856i −0.747243 0.664551i \(-0.768623\pi\)
0.201897 + 0.979407i \(0.435290\pi\)
\(354\) 0 0
\(355\) −14.2064 + 24.6062i −0.753997 + 1.30596i
\(356\) 0 0
\(357\) −15.2153 8.78458i −0.805281 0.464929i
\(358\) 0 0
\(359\) 30.9827i 1.63520i 0.575784 + 0.817602i \(0.304697\pi\)
−0.575784 + 0.817602i \(0.695303\pi\)
\(360\) 0 0
\(361\) 2.59803 + 4.49991i 0.136738 + 0.236837i
\(362\) 0 0
\(363\) 60.9530 3.19920
\(364\) 0 0
\(365\) 11.4132 0.597393
\(366\) 0 0
\(367\) −8.83531 15.3032i −0.461200 0.798821i 0.537821 0.843059i \(-0.319247\pi\)
−0.999021 + 0.0442377i \(0.985914\pi\)
\(368\) 0 0
\(369\) 28.4779i 1.48250i
\(370\) 0 0
\(371\) −5.25367 3.03321i −0.272757 0.157476i
\(372\) 0 0
\(373\) −8.85830 + 15.3430i −0.458665 + 0.794432i −0.998891 0.0470887i \(-0.985006\pi\)
0.540225 + 0.841520i \(0.318339\pi\)
\(374\) 0 0
\(375\) −29.6688 + 17.1293i −1.53209 + 0.884552i
\(376\) 0 0
\(377\) −1.95857 + 13.5426i −0.100872 + 0.697478i
\(378\) 0 0
\(379\) −9.81629 + 5.66744i −0.504229 + 0.291117i −0.730458 0.682957i \(-0.760693\pi\)
0.226229 + 0.974074i \(0.427360\pi\)
\(380\) 0 0
\(381\) −4.99560 + 8.65264i −0.255933 + 0.443288i
\(382\) 0 0
\(383\) −8.01229 4.62590i −0.409409 0.236372i 0.281127 0.959671i \(-0.409292\pi\)
−0.690536 + 0.723298i \(0.742625\pi\)
\(384\) 0 0
\(385\) 12.5952i 0.641910i
\(386\) 0 0
\(387\) −28.0526 48.5886i −1.42600 2.46990i
\(388\) 0 0
\(389\) 20.3817 1.03339 0.516696 0.856169i \(-0.327162\pi\)
0.516696 + 0.856169i \(0.327162\pi\)
\(390\) 0 0
\(391\) 10.8937 0.550917
\(392\) 0 0
\(393\) 9.79808 + 16.9708i 0.494248 + 0.856063i
\(394\) 0 0
\(395\) 15.7530i 0.792617i
\(396\) 0 0
\(397\) −19.9223 11.5022i −0.999874 0.577277i −0.0916629 0.995790i \(-0.529218\pi\)
−0.908211 + 0.418513i \(0.862552\pi\)
\(398\) 0 0
\(399\) 7.70558 13.3465i 0.385762 0.668159i
\(400\) 0 0
\(401\) 1.41918 0.819366i 0.0708706 0.0409172i −0.464146 0.885759i \(-0.653639\pi\)
0.535017 + 0.844842i \(0.320305\pi\)
\(402\) 0 0
\(403\) 1.53770 1.95202i 0.0765985 0.0972372i
\(404\) 0 0
\(405\) 33.6169 19.4087i 1.67044 0.964427i
\(406\) 0 0
\(407\) 17.2312 29.8453i 0.854119 1.47938i
\(408\) 0 0
\(409\) 30.0529 + 17.3510i 1.48602 + 0.857953i 0.999873 0.0159247i \(-0.00506921\pi\)
0.486145 + 0.873878i \(0.338403\pi\)
\(410\) 0 0
\(411\) 38.4803i 1.89809i
\(412\) 0 0
\(413\) −7.45409 12.9109i −0.366792 0.635302i
\(414\) 0 0
\(415\) −36.1973 −1.77686
\(416\) 0 0
\(417\) −50.0496 −2.45094
\(418\) 0 0
\(419\) 4.70812 + 8.15471i 0.230007 + 0.398384i 0.957810 0.287403i \(-0.0927918\pi\)
−0.727803 + 0.685786i \(0.759458\pi\)
\(420\) 0 0
\(421\) 19.0258i 0.927260i 0.886029 + 0.463630i \(0.153453\pi\)
−0.886029 + 0.463630i \(0.846547\pi\)
\(422\) 0 0
\(423\) 32.8014 + 18.9379i 1.59486 + 0.920792i
\(424\) 0 0
\(425\) −0.585863 + 1.01474i −0.0284185 + 0.0492223i
\(426\) 0 0
\(427\) −6.42391 + 3.70884i −0.310875 + 0.179484i
\(428\) 0 0
\(429\) 23.1214 + 57.8933i 1.11631 + 2.79511i
\(430\) 0 0
\(431\) 28.8278 16.6438i 1.38859 0.801702i 0.395432 0.918495i \(-0.370595\pi\)
0.993156 + 0.116793i \(0.0372614\pi\)
\(432\) 0 0
\(433\) −17.6832 + 30.6282i −0.849799 + 1.47190i 0.0315876 + 0.999501i \(0.489944\pi\)
−0.881387 + 0.472395i \(0.843390\pi\)
\(434\) 0 0
\(435\) 23.5014 + 13.5685i 1.12680 + 0.650561i
\(436\) 0 0
\(437\) 9.55562i 0.457107i
\(438\) 0 0
\(439\) 9.96961 + 17.2679i 0.475823 + 0.824150i 0.999616 0.0276954i \(-0.00881684\pi\)
−0.523793 + 0.851846i \(0.675484\pi\)
\(440\) 0 0
\(441\) −6.81582 −0.324563
\(442\) 0 0
\(443\) 22.0434 1.04731 0.523656 0.851930i \(-0.324568\pi\)
0.523656 + 0.851930i \(0.324568\pi\)
\(444\) 0 0
\(445\) −9.50415 16.4617i −0.450540 0.780358i
\(446\) 0 0
\(447\) 40.3316i 1.90762i
\(448\) 0 0
\(449\) −10.8523 6.26556i −0.512150 0.295690i 0.221567 0.975145i \(-0.428883\pi\)
−0.733717 + 0.679455i \(0.762216\pi\)
\(450\) 0 0
\(451\) 11.5289 19.9687i 0.542876 0.940288i
\(452\) 0 0
\(453\) 56.4870 32.6128i 2.65399 1.53228i
\(454\) 0 0
\(455\) −7.64206 + 3.05208i −0.358265 + 0.143084i
\(456\) 0 0
\(457\) 2.08491 1.20372i 0.0975280 0.0563078i −0.450443 0.892805i \(-0.648734\pi\)
0.547971 + 0.836497i \(0.315401\pi\)
\(458\) 0 0
\(459\) −33.5204 + 58.0590i −1.56460 + 2.70996i
\(460\) 0 0
\(461\) −8.92556 5.15317i −0.415705 0.240007i 0.277533 0.960716i \(-0.410483\pi\)
−0.693238 + 0.720709i \(0.743816\pi\)
\(462\) 0 0
\(463\) 0.929297i 0.0431881i −0.999767 0.0215941i \(-0.993126\pi\)
0.999767 0.0215941i \(-0.00687414\pi\)
\(464\) 0 0
\(465\) −2.46407 4.26789i −0.114268 0.197919i
\(466\) 0 0
\(467\) −4.95471 −0.229277 −0.114638 0.993407i \(-0.536571\pi\)
−0.114638 + 0.993407i \(0.536571\pi\)
\(468\) 0 0
\(469\) 9.13257 0.421703
\(470\) 0 0
\(471\) 13.6717 + 23.6800i 0.629957 + 1.09112i
\(472\) 0 0
\(473\) 45.4271i 2.08874i
\(474\) 0 0
\(475\) −0.890105 0.513902i −0.0408408 0.0235794i
\(476\) 0 0
\(477\) −20.6738 + 35.8080i −0.946587 + 1.63954i
\(478\) 0 0
\(479\) −4.19244 + 2.42050i −0.191557 + 0.110596i −0.592711 0.805415i \(-0.701943\pi\)
0.401154 + 0.916011i \(0.368609\pi\)
\(480\) 0 0
\(481\) 22.2840 + 3.22278i 1.01606 + 0.146946i
\(482\) 0 0
\(483\) 5.27085 3.04313i 0.239832 0.138467i
\(484\) 0 0
\(485\) −4.72057 + 8.17627i −0.214350 + 0.371265i
\(486\) 0 0
\(487\) 4.19960 + 2.42464i 0.190302 + 0.109871i 0.592124 0.805847i \(-0.298290\pi\)
−0.401822 + 0.915718i \(0.631623\pi\)
\(488\) 0 0
\(489\) 31.0601i 1.40458i
\(490\) 0 0
\(491\) 21.3449 + 36.9704i 0.963280 + 1.66845i 0.714167 + 0.699975i \(0.246806\pi\)
0.249113 + 0.968474i \(0.419861\pi\)
\(492\) 0 0
\(493\) −21.2820 −0.958492
\(494\) 0 0
\(495\) 85.8465 3.85851
\(496\) 0 0
\(497\) −6.22456 10.7813i −0.279210 0.483605i
\(498\) 0 0
\(499\) 4.34945i 0.194708i −0.995250 0.0973542i \(-0.968962\pi\)
0.995250 0.0973542i \(-0.0310380\pi\)
\(500\) 0 0
\(501\) −26.0932 15.0649i −1.16576 0.673051i
\(502\) 0 0
\(503\) 21.7833 37.7298i 0.971271 1.68229i 0.279542 0.960133i \(-0.409817\pi\)
0.691729 0.722157i \(-0.256849\pi\)
\(504\) 0 0
\(505\) −7.06947 + 4.08156i −0.314587 + 0.181627i
\(506\) 0 0
\(507\) −29.5236 + 28.0576i −1.31119 + 1.24608i
\(508\) 0 0
\(509\) −16.1044 + 9.29788i −0.713815 + 0.412121i −0.812472 0.583000i \(-0.801879\pi\)
0.0986568 + 0.995122i \(0.468545\pi\)
\(510\) 0 0
\(511\) −2.50036 + 4.33074i −0.110609 + 0.191581i
\(512\) 0 0
\(513\) −50.9277 29.4031i −2.24851 1.29818i
\(514\) 0 0
\(515\) 32.6853i 1.44029i
\(516\) 0 0
\(517\) 15.3336 + 26.5585i 0.674370 + 1.16804i
\(518\) 0 0
\(519\) 10.1055 0.443584
\(520\) 0 0
\(521\) 9.30988 0.407873 0.203937 0.978984i \(-0.434626\pi\)
0.203937 + 0.978984i \(0.434626\pi\)
\(522\) 0 0
\(523\) −7.25998 12.5747i −0.317457 0.549851i 0.662500 0.749062i \(-0.269496\pi\)
−0.979957 + 0.199211i \(0.936162\pi\)
\(524\) 0 0
\(525\) 0.654638i 0.0285708i
\(526\) 0 0
\(527\) 3.34705 + 1.93242i 0.145800 + 0.0841776i
\(528\) 0 0
\(529\) 9.61312 16.6504i 0.417962 0.723931i
\(530\) 0 0
\(531\) −87.9981 + 50.8058i −3.81879 + 2.20478i
\(532\) 0 0
\(533\) 14.9096 + 2.15627i 0.645806 + 0.0933986i
\(534\) 0 0
\(535\) 6.67717 3.85507i 0.288679 0.166669i
\(536\) 0 0
\(537\) 24.7713 42.9051i 1.06896 1.85149i
\(538\) 0 0
\(539\) −4.77925 2.75930i −0.205857 0.118852i
\(540\) 0 0
\(541\) 4.10390i 0.176440i −0.996101 0.0882202i \(-0.971882\pi\)
0.996101 0.0882202i \(-0.0281179\pi\)
\(542\) 0 0
\(543\) −36.6946 63.5568i −1.57471 2.72748i
\(544\) 0 0
\(545\) −10.2238 −0.437939
\(546\) 0 0
\(547\) 8.59559 0.367521 0.183761 0.982971i \(-0.441173\pi\)
0.183761 + 0.982971i \(0.441173\pi\)
\(548\) 0 0
\(549\) 25.2788 + 43.7842i 1.07887 + 1.86866i
\(550\) 0 0
\(551\) 18.6680i 0.795281i
\(552\) 0 0
\(553\) 5.97747 + 3.45110i 0.254188 + 0.146756i
\(554\) 0 0
\(555\) 22.3267 38.6709i 0.947715 1.64149i
\(556\) 0 0
\(557\) −4.75687 + 2.74638i −0.201555 + 0.116368i −0.597381 0.801958i \(-0.703792\pi\)
0.395826 + 0.918326i \(0.370458\pi\)
\(558\) 0 0
\(559\) 27.5627 11.0080i 1.16578 0.465587i
\(560\) 0 0
\(561\) −83.9675 + 48.4786i −3.54511 + 2.04677i
\(562\) 0 0
\(563\) 4.87578 8.44509i 0.205489 0.355918i −0.744799 0.667289i \(-0.767455\pi\)
0.950289 + 0.311371i \(0.100788\pi\)
\(564\) 0 0
\(565\) −4.92888 2.84569i −0.207359 0.119719i
\(566\) 0 0
\(567\) 17.0079i 0.714266i
\(568\) 0 0
\(569\) −3.77537 6.53913i −0.158272 0.274134i 0.775974 0.630765i \(-0.217259\pi\)
−0.934245 + 0.356631i \(0.883925\pi\)
\(570\) 0 0
\(571\) 18.0170 0.753989 0.376995 0.926215i \(-0.376958\pi\)
0.376995 + 0.926215i \(0.376958\pi\)
\(572\) 0 0
\(573\) 74.3998 3.10810
\(574\) 0 0
\(575\) −0.202953 0.351524i −0.00846372 0.0146596i
\(576\) 0 0
\(577\) 31.8628i 1.32646i −0.748413 0.663232i \(-0.769184\pi\)
0.748413 0.663232i \(-0.230816\pi\)
\(578\) 0 0
\(579\) −42.2126 24.3715i −1.75430 1.01284i
\(580\) 0 0
\(581\) 7.92996 13.7351i 0.328990 0.569828i
\(582\) 0 0
\(583\) −28.9929 + 16.7391i −1.20076 + 0.693261i
\(584\) 0 0
\(585\) 20.8024 + 52.0869i 0.860075 + 2.15353i
\(586\) 0 0
\(587\) 18.9279 10.9280i 0.781239 0.451048i −0.0556303 0.998451i \(-0.517717\pi\)
0.836869 + 0.547403i \(0.184383\pi\)
\(588\) 0 0
\(589\) −1.69507 + 2.93594i −0.0698440 + 0.120973i
\(590\) 0 0
\(591\) 43.3925 + 25.0527i 1.78493 + 1.03053i
\(592\) 0 0
\(593\) 21.1110i 0.866924i −0.901172 0.433462i \(-0.857292\pi\)
0.901172 0.433462i \(-0.142708\pi\)
\(594\) 0 0
\(595\) −6.39930 11.0839i −0.262346 0.454396i
\(596\) 0 0
\(597\) −30.8961 −1.26449
\(598\) 0 0
\(599\) 5.84631 0.238874 0.119437 0.992842i \(-0.461891\pi\)
0.119437 + 0.992842i \(0.461891\pi\)
\(600\) 0 0
\(601\) 6.63755 + 11.4966i 0.270751 + 0.468955i 0.969054 0.246847i \(-0.0793946\pi\)
−0.698303 + 0.715802i \(0.746061\pi\)
\(602\) 0 0
\(603\) 62.2460i 2.53485i
\(604\) 0 0
\(605\) 38.4536 + 22.2012i 1.56336 + 0.902608i
\(606\) 0 0
\(607\) −8.45702 + 14.6480i −0.343260 + 0.594544i −0.985036 0.172348i \(-0.944865\pi\)
0.641776 + 0.766892i \(0.278198\pi\)
\(608\) 0 0
\(609\) −10.2972 + 5.94508i −0.417263 + 0.240907i
\(610\) 0 0
\(611\) −12.3986 + 15.7393i −0.501593 + 0.636743i
\(612\) 0 0
\(613\) 16.8024 9.70084i 0.678641 0.391813i −0.120702 0.992689i \(-0.538515\pi\)
0.799343 + 0.600875i \(0.205181\pi\)
\(614\) 0 0
\(615\) 14.9382 25.8737i 0.602365 1.04333i
\(616\) 0 0
\(617\) −13.4303 7.75400i −0.540685 0.312164i 0.204672 0.978831i \(-0.434387\pi\)
−0.745356 + 0.666666i \(0.767721\pi\)
\(618\) 0 0
\(619\) 21.0676i 0.846779i −0.905948 0.423389i \(-0.860840\pi\)
0.905948 0.423389i \(-0.139160\pi\)
\(620\) 0 0
\(621\) −11.6120 20.1126i −0.465974 0.807091i
\(622\) 0 0
\(623\) 8.32853 0.333676
\(624\) 0 0
\(625\) −26.0011 −1.04004
\(626\) 0 0
\(627\) −42.5241 73.6539i −1.69825 2.94145i
\(628\) 0 0
\(629\) 35.0190i 1.39630i
\(630\) 0 0
\(631\) −30.4409 17.5750i −1.21183 0.699651i −0.248674 0.968587i \(-0.579995\pi\)
−0.963158 + 0.268936i \(0.913328\pi\)
\(632\) 0 0
\(633\) 3.15647 5.46716i 0.125458 0.217300i
\(634\) 0 0
\(635\) −6.30319 + 3.63915i −0.250134 + 0.144415i
\(636\) 0 0
\(637\) 0.516077 3.56843i 0.0204477 0.141386i
\(638\) 0 0
\(639\) −73.4831 + 42.4255i −2.90695 + 1.67833i
\(640\) 0 0
\(641\) 8.16151 14.1362i 0.322360 0.558345i −0.658614 0.752481i \(-0.728857\pi\)
0.980975 + 0.194136i \(0.0621904\pi\)
\(642\) 0 0
\(643\) −20.3656 11.7581i −0.803142 0.463694i 0.0414269 0.999142i \(-0.486810\pi\)
−0.844569 + 0.535447i \(0.820143\pi\)
\(644\) 0 0
\(645\) 58.8605i 2.31763i
\(646\) 0 0
\(647\) −1.56502 2.71069i −0.0615271 0.106568i 0.833621 0.552337i \(-0.186264\pi\)
−0.895148 + 0.445769i \(0.852930\pi\)
\(648\) 0 0
\(649\) −82.2724 −3.22948
\(650\) 0 0
\(651\) 2.15927 0.0846286
\(652\) 0 0
\(653\) −9.95585 17.2440i −0.389603 0.674811i 0.602794 0.797897i \(-0.294054\pi\)
−0.992396 + 0.123086i \(0.960721\pi\)
\(654\) 0 0
\(655\) 14.2752i 0.557779i
\(656\) 0 0
\(657\) 29.5176 + 17.0420i 1.15159 + 0.664871i
\(658\) 0 0
\(659\) 0.655393 1.13517i 0.0255305 0.0442201i −0.852978 0.521947i \(-0.825206\pi\)
0.878508 + 0.477727i \(0.158539\pi\)
\(660\) 0 0
\(661\) 3.39402 1.95954i 0.132012 0.0762172i −0.432540 0.901615i \(-0.642382\pi\)
0.564552 + 0.825398i \(0.309049\pi\)
\(662\) 0 0
\(663\) −49.7613 39.1994i −1.93257 1.52238i
\(664\) 0 0
\(665\) 9.72250 5.61329i 0.377022 0.217674i
\(666\) 0 0
\(667\) 3.68622 6.38472i 0.142731 0.247217i
\(668\) 0 0
\(669\) −0.276157 0.159439i −0.0106768 0.00616428i
\(670\) 0 0
\(671\) 40.9353i 1.58029i
\(672\) 0 0
\(673\) 1.68733 + 2.92254i 0.0650418 + 0.112656i 0.896713 0.442613i \(-0.145949\pi\)
−0.831671 + 0.555269i \(0.812615\pi\)
\(674\) 0 0
\(675\) 2.49798 0.0961474
\(676\) 0 0
\(677\) −22.9100 −0.880504 −0.440252 0.897874i \(-0.645111\pi\)
−0.440252 + 0.897874i \(0.645111\pi\)
\(678\) 0 0
\(679\) −2.06833 3.58245i −0.0793752 0.137482i
\(680\) 0 0
\(681\) 16.4337i 0.629741i
\(682\) 0 0
\(683\) 28.3581 + 16.3725i 1.08509 + 0.626478i 0.932266 0.361775i \(-0.117829\pi\)
0.152827 + 0.988253i \(0.451162\pi\)
\(684\) 0 0
\(685\) 14.0159 24.2762i 0.535518 0.927545i
\(686\) 0 0
\(687\) −58.1954 + 33.5991i −2.22029 + 1.28189i
\(688\) 0 0
\(689\) −17.1819 13.5351i −0.654580 0.515645i
\(690\) 0 0
\(691\) 30.8378 17.8042i 1.17313 0.677305i 0.218712 0.975789i \(-0.429815\pi\)
0.954414 + 0.298485i \(0.0964812\pi\)
\(692\) 0 0
\(693\) −18.8069 + 32.5745i −0.714416 + 1.23740i
\(694\) 0 0
\(695\) −31.5750 18.2298i −1.19771 0.691497i
\(696\) 0 0
\(697\) 23.4302i 0.887484i
\(698\) 0 0
\(699\) 38.1161 + 66.0191i 1.44168 + 2.49707i
\(700\) 0 0
\(701\) 40.6474 1.53523 0.767616 0.640910i \(-0.221443\pi\)
0.767616 + 0.640910i \(0.221443\pi\)
\(702\) 0 0
\(703\) −30.7177 −1.15854
\(704\) 0 0
\(705\) 19.8679 + 34.4122i 0.748269 + 1.29604i
\(706\) 0 0
\(707\) 3.57669i 0.134515i
\(708\) 0 0
\(709\) 31.4372 + 18.1503i 1.18065 + 0.681647i 0.956164 0.292831i \(-0.0945972\pi\)
0.224484 + 0.974478i \(0.427931\pi\)
\(710\) 0 0
\(711\) 23.5220 40.7414i 0.882146 1.52792i
\(712\) 0 0
\(713\) −1.15948 + 0.669424i −0.0434227 + 0.0250701i
\(714\) 0 0
\(715\) −6.50009 + 44.9450i −0.243090 + 1.68085i
\(716\) 0 0
\(717\) −29.2899 + 16.9105i −1.09385 + 0.631536i
\(718\) 0 0
\(719\) −4.81863 + 8.34611i −0.179705 + 0.311257i −0.941779 0.336232i \(-0.890848\pi\)
0.762075 + 0.647489i \(0.224181\pi\)
\(720\) 0 0
\(721\) 12.4025 + 7.16058i 0.461893 + 0.266674i
\(722\) 0 0
\(723\) 44.5572i 1.65710i
\(724\) 0 0
\(725\) 0.396490 + 0.686741i 0.0147253 + 0.0255049i
\(726\) 0 0
\(727\) −44.8859 −1.66473 −0.832363 0.554231i \(-0.813012\pi\)
−0.832363 + 0.554231i \(0.813012\pi\)
\(728\) 0 0
\(729\) 3.55684 0.131735
\(730\) 0 0
\(731\) 23.0804 + 39.9764i 0.853660 + 1.47858i
\(732\) 0 0
\(733\) 10.4486i 0.385928i 0.981206 + 0.192964i \(0.0618101\pi\)
−0.981206 + 0.192964i \(0.938190\pi\)
\(734\) 0 0
\(735\) −6.19254 3.57527i −0.228415 0.131876i
\(736\) 0 0
\(737\) 25.1995 43.6469i 0.928237 1.60775i
\(738\) 0 0
\(739\) 25.7001 14.8379i 0.945393 0.545823i 0.0537459 0.998555i \(-0.482884\pi\)
0.891647 + 0.452732i \(0.149551\pi\)
\(740\) 0 0
\(741\) 34.3846 43.6492i 1.26315 1.60349i
\(742\) 0 0
\(743\) −25.0641 + 14.4708i −0.919513 + 0.530881i −0.883480 0.468469i \(-0.844806\pi\)
−0.0360335 + 0.999351i \(0.511472\pi\)
\(744\) 0 0
\(745\) −14.6902 + 25.4441i −0.538207 + 0.932201i
\(746\) 0 0
\(747\) −93.6159 54.0492i −3.42523 1.97756i
\(748\) 0 0
\(749\) 3.37821i 0.123437i
\(750\) 0 0
\(751\) 7.05213 + 12.2147i 0.257336 + 0.445719i 0.965527 0.260301i \(-0.0838219\pi\)
−0.708191 + 0.706021i \(0.750489\pi\)
\(752\) 0 0
\(753\) 85.8871 3.12990
\(754\) 0 0
\(755\) 47.5149 1.72924
\(756\) 0 0
\(757\) 1.00814 + 1.74616i 0.0366416 + 0.0634652i 0.883765 0.467932i \(-0.155001\pi\)
−0.847123 + 0.531397i \(0.821667\pi\)
\(758\) 0 0
\(759\) 33.5876i 1.21915i
\(760\) 0 0
\(761\) 0.0420235 + 0.0242623i 0.00152335 + 0.000879506i 0.500761 0.865585i \(-0.333053\pi\)
−0.499238 + 0.866465i \(0.666387\pi\)
\(762\) 0 0
\(763\) 2.23979 3.87943i 0.0810858 0.140445i
\(764\) 0 0
\(765\) −75.5460 + 43.6165i −2.73137 + 1.57696i
\(766\) 0 0
\(767\) −19.9364 49.9184i −0.719861 1.80245i
\(768\) 0 0
\(769\) −19.3050 + 11.1458i −0.696156 + 0.401926i −0.805914 0.592032i \(-0.798326\pi\)
0.109758 + 0.993958i \(0.464992\pi\)
\(770\) 0 0
\(771\) −35.5006 + 61.4889i −1.27852 + 2.21447i
\(772\) 0 0
\(773\) −15.9029 9.18155i −0.571988 0.330237i 0.185955 0.982558i \(-0.440462\pi\)
−0.757943 + 0.652321i \(0.773795\pi\)
\(774\) 0 0
\(775\) 0.144007i 0.00517287i
\(776\) 0 0
\(777\) 9.78248 + 16.9438i 0.350945 + 0.607854i
\(778\) 0 0
\(779\) −20.5523 −0.736364
\(780\) 0 0
\(781\) −68.7018 −2.45834
\(782\) 0 0
\(783\) 22.6854 + 39.2922i 0.810708 + 1.40419i
\(784\) 0 0
\(785\) 19.9188i 0.710932i
\(786\) 0 0
\(787\) −28.7354 16.5904i −1.02430 0.591383i −0.108957 0.994046i \(-0.534751\pi\)
−0.915348 + 0.402664i \(0.868084\pi\)
\(788\) 0 0
\(789\) −35.8004 + 62.0080i −1.27453 + 2.20754i
\(790\) 0 0
\(791\) 2.15960 1.24684i 0.0767864 0.0443327i
\(792\) 0 0
\(793\) −24.8373 + 9.91950i −0.881998 + 0.352252i
\(794\) 0 0
\(795\) −37.5665 + 21.6890i −1.33235 + 0.769231i
\(796\) 0 0
\(797\) −14.5892 + 25.2693i −0.516777 + 0.895085i 0.483033 + 0.875602i \(0.339535\pi\)
−0.999810 + 0.0194825i \(0.993798\pi\)
\(798\) 0 0
\(799\) −26.9875 15.5812i −0.954748 0.551224i
\(800\) 0 0
\(801\) 56.7658i 2.00572i
\(802\) 0 0
\(803\) 13.7985 + 23.8997i 0.486938 + 0.843401i
\(804\) 0 0
\(805\) 4.43365 0.156266
\(806\) 0 0
\(807\) 30.1665 1.06191
\(808\) 0 0
\(809\) 8.08358 + 14.0012i 0.284204 + 0.492255i 0.972416 0.233255i \(-0.0749375\pi\)
−0.688212 + 0.725509i \(0.741604\pi\)
\(810\) 0 0
\(811\) 3.45855i 0.121446i 0.998155 + 0.0607230i \(0.0193406\pi\)
−0.998155 + 0.0607230i \(0.980659\pi\)
\(812\) 0 0
\(813\) 42.4070 + 24.4837i 1.48728 + 0.858681i
\(814\) 0 0
\(815\) 11.3132 19.5950i 0.396283 0.686382i
\(816\) 0 0
\(817\) −35.0662 + 20.2455i −1.22681 + 0.708300i
\(818\) 0 0
\(819\) −24.3217 3.51749i −0.849871 0.122911i
\(820\) 0 0
\(821\) −5.78541 + 3.34021i −0.201912 + 0.116574i −0.597547 0.801834i \(-0.703858\pi\)
0.395635 + 0.918408i \(0.370525\pi\)
\(822\) 0 0
\(823\) −5.43236 + 9.40912i −0.189360 + 0.327981i −0.945037 0.326963i \(-0.893975\pi\)
0.755677 + 0.654945i \(0.227308\pi\)
\(824\) 0 0
\(825\) 3.12868 + 1.80635i 0.108927 + 0.0628889i
\(826\) 0 0
\(827\) 48.6460i 1.69159i −0.533512 0.845793i \(-0.679128\pi\)
0.533512 0.845793i \(-0.320872\pi\)
\(828\) 0 0
\(829\) 3.45723 + 5.98809i 0.120074 + 0.207975i 0.919797 0.392395i \(-0.128353\pi\)
−0.799722 + 0.600370i \(0.795020\pi\)
\(830\) 0 0
\(831\) 13.1042 0.454581
\(832\) 0 0
\(833\) 5.60774 0.194297
\(834\) 0 0
\(835\) −10.9743 19.0081i −0.379783 0.657803i
\(836\) 0 0
\(837\) 8.23940i 0.284795i
\(838\) 0 0
\(839\) −19.7284 11.3902i −0.681101 0.393234i 0.119169 0.992874i \(-0.461977\pi\)
−0.800270 + 0.599640i \(0.795310\pi\)
\(840\) 0 0
\(841\) 7.29857 12.6415i 0.251675 0.435913i
\(842\) 0 0
\(843\) −13.9224 + 8.03812i −0.479514 + 0.276848i
\(844\) 0 0
\(845\) −28.8452 + 6.94724i −0.992307 + 0.238992i
\(846\) 0 0
\(847\) −16.8485 + 9.72751i −0.578923 + 0.334241i
\(848\) 0 0
\(849\) 9.76061 16.9059i 0.334983 0.580208i
\(850\) 0 0
\(851\) −10.5059 6.06558i −0.360138 0.207926i
\(852\) 0 0
\(853\) 11.9607i 0.409527i 0.978811 + 0.204764i \(0.0656426\pi\)
−0.978811 + 0.204764i \(0.934357\pi\)
\(854\) 0 0
\(855\) −38.2592 66.2668i −1.30844 2.26628i
\(856\) 0 0
\(857\) 10.3815 0.354627 0.177313 0.984154i \(-0.443259\pi\)
0.177313 + 0.984154i \(0.443259\pi\)
\(858\) 0 0
\(859\) −10.0436 −0.342683 −0.171341 0.985212i \(-0.554810\pi\)
−0.171341 + 0.985212i \(0.554810\pi\)
\(860\) 0 0
\(861\) 6.54519 + 11.3366i 0.223060 + 0.386351i
\(862\) 0 0
\(863\) 30.1151i 1.02513i 0.858648 + 0.512565i \(0.171305\pi\)
−0.858648 + 0.512565i \(0.828695\pi\)
\(864\) 0 0
\(865\) 6.37532 + 3.68079i 0.216767 + 0.125151i
\(866\) 0 0
\(867\) 22.6309 39.1979i 0.768587 1.33123i
\(868\) 0 0
\(869\) 32.9873 19.0452i 1.11902 0.646066i
\(870\) 0 0
\(871\) 32.5889 + 4.71311i 1.10423 + 0.159698i
\(872\) 0 0
\(873\) −24.4173 + 14.0974i −0.826402 + 0.477123i
\(874\) 0 0
\(875\) 5.46734 9.46971i 0.184830 0.320135i
\(876\) 0 0
\(877\) −41.0471 23.6986i −1.38606 0.800244i −0.393194 0.919456i \(-0.628630\pi\)
−0.992869 + 0.119212i \(0.961963\pi\)
\(878\) 0 0
\(879\) 22.0268i 0.742945i
\(880\) 0 0
\(881\) −14.0650 24.3614i −0.473863 0.820755i 0.525689 0.850677i \(-0.323808\pi\)
−0.999552 + 0.0299215i \(0.990474\pi\)
\(882\) 0 0
\(883\) 9.73484 0.327604 0.163802 0.986493i \(-0.447624\pi\)
0.163802 + 0.986493i \(0.447624\pi\)
\(884\) 0 0
\(885\) −106.601 −3.58337
\(886\) 0 0
\(887\) 8.88854 + 15.3954i 0.298448 + 0.516927i 0.975781 0.218749i \(-0.0701977\pi\)
−0.677333 + 0.735676i \(0.736864\pi\)
\(888\) 0 0
\(889\) 3.18900i 0.106956i
\(890\) 0 0
\(891\) 81.2853 + 46.9301i 2.72316 + 1.57222i
\(892\) 0 0
\(893\) 13.6674 23.6726i 0.457362 0.792175i
\(894\) 0 0
\(895\) 31.2551 18.0451i 1.04474 0.603182i
\(896\) 0 0
\(897\) 20.3791 8.13901i 0.680439 0.271754i
\(898\) 0 0
\(899\) 2.26516 1.30779i 0.0755474 0.0436173i
\(900\) 0 0
\(901\) 17.0094 29.4612i 0.566666 0.981494i
\(902\) 0 0
\(903\) 22.3347 + 12.8949i 0.743252 + 0.429116i
\(904\) 0 0
\(905\) 53.4618i 1.77713i
\(906\) 0 0
\(907\) 18.8071 + 32.5748i 0.624478 + 1.08163i 0.988642 + 0.150293i \(0.0480217\pi\)
−0.364163 + 0.931335i \(0.618645\pi\)
\(908\) 0 0
\(909\) −24.3781 −0.808569
\(910\) 0 0
\(911\) −55.1136 −1.82599 −0.912997 0.407966i \(-0.866238\pi\)
−0.912997 + 0.407966i \(0.866238\pi\)
\(912\) 0 0
\(913\) −43.7623 75.7986i −1.44832 2.50857i
\(914\) 0 0
\(915\) 53.0404i 1.75346i
\(916\) 0 0
\(917\) −5.41675 3.12736i −0.178877 0.103275i
\(918\) 0 0
\(919\) −10.3413 + 17.9117i −0.341129 + 0.590853i −0.984643 0.174582i \(-0.944143\pi\)
0.643514 + 0.765435i \(0.277476\pi\)
\(920\) 0 0
\(921\) −18.5555 + 10.7130i −0.611426 + 0.353007i
\(922\) 0 0
\(923\) −16.6479 41.6845i −0.547973 1.37206i
\(924\) 0 0
\(925\) 1.13002 0.652415i 0.0371547 0.0214513i
\(926\) 0 0
\(927\) 48.8052 84.5331i 1.60297 2.77643i
\(928\) 0 0
\(929\) 25.5240 + 14.7363i 0.837415 + 0.483482i 0.856385 0.516338i \(-0.172705\pi\)
−0.0189695 + 0.999820i \(0.506039\pi\)
\(930\) 0 0
\(931\) 4.91895i 0.161212i
\(932\) 0 0
\(933\) −22.7425 39.3912i −0.744557 1.28961i
\(934\) 0 0
\(935\) −70.6305 −2.30986
\(936\) 0 0
\(937\) 46.0479 1.50432 0.752160 0.658980i \(-0.229012\pi\)
0.752160 + 0.658980i \(0.229012\pi\)
\(938\) 0 0
\(939\) 48.2642 + 83.5960i 1.57504 + 2.72805i
\(940\) 0 0
\(941\) 11.1787i 0.364414i 0.983260 + 0.182207i \(0.0583241\pi\)
−0.983260 + 0.182207i \(0.941676\pi\)
\(942\) 0 0
\(943\) −7.02921 4.05832i −0.228903 0.132157i
\(944\) 0 0
\(945\) −13.6426 + 23.6296i −0.443793 + 0.768672i
\(946\) 0 0
\(947\) −15.3118 + 8.84027i −0.497567 + 0.287270i −0.727708 0.685887i \(-0.759414\pi\)
0.230142 + 0.973157i \(0.426081\pi\)
\(948\) 0 0
\(949\) −11.1573 + 14.1636i −0.362182 + 0.459769i
\(950\) 0 0
\(951\) 18.4023 10.6246i 0.596736 0.344525i
\(952\) 0 0
\(953\) 7.74718 13.4185i 0.250956 0.434668i −0.712833 0.701333i \(-0.752588\pi\)
0.963789 + 0.266665i \(0.0859218\pi\)
\(954\) 0 0
\(955\) 46.9369 + 27.0990i 1.51884 + 0.876903i
\(956\) 0 0
\(957\) 65.6171i 2.12110i
\(958\) 0 0
\(959\) 6.14108 + 10.6367i 0.198306 + 0.343476i
\(960\) 0 0
\(961\) 30.5250 0.984678
\(962\) 0 0
\(963\) 23.0253 0.741980
\(964\) 0 0
\(965\) −17.7539 30.7506i −0.571518 0.989898i
\(966\) 0 0
\(967\) 10.9723i 0.352847i −0.984314 0.176423i \(-0.943547\pi\)
0.984314 0.176423i \(-0.0564528\pi\)
\(968\) 0 0
\(969\) 74.8434 + 43.2109i 2.40432 + 1.38813i
\(970\) 0 0
\(971\) −26.9868 + 46.7425i −0.866048 + 1.50004i −4.43892e−5 1.00000i \(0.500014\pi\)
−0.866003 + 0.500038i \(0.833319\pi\)
\(972\) 0 0
\(973\) 13.8347 7.98744i 0.443519 0.256066i
\(974\) 0 0
\(975\) −0.337844 + 2.33603i −0.0108197 + 0.0748128i
\(976\) 0 0
\(977\) 51.6726 29.8332i 1.65315 0.954448i 0.677387 0.735627i \(-0.263112\pi\)
0.975765 0.218820i \(-0.0702209\pi\)
\(978\) 0 0
\(979\) 22.9809 39.8042i 0.734474 1.27215i
\(980\) 0 0
\(981\) −26.4415 15.2660i −0.844212 0.487406i
\(982\) 0 0
\(983\) 21.2863i 0.678926i −0.940619 0.339463i \(-0.889755\pi\)
0.940619 0.339463i \(-0.110245\pi\)
\(984\) 0 0
\(985\) 18.2501 + 31.6101i 0.581497 + 1.00718i
\(986\) 0 0
\(987\) −17.4103 −0.554177
\(988\) 0 0
\(989\) −15.9909 −0.508481
\(990\) 0 0
\(991\) −1.48951 2.57991i −0.0473160 0.0819537i 0.841397 0.540417i \(-0.181733\pi\)
−0.888713 + 0.458463i \(0.848400\pi\)
\(992\) 0 0
\(993\) 12.7907i 0.405900i
\(994\) 0 0
\(995\) −19.4915 11.2534i −0.617923 0.356758i
\(996\) 0 0
\(997\) 1.10898 1.92081i 0.0351217 0.0608326i −0.847930 0.530108i \(-0.822151\pi\)
0.883052 + 0.469275i \(0.155485\pi\)
\(998\) 0 0
\(999\) 64.6543 37.3282i 2.04557 1.18101i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1456.2.cc.g.673.12 24
4.3 odd 2 728.2.bm.c.673.1 yes 24
13.4 even 6 inner 1456.2.cc.g.225.12 24
52.11 even 12 9464.2.a.bl.1.12 12
52.15 even 12 9464.2.a.bm.1.12 12
52.43 odd 6 728.2.bm.c.225.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.bm.c.225.1 24 52.43 odd 6
728.2.bm.c.673.1 yes 24 4.3 odd 2
1456.2.cc.g.225.12 24 13.4 even 6 inner
1456.2.cc.g.673.12 24 1.1 even 1 trivial
9464.2.a.bl.1.12 12 52.11 even 12
9464.2.a.bm.1.12 12 52.15 even 12