L(s) = 1 | + (1.56 + 2.71i)3-s + 2.28i·5-s + (−0.866 − 0.5i)7-s + (−3.40 + 5.90i)9-s + (−4.77 + 2.75i)11-s + (−2.83 − 2.23i)13-s + (−6.19 + 3.57i)15-s + (2.80 − 4.85i)17-s + (4.25 + 2.45i)19-s − 3.13i·21-s + (0.971 + 1.68i)23-s − 0.208·25-s − 11.9·27-s + (−1.89 − 3.28i)29-s + 0.689i·31-s + ⋯ |
L(s) = 1 | + (0.904 + 1.56i)3-s + 1.02i·5-s + (−0.327 − 0.188i)7-s + (−1.13 + 1.96i)9-s + (−1.44 + 0.831i)11-s + (−0.785 − 0.618i)13-s + (−1.59 + 0.923i)15-s + (0.680 − 1.17i)17-s + (0.977 + 0.564i)19-s − 0.683i·21-s + (0.202 + 0.350i)23-s − 0.0417·25-s − 2.30·27-s + (−0.352 − 0.610i)29-s + 0.123i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.933 + 0.358i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.933 + 0.358i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.437887498\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.437887498\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (2.83 + 2.23i)T \) |
good | 3 | \( 1 + (-1.56 - 2.71i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 2.28iT - 5T^{2} \) |
| 11 | \( 1 + (4.77 - 2.75i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.80 + 4.85i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.25 - 2.45i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.971 - 1.68i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.89 + 3.28i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 0.689iT - 31T^{2} \) |
| 37 | \( 1 + (5.40 - 3.12i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (3.61 - 2.08i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.11 - 7.12i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 5.55iT - 47T^{2} \) |
| 53 | \( 1 - 6.06T + 53T^{2} \) |
| 59 | \( 1 + (-12.9 - 7.45i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.70 + 6.42i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.90 - 4.56i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-10.7 - 6.22i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 5.00iT - 73T^{2} \) |
| 79 | \( 1 + 6.90T + 79T^{2} \) |
| 83 | \( 1 - 15.8iT - 83T^{2} \) |
| 89 | \( 1 + (7.21 - 4.16i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.58 - 2.06i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.987662296806756929367316122156, −9.610584151032255929584175153691, −8.354723720166351558260582233500, −7.62452634698528330592550053955, −7.04217876149058743534215452712, −5.31095460077565278399718972616, −5.09906567438423396626251737568, −3.79485900797273977572986247119, −2.96271416538709195801014014597, −2.55619717596315010379609872709,
0.48187673897634962045157984059, 1.68594966243228961234536310098, 2.67683229709917115784169099818, 3.55094653631365463909641398115, 5.12426814904163254555468738902, 5.76450001368626580745894265637, 6.92217318796626112400512903267, 7.49136634691758208394712851419, 8.433352514237462229448125216125, 8.641249954198766683285162076501