Properties

Label 728.2.bm.c.225.1
Level $728$
Weight $2$
Character 728.225
Analytic conductor $5.813$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(225,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.225"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 225.1
Character \(\chi\) \(=\) 728.225
Dual form 728.2.bm.c.673.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.56651 + 2.71328i) q^{3} -2.28231i q^{5} +(0.866025 - 0.500000i) q^{7} +(-3.40791 - 5.90267i) q^{9} +(4.77925 + 2.75930i) q^{11} +(-2.83231 + 2.23115i) q^{13} +(6.19254 + 3.57527i) q^{15} +(2.80387 + 4.85644i) q^{17} +(-4.25993 + 2.45947i) q^{19} +3.13302i q^{21} +(-0.971308 + 1.68235i) q^{23} -0.208948 q^{25} +11.9550 q^{27} +(-1.89756 + 3.28666i) q^{29} +0.689198i q^{31} +(-14.9735 + 8.64496i) q^{33} +(-1.14116 - 1.97654i) q^{35} +(-5.40812 - 3.12238i) q^{37} +(-1.61688 - 11.1800i) q^{39} +(-3.61843 - 2.08910i) q^{41} +(4.11581 + 7.12880i) q^{43} +(-13.4717 + 7.77791i) q^{45} -5.55704i q^{47} +(0.500000 - 0.866025i) q^{49} -17.5692 q^{51} +6.06641 q^{53} +(6.29759 - 10.9077i) q^{55} -15.4112i q^{57} +(-12.9109 + 7.45409i) q^{59} +(3.70884 + 6.42391i) q^{61} +(-5.90267 - 3.40791i) q^{63} +(5.09218 + 6.46421i) q^{65} +(7.90904 + 4.56629i) q^{67} +(-3.04313 - 5.27085i) q^{69} +(-10.7813 + 6.22456i) q^{71} +5.00071i q^{73} +(0.327319 - 0.566933i) q^{75} +5.51861 q^{77} +6.90219 q^{79} +(-8.50397 + 14.7293i) q^{81} +15.8599i q^{83} +(11.0839 - 6.39930i) q^{85} +(-5.94508 - 10.2972i) q^{87} +(-7.21272 - 4.16427i) q^{89} +(-1.33728 + 3.34839i) q^{91} +(-1.86999 - 1.07964i) q^{93} +(5.61329 + 9.72250i) q^{95} +(3.58245 - 2.06833i) q^{97} -37.6138i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{3} - 18 q^{9} + 12 q^{11} + 8 q^{17} - 12 q^{19} + 2 q^{23} - 28 q^{25} - 20 q^{27} + 2 q^{29} - 18 q^{33} - 8 q^{35} + 60 q^{37} + 18 q^{39} - 6 q^{41} + 24 q^{43} - 72 q^{45} + 12 q^{49} - 72 q^{51}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.56651 + 2.71328i −0.904425 + 1.56651i −0.0827383 + 0.996571i \(0.526367\pi\)
−0.821687 + 0.569939i \(0.806967\pi\)
\(4\) 0 0
\(5\) 2.28231i 1.02068i −0.859972 0.510340i \(-0.829519\pi\)
0.859972 0.510340i \(-0.170481\pi\)
\(6\) 0 0
\(7\) 0.866025 0.500000i 0.327327 0.188982i
\(8\) 0 0
\(9\) −3.40791 5.90267i −1.13597 1.96756i
\(10\) 0 0
\(11\) 4.77925 + 2.75930i 1.44100 + 0.831961i 0.997916 0.0645194i \(-0.0205514\pi\)
0.443083 + 0.896481i \(0.353885\pi\)
\(12\) 0 0
\(13\) −2.83231 + 2.23115i −0.785541 + 0.618809i
\(14\) 0 0
\(15\) 6.19254 + 3.57527i 1.59891 + 0.923130i
\(16\) 0 0
\(17\) 2.80387 + 4.85644i 0.680038 + 1.17786i 0.974969 + 0.222342i \(0.0713701\pi\)
−0.294931 + 0.955519i \(0.595297\pi\)
\(18\) 0 0
\(19\) −4.25993 + 2.45947i −0.977296 + 0.564242i −0.901453 0.432878i \(-0.857498\pi\)
−0.0758432 + 0.997120i \(0.524165\pi\)
\(20\) 0 0
\(21\) 3.13302i 0.683681i
\(22\) 0 0
\(23\) −0.971308 + 1.68235i −0.202532 + 0.350795i −0.949343 0.314240i \(-0.898250\pi\)
0.746812 + 0.665035i \(0.231584\pi\)
\(24\) 0 0
\(25\) −0.208948 −0.0417896
\(26\) 0 0
\(27\) 11.9550 2.30075
\(28\) 0 0
\(29\) −1.89756 + 3.28666i −0.352367 + 0.610318i −0.986664 0.162772i \(-0.947957\pi\)
0.634297 + 0.773090i \(0.281290\pi\)
\(30\) 0 0
\(31\) 0.689198i 0.123784i 0.998083 + 0.0618918i \(0.0197134\pi\)
−0.998083 + 0.0618918i \(0.980287\pi\)
\(32\) 0 0
\(33\) −14.9735 + 8.64496i −2.60655 + 1.50489i
\(34\) 0 0
\(35\) −1.14116 1.97654i −0.192891 0.334096i
\(36\) 0 0
\(37\) −5.40812 3.12238i −0.889090 0.513316i −0.0154451 0.999881i \(-0.504917\pi\)
−0.873645 + 0.486564i \(0.838250\pi\)
\(38\) 0 0
\(39\) −1.61688 11.1800i −0.258908 1.79023i
\(40\) 0 0
\(41\) −3.61843 2.08910i −0.565103 0.326263i 0.190088 0.981767i \(-0.439123\pi\)
−0.755191 + 0.655504i \(0.772456\pi\)
\(42\) 0 0
\(43\) 4.11581 + 7.12880i 0.627656 + 1.08713i 0.988021 + 0.154320i \(0.0493188\pi\)
−0.360365 + 0.932811i \(0.617348\pi\)
\(44\) 0 0
\(45\) −13.4717 + 7.77791i −2.00825 + 1.15946i
\(46\) 0 0
\(47\) 5.55704i 0.810578i −0.914189 0.405289i \(-0.867171\pi\)
0.914189 0.405289i \(-0.132829\pi\)
\(48\) 0 0
\(49\) 0.500000 0.866025i 0.0714286 0.123718i
\(50\) 0 0
\(51\) −17.5692 −2.46017
\(52\) 0 0
\(53\) 6.06641 0.833286 0.416643 0.909070i \(-0.363207\pi\)
0.416643 + 0.909070i \(0.363207\pi\)
\(54\) 0 0
\(55\) 6.29759 10.9077i 0.849167 1.47080i
\(56\) 0 0
\(57\) 15.4112i 2.04126i
\(58\) 0 0
\(59\) −12.9109 + 7.45409i −1.68085 + 0.970440i −0.719755 + 0.694228i \(0.755746\pi\)
−0.961097 + 0.276212i \(0.910921\pi\)
\(60\) 0 0
\(61\) 3.70884 + 6.42391i 0.474869 + 0.822497i 0.999586 0.0287799i \(-0.00916220\pi\)
−0.524717 + 0.851277i \(0.675829\pi\)
\(62\) 0 0
\(63\) −5.90267 3.40791i −0.743667 0.429356i
\(64\) 0 0
\(65\) 5.09218 + 6.46421i 0.631607 + 0.801787i
\(66\) 0 0
\(67\) 7.90904 + 4.56629i 0.966243 + 0.557861i 0.898089 0.439814i \(-0.144956\pi\)
0.0681541 + 0.997675i \(0.478289\pi\)
\(68\) 0 0
\(69\) −3.04313 5.27085i −0.366349 0.634536i
\(70\) 0 0
\(71\) −10.7813 + 6.22456i −1.27950 + 0.738719i −0.976756 0.214353i \(-0.931236\pi\)
−0.302743 + 0.953072i \(0.597902\pi\)
\(72\) 0 0
\(73\) 5.00071i 0.585289i 0.956221 + 0.292645i \(0.0945353\pi\)
−0.956221 + 0.292645i \(0.905465\pi\)
\(74\) 0 0
\(75\) 0.327319 0.566933i 0.0377956 0.0654638i
\(76\) 0 0
\(77\) 5.51861 0.628904
\(78\) 0 0
\(79\) 6.90219 0.776557 0.388279 0.921542i \(-0.373070\pi\)
0.388279 + 0.921542i \(0.373070\pi\)
\(80\) 0 0
\(81\) −8.50397 + 14.7293i −0.944885 + 1.63659i
\(82\) 0 0
\(83\) 15.8599i 1.74085i 0.492299 + 0.870426i \(0.336157\pi\)
−0.492299 + 0.870426i \(0.663843\pi\)
\(84\) 0 0
\(85\) 11.0839 6.39930i 1.20222 0.694102i
\(86\) 0 0
\(87\) −5.94508 10.2972i −0.637380 1.10397i
\(88\) 0 0
\(89\) −7.21272 4.16427i −0.764547 0.441411i 0.0663791 0.997794i \(-0.478855\pi\)
−0.830926 + 0.556383i \(0.812189\pi\)
\(90\) 0 0
\(91\) −1.33728 + 3.34839i −0.140185 + 0.351006i
\(92\) 0 0
\(93\) −1.86999 1.07964i −0.193908 0.111953i
\(94\) 0 0
\(95\) 5.61329 + 9.72250i 0.575911 + 0.997507i
\(96\) 0 0
\(97\) 3.58245 2.06833i 0.363743 0.210007i −0.306979 0.951716i \(-0.599318\pi\)
0.670721 + 0.741709i \(0.265985\pi\)
\(98\) 0 0
\(99\) 37.6138i 3.78033i
\(100\) 0 0
\(101\) 1.78834 3.09750i 0.177947 0.308213i −0.763230 0.646127i \(-0.776388\pi\)
0.941177 + 0.337914i \(0.109721\pi\)
\(102\) 0 0
\(103\) 14.3212 1.41111 0.705553 0.708658i \(-0.250699\pi\)
0.705553 + 0.708658i \(0.250699\pi\)
\(104\) 0 0
\(105\) 7.15053 0.697820
\(106\) 0 0
\(107\) 1.68911 2.92562i 0.163292 0.282830i −0.772755 0.634704i \(-0.781122\pi\)
0.936047 + 0.351874i \(0.114455\pi\)
\(108\) 0 0
\(109\) 4.47958i 0.429066i −0.976717 0.214533i \(-0.931177\pi\)
0.976717 0.214533i \(-0.0688229\pi\)
\(110\) 0 0
\(111\) 16.9438 9.78248i 1.60823 0.928512i
\(112\) 0 0
\(113\) −1.24684 2.15960i −0.117293 0.203158i 0.801401 0.598128i \(-0.204088\pi\)
−0.918694 + 0.394970i \(0.870755\pi\)
\(114\) 0 0
\(115\) 3.83966 + 2.21683i 0.358050 + 0.206720i
\(116\) 0 0
\(117\) 22.8220 + 9.11464i 2.10989 + 0.842649i
\(118\) 0 0
\(119\) 4.85644 + 2.80387i 0.445189 + 0.257030i
\(120\) 0 0
\(121\) 9.72751 + 16.8485i 0.884319 + 1.53169i
\(122\) 0 0
\(123\) 11.3366 6.54519i 1.02219 0.590160i
\(124\) 0 0
\(125\) 10.9347i 0.978027i
\(126\) 0 0
\(127\) −1.59450 + 2.76176i −0.141489 + 0.245066i −0.928058 0.372437i \(-0.878522\pi\)
0.786568 + 0.617503i \(0.211856\pi\)
\(128\) 0 0
\(129\) −25.7899 −2.27067
\(130\) 0 0
\(131\) −6.25472 −0.546477 −0.273239 0.961946i \(-0.588095\pi\)
−0.273239 + 0.961946i \(0.588095\pi\)
\(132\) 0 0
\(133\) −2.45947 + 4.25993i −0.213263 + 0.369383i
\(134\) 0 0
\(135\) 27.2851i 2.34833i
\(136\) 0 0
\(137\) −10.6367 + 6.14108i −0.908751 + 0.524668i −0.880029 0.474920i \(-0.842477\pi\)
−0.0287222 + 0.999587i \(0.509144\pi\)
\(138\) 0 0
\(139\) 7.98744 + 13.8347i 0.677486 + 1.17344i 0.975736 + 0.218952i \(0.0702639\pi\)
−0.298250 + 0.954488i \(0.596403\pi\)
\(140\) 0 0
\(141\) 15.0778 + 8.70517i 1.26978 + 0.733107i
\(142\) 0 0
\(143\) −19.6927 + 2.84803i −1.64679 + 0.238164i
\(144\) 0 0
\(145\) 7.50119 + 4.33081i 0.622940 + 0.359654i
\(146\) 0 0
\(147\) 1.56651 + 2.71328i 0.129204 + 0.223787i
\(148\) 0 0
\(149\) 11.1484 6.43654i 0.913313 0.527302i 0.0318176 0.999494i \(-0.489870\pi\)
0.881496 + 0.472192i \(0.156537\pi\)
\(150\) 0 0
\(151\) 20.8187i 1.69421i −0.531429 0.847103i \(-0.678345\pi\)
0.531429 0.847103i \(-0.321655\pi\)
\(152\) 0 0
\(153\) 19.1107 33.1006i 1.54501 2.67603i
\(154\) 0 0
\(155\) 1.57297 0.126344
\(156\) 0 0
\(157\) 8.72747 0.696528 0.348264 0.937397i \(-0.386771\pi\)
0.348264 + 0.937397i \(0.386771\pi\)
\(158\) 0 0
\(159\) −9.50309 + 16.4598i −0.753644 + 1.30535i
\(160\) 0 0
\(161\) 1.94262i 0.153100i
\(162\) 0 0
\(163\) 8.58558 4.95689i 0.672475 0.388253i −0.124539 0.992215i \(-0.539745\pi\)
0.797014 + 0.603961i \(0.206412\pi\)
\(164\) 0 0
\(165\) 19.7305 + 34.1742i 1.53602 + 2.66046i
\(166\) 0 0
\(167\) 8.32845 + 4.80843i 0.644475 + 0.372088i 0.786336 0.617799i \(-0.211975\pi\)
−0.141861 + 0.989887i \(0.545309\pi\)
\(168\) 0 0
\(169\) 3.04395 12.6386i 0.234150 0.972201i
\(170\) 0 0
\(171\) 29.0349 + 16.7633i 2.22036 + 1.28192i
\(172\) 0 0
\(173\) 1.61275 + 2.79336i 0.122615 + 0.212375i 0.920798 0.390040i \(-0.127539\pi\)
−0.798183 + 0.602415i \(0.794205\pi\)
\(174\) 0 0
\(175\) −0.180954 + 0.104474i −0.0136789 + 0.00789749i
\(176\) 0 0
\(177\) 46.7077i 3.51076i
\(178\) 0 0
\(179\) 7.90651 13.6945i 0.590961 1.02357i −0.403143 0.915137i \(-0.632082\pi\)
0.994103 0.108437i \(-0.0345845\pi\)
\(180\) 0 0
\(181\) −23.4244 −1.74112 −0.870561 0.492061i \(-0.836244\pi\)
−0.870561 + 0.492061i \(0.836244\pi\)
\(182\) 0 0
\(183\) −23.2398 −1.71793
\(184\) 0 0
\(185\) −7.12625 + 12.3430i −0.523932 + 0.907477i
\(186\) 0 0
\(187\) 30.9469i 2.26306i
\(188\) 0 0
\(189\) 10.3534 5.97752i 0.753097 0.434801i
\(190\) 0 0
\(191\) −11.8735 20.5655i −0.859136 1.48807i −0.872755 0.488159i \(-0.837669\pi\)
0.0136190 0.999907i \(-0.495665\pi\)
\(192\) 0 0
\(193\) −13.4735 7.77890i −0.969840 0.559938i −0.0706528 0.997501i \(-0.522508\pi\)
−0.899188 + 0.437563i \(0.855842\pi\)
\(194\) 0 0
\(195\) −25.5161 + 3.69023i −1.82725 + 0.264263i
\(196\) 0 0
\(197\) 13.8500 + 7.99633i 0.986775 + 0.569715i 0.904309 0.426879i \(-0.140387\pi\)
0.0824661 + 0.996594i \(0.473720\pi\)
\(198\) 0 0
\(199\) 4.93072 + 8.54025i 0.349529 + 0.605402i 0.986166 0.165762i \(-0.0530082\pi\)
−0.636637 + 0.771164i \(0.719675\pi\)
\(200\) 0 0
\(201\) −24.7792 + 14.3063i −1.74779 + 1.00909i
\(202\) 0 0
\(203\) 3.79511i 0.266365i
\(204\) 0 0
\(205\) −4.76798 + 8.25838i −0.333010 + 0.576790i
\(206\) 0 0
\(207\) 13.2405 0.920279
\(208\) 0 0
\(209\) −27.1457 −1.87771
\(210\) 0 0
\(211\) 1.00748 1.74501i 0.0693580 0.120132i −0.829261 0.558862i \(-0.811238\pi\)
0.898619 + 0.438730i \(0.144572\pi\)
\(212\) 0 0
\(213\) 39.0033i 2.67246i
\(214\) 0 0
\(215\) 16.2701 9.39357i 1.10961 0.640636i
\(216\) 0 0
\(217\) 0.344599 + 0.596863i 0.0233929 + 0.0405177i
\(218\) 0 0
\(219\) −13.5683 7.83367i −0.916862 0.529350i
\(220\) 0 0
\(221\) −18.7769 7.49910i −1.26307 0.504444i
\(222\) 0 0
\(223\) 0.0881439 + 0.0508899i 0.00590255 + 0.00340784i 0.502948 0.864316i \(-0.332249\pi\)
−0.497046 + 0.867724i \(0.665582\pi\)
\(224\) 0 0
\(225\) 0.712076 + 1.23335i 0.0474717 + 0.0822234i
\(226\) 0 0
\(227\) −4.54259 + 2.62266i −0.301502 + 0.174072i −0.643117 0.765768i \(-0.722359\pi\)
0.341615 + 0.939840i \(0.389026\pi\)
\(228\) 0 0
\(229\) 21.4484i 1.41735i −0.705535 0.708675i \(-0.749293\pi\)
0.705535 0.708675i \(-0.250707\pi\)
\(230\) 0 0
\(231\) −8.64496 + 14.9735i −0.568796 + 0.985184i
\(232\) 0 0
\(233\) 24.3319 1.59403 0.797017 0.603957i \(-0.206410\pi\)
0.797017 + 0.603957i \(0.206410\pi\)
\(234\) 0 0
\(235\) −12.6829 −0.827342
\(236\) 0 0
\(237\) −10.8124 + 18.7275i −0.702338 + 1.21648i
\(238\) 0 0
\(239\) 10.7950i 0.698273i 0.937072 + 0.349137i \(0.113525\pi\)
−0.937072 + 0.349137i \(0.886475\pi\)
\(240\) 0 0
\(241\) 12.3164 7.11090i 0.793372 0.458053i −0.0477765 0.998858i \(-0.515214\pi\)
0.841148 + 0.540805i \(0.181880\pi\)
\(242\) 0 0
\(243\) −8.71055 15.0871i −0.558782 0.967839i
\(244\) 0 0
\(245\) −1.97654 1.14116i −0.126277 0.0729058i
\(246\) 0 0
\(247\) 6.57800 16.4705i 0.418548 1.04800i
\(248\) 0 0
\(249\) −43.0323 24.8447i −2.72706 1.57447i
\(250\) 0 0
\(251\) −13.7068 23.7408i −0.865163 1.49851i −0.866886 0.498507i \(-0.833882\pi\)
0.00172317 0.999999i \(-0.499451\pi\)
\(252\) 0 0
\(253\) −9.28425 + 5.36027i −0.583696 + 0.336997i
\(254\) 0 0
\(255\) 40.0983i 2.51105i
\(256\) 0 0
\(257\) 11.3311 19.6261i 0.706816 1.22424i −0.259216 0.965819i \(-0.583464\pi\)
0.966032 0.258422i \(-0.0832025\pi\)
\(258\) 0 0
\(259\) −6.24476 −0.388031
\(260\) 0 0
\(261\) 25.8668 1.60111
\(262\) 0 0
\(263\) −11.4268 + 19.7918i −0.704606 + 1.22041i 0.262228 + 0.965006i \(0.415543\pi\)
−0.966834 + 0.255407i \(0.917790\pi\)
\(264\) 0 0
\(265\) 13.8454i 0.850519i
\(266\) 0 0
\(267\) 22.5976 13.0467i 1.38295 0.798447i
\(268\) 0 0
\(269\) 4.81428 + 8.33858i 0.293532 + 0.508412i 0.974642 0.223769i \(-0.0718360\pi\)
−0.681110 + 0.732181i \(0.738503\pi\)
\(270\) 0 0
\(271\) −13.5355 7.81473i −0.822223 0.474711i 0.0289592 0.999581i \(-0.490781\pi\)
−0.851183 + 0.524870i \(0.824114\pi\)
\(272\) 0 0
\(273\) −6.99024 8.87368i −0.423068 0.537060i
\(274\) 0 0
\(275\) −0.998615 0.576551i −0.0602188 0.0347673i
\(276\) 0 0
\(277\) 2.09131 + 3.62225i 0.125655 + 0.217640i 0.921989 0.387217i \(-0.126564\pi\)
−0.796334 + 0.604857i \(0.793230\pi\)
\(278\) 0 0
\(279\) 4.06811 2.34873i 0.243552 0.140615i
\(280\) 0 0
\(281\) 5.13123i 0.306103i −0.988218 0.153052i \(-0.951090\pi\)
0.988218 0.153052i \(-0.0489101\pi\)
\(282\) 0 0
\(283\) 3.11540 5.39603i 0.185191 0.320761i −0.758450 0.651732i \(-0.774043\pi\)
0.943641 + 0.330971i \(0.107376\pi\)
\(284\) 0 0
\(285\) −35.1731 −2.08347
\(286\) 0 0
\(287\) −4.17820 −0.246631
\(288\) 0 0
\(289\) −7.22336 + 12.5112i −0.424903 + 0.735954i
\(290\) 0 0
\(291\) 12.9602i 0.759742i
\(292\) 0 0
\(293\) 6.08862 3.51526i 0.355701 0.205364i −0.311492 0.950249i \(-0.600829\pi\)
0.667193 + 0.744885i \(0.267496\pi\)
\(294\) 0 0
\(295\) 17.0126 + 29.4666i 0.990510 + 1.71561i
\(296\) 0 0
\(297\) 57.1362 + 32.9876i 3.31538 + 1.91413i
\(298\) 0 0
\(299\) −1.00254 6.93208i −0.0579784 0.400892i
\(300\) 0 0
\(301\) 7.12880 + 4.11581i 0.410897 + 0.237232i
\(302\) 0 0
\(303\) 5.60292 + 9.70454i 0.321879 + 0.557511i
\(304\) 0 0
\(305\) 14.6614 8.46474i 0.839507 0.484689i
\(306\) 0 0
\(307\) 6.83879i 0.390311i 0.980772 + 0.195155i \(0.0625211\pi\)
−0.980772 + 0.195155i \(0.937479\pi\)
\(308\) 0 0
\(309\) −22.4342 + 38.8572i −1.27624 + 2.21051i
\(310\) 0 0
\(311\) 14.5179 0.823237 0.411619 0.911356i \(-0.364964\pi\)
0.411619 + 0.911356i \(0.364964\pi\)
\(312\) 0 0
\(313\) 30.8100 1.74148 0.870742 0.491741i \(-0.163639\pi\)
0.870742 + 0.491741i \(0.163639\pi\)
\(314\) 0 0
\(315\) −7.77791 + 13.4717i −0.438236 + 0.759047i
\(316\) 0 0
\(317\) 6.78232i 0.380933i 0.981694 + 0.190467i \(0.0610001\pi\)
−0.981694 + 0.190467i \(0.939000\pi\)
\(318\) 0 0
\(319\) −18.1378 + 10.4719i −1.01552 + 0.586312i
\(320\) 0 0
\(321\) 5.29201 + 9.16602i 0.295371 + 0.511598i
\(322\) 0 0
\(323\) −23.8886 13.7921i −1.32920 0.767412i
\(324\) 0 0
\(325\) 0.591805 0.466194i 0.0328274 0.0258598i
\(326\) 0 0
\(327\) 12.1543 + 7.01731i 0.672136 + 0.388058i
\(328\) 0 0
\(329\) −2.77852 4.81254i −0.153185 0.265324i
\(330\) 0 0
\(331\) −3.53558 + 2.04127i −0.194333 + 0.112198i −0.594010 0.804458i \(-0.702456\pi\)
0.399676 + 0.916656i \(0.369123\pi\)
\(332\) 0 0
\(333\) 42.5632i 2.33245i
\(334\) 0 0
\(335\) 10.4217 18.0509i 0.569398 0.986226i
\(336\) 0 0
\(337\) 24.1656 1.31638 0.658192 0.752850i \(-0.271321\pi\)
0.658192 + 0.752850i \(0.271321\pi\)
\(338\) 0 0
\(339\) 7.81278 0.424332
\(340\) 0 0
\(341\) −1.90171 + 3.29385i −0.102983 + 0.178372i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −12.0297 + 6.94537i −0.647659 + 0.373926i
\(346\) 0 0
\(347\) −4.56601 7.90855i −0.245116 0.424553i 0.717048 0.697024i \(-0.245493\pi\)
−0.962164 + 0.272470i \(0.912159\pi\)
\(348\) 0 0
\(349\) 22.8546 + 13.1951i 1.22338 + 0.706317i 0.965636 0.259897i \(-0.0836885\pi\)
0.257741 + 0.966214i \(0.417022\pi\)
\(350\) 0 0
\(351\) −33.8604 + 26.6735i −1.80733 + 1.42373i
\(352\) 0 0
\(353\) −10.2461 5.91561i −0.545346 0.314856i 0.201897 0.979407i \(-0.435290\pi\)
−0.747243 + 0.664551i \(0.768623\pi\)
\(354\) 0 0
\(355\) 14.2064 + 24.6062i 0.753997 + 1.30596i
\(356\) 0 0
\(357\) −15.2153 + 8.78458i −0.805281 + 0.464929i
\(358\) 0 0
\(359\) 30.9827i 1.63520i 0.575784 + 0.817602i \(0.304697\pi\)
−0.575784 + 0.817602i \(0.695303\pi\)
\(360\) 0 0
\(361\) 2.59803 4.49991i 0.136738 0.236837i
\(362\) 0 0
\(363\) −60.9530 −3.19920
\(364\) 0 0
\(365\) 11.4132 0.597393
\(366\) 0 0
\(367\) 8.83531 15.3032i 0.461200 0.798821i −0.537821 0.843059i \(-0.680753\pi\)
0.999021 + 0.0442377i \(0.0140859\pi\)
\(368\) 0 0
\(369\) 28.4779i 1.48250i
\(370\) 0 0
\(371\) 5.25367 3.03321i 0.272757 0.157476i
\(372\) 0 0
\(373\) −8.85830 15.3430i −0.458665 0.794432i 0.540225 0.841520i \(-0.318339\pi\)
−0.998891 + 0.0470887i \(0.985006\pi\)
\(374\) 0 0
\(375\) 29.6688 + 17.1293i 1.53209 + 0.884552i
\(376\) 0 0
\(377\) −1.95857 13.5426i −0.100872 0.697478i
\(378\) 0 0
\(379\) 9.81629 + 5.66744i 0.504229 + 0.291117i 0.730458 0.682957i \(-0.239307\pi\)
−0.226229 + 0.974074i \(0.572640\pi\)
\(380\) 0 0
\(381\) −4.99560 8.65264i −0.255933 0.443288i
\(382\) 0 0
\(383\) 8.01229 4.62590i 0.409409 0.236372i −0.281127 0.959671i \(-0.590708\pi\)
0.690536 + 0.723298i \(0.257375\pi\)
\(384\) 0 0
\(385\) 12.5952i 0.641910i
\(386\) 0 0
\(387\) 28.0526 48.5886i 1.42600 2.46990i
\(388\) 0 0
\(389\) 20.3817 1.03339 0.516696 0.856169i \(-0.327162\pi\)
0.516696 + 0.856169i \(0.327162\pi\)
\(390\) 0 0
\(391\) −10.8937 −0.550917
\(392\) 0 0
\(393\) 9.79808 16.9708i 0.494248 0.856063i
\(394\) 0 0
\(395\) 15.7530i 0.792617i
\(396\) 0 0
\(397\) −19.9223 + 11.5022i −0.999874 + 0.577277i −0.908211 0.418513i \(-0.862552\pi\)
−0.0916629 + 0.995790i \(0.529218\pi\)
\(398\) 0 0
\(399\) −7.70558 13.3465i −0.385762 0.668159i
\(400\) 0 0
\(401\) 1.41918 + 0.819366i 0.0708706 + 0.0409172i 0.535017 0.844842i \(-0.320305\pi\)
−0.464146 + 0.885759i \(0.653639\pi\)
\(402\) 0 0
\(403\) −1.53770 1.95202i −0.0765985 0.0972372i
\(404\) 0 0
\(405\) 33.6169 + 19.4087i 1.67044 + 0.964427i
\(406\) 0 0
\(407\) −17.2312 29.8453i −0.854119 1.47938i
\(408\) 0 0
\(409\) 30.0529 17.3510i 1.48602 0.857953i 0.486145 0.873878i \(-0.338403\pi\)
0.999873 + 0.0159247i \(0.00506921\pi\)
\(410\) 0 0
\(411\) 38.4803i 1.89809i
\(412\) 0 0
\(413\) −7.45409 + 12.9109i −0.366792 + 0.635302i
\(414\) 0 0
\(415\) 36.1973 1.77686
\(416\) 0 0
\(417\) −50.0496 −2.45094
\(418\) 0 0
\(419\) −4.70812 + 8.15471i −0.230007 + 0.398384i −0.957810 0.287403i \(-0.907208\pi\)
0.727803 + 0.685786i \(0.240542\pi\)
\(420\) 0 0
\(421\) 19.0258i 0.927260i −0.886029 0.463630i \(-0.846547\pi\)
0.886029 0.463630i \(-0.153453\pi\)
\(422\) 0 0
\(423\) −32.8014 + 18.9379i −1.59486 + 0.920792i
\(424\) 0 0
\(425\) −0.585863 1.01474i −0.0284185 0.0492223i
\(426\) 0 0
\(427\) 6.42391 + 3.70884i 0.310875 + 0.179484i
\(428\) 0 0
\(429\) 23.1214 57.8933i 1.11631 2.79511i
\(430\) 0 0
\(431\) −28.8278 16.6438i −1.38859 0.801702i −0.395432 0.918495i \(-0.629405\pi\)
−0.993156 + 0.116793i \(0.962739\pi\)
\(432\) 0 0
\(433\) −17.6832 30.6282i −0.849799 1.47190i −0.881387 0.472395i \(-0.843390\pi\)
0.0315876 0.999501i \(-0.489944\pi\)
\(434\) 0 0
\(435\) −23.5014 + 13.5685i −1.12680 + 0.650561i
\(436\) 0 0
\(437\) 9.55562i 0.457107i
\(438\) 0 0
\(439\) −9.96961 + 17.2679i −0.475823 + 0.824150i −0.999616 0.0276954i \(-0.991183\pi\)
0.523793 + 0.851846i \(0.324516\pi\)
\(440\) 0 0
\(441\) −6.81582 −0.324563
\(442\) 0 0
\(443\) −22.0434 −1.04731 −0.523656 0.851930i \(-0.675432\pi\)
−0.523656 + 0.851930i \(0.675432\pi\)
\(444\) 0 0
\(445\) −9.50415 + 16.4617i −0.450540 + 0.780358i
\(446\) 0 0
\(447\) 40.3316i 1.90762i
\(448\) 0 0
\(449\) −10.8523 + 6.26556i −0.512150 + 0.295690i −0.733717 0.679455i \(-0.762216\pi\)
0.221567 + 0.975145i \(0.428883\pi\)
\(450\) 0 0
\(451\) −11.5289 19.9687i −0.542876 0.940288i
\(452\) 0 0
\(453\) 56.4870 + 32.6128i 2.65399 + 1.53228i
\(454\) 0 0
\(455\) 7.64206 + 3.05208i 0.358265 + 0.143084i
\(456\) 0 0
\(457\) 2.08491 + 1.20372i 0.0975280 + 0.0563078i 0.547971 0.836497i \(-0.315401\pi\)
−0.450443 + 0.892805i \(0.648734\pi\)
\(458\) 0 0
\(459\) 33.5204 + 58.0590i 1.56460 + 2.70996i
\(460\) 0 0
\(461\) −8.92556 + 5.15317i −0.415705 + 0.240007i −0.693238 0.720709i \(-0.743816\pi\)
0.277533 + 0.960716i \(0.410483\pi\)
\(462\) 0 0
\(463\) 0.929297i 0.0431881i −0.999767 0.0215941i \(-0.993126\pi\)
0.999767 0.0215941i \(-0.00687414\pi\)
\(464\) 0 0
\(465\) −2.46407 + 4.26789i −0.114268 + 0.197919i
\(466\) 0 0
\(467\) 4.95471 0.229277 0.114638 0.993407i \(-0.463429\pi\)
0.114638 + 0.993407i \(0.463429\pi\)
\(468\) 0 0
\(469\) 9.13257 0.421703
\(470\) 0 0
\(471\) −13.6717 + 23.6800i −0.629957 + 1.09112i
\(472\) 0 0
\(473\) 45.4271i 2.08874i
\(474\) 0 0
\(475\) 0.890105 0.513902i 0.0408408 0.0235794i
\(476\) 0 0
\(477\) −20.6738 35.8080i −0.946587 1.63954i
\(478\) 0 0
\(479\) 4.19244 + 2.42050i 0.191557 + 0.110596i 0.592711 0.805415i \(-0.298057\pi\)
−0.401154 + 0.916011i \(0.631391\pi\)
\(480\) 0 0
\(481\) 22.2840 3.22278i 1.01606 0.146946i
\(482\) 0 0
\(483\) −5.27085 3.04313i −0.239832 0.138467i
\(484\) 0 0
\(485\) −4.72057 8.17627i −0.214350 0.371265i
\(486\) 0 0
\(487\) −4.19960 + 2.42464i −0.190302 + 0.109871i −0.592124 0.805847i \(-0.701710\pi\)
0.401822 + 0.915718i \(0.368377\pi\)
\(488\) 0 0
\(489\) 31.0601i 1.40458i
\(490\) 0 0
\(491\) −21.3449 + 36.9704i −0.963280 + 1.66845i −0.249113 + 0.968474i \(0.580139\pi\)
−0.714167 + 0.699975i \(0.753194\pi\)
\(492\) 0 0
\(493\) −21.2820 −0.958492
\(494\) 0 0
\(495\) −85.8465 −3.85851
\(496\) 0 0
\(497\) −6.22456 + 10.7813i −0.279210 + 0.483605i
\(498\) 0 0
\(499\) 4.34945i 0.194708i −0.995250 0.0973542i \(-0.968962\pi\)
0.995250 0.0973542i \(-0.0310380\pi\)
\(500\) 0 0
\(501\) −26.0932 + 15.0649i −1.16576 + 0.673051i
\(502\) 0 0
\(503\) −21.7833 37.7298i −0.971271 1.68229i −0.691729 0.722157i \(-0.743151\pi\)
−0.279542 0.960133i \(-0.590183\pi\)
\(504\) 0 0
\(505\) −7.06947 4.08156i −0.314587 0.181627i
\(506\) 0 0
\(507\) 29.5236 + 28.0576i 1.31119 + 1.24608i
\(508\) 0 0
\(509\) −16.1044 9.29788i −0.713815 0.412121i 0.0986568 0.995122i \(-0.468545\pi\)
−0.812472 + 0.583000i \(0.801879\pi\)
\(510\) 0 0
\(511\) 2.50036 + 4.33074i 0.110609 + 0.191581i
\(512\) 0 0
\(513\) −50.9277 + 29.4031i −2.24851 + 1.29818i
\(514\) 0 0
\(515\) 32.6853i 1.44029i
\(516\) 0 0
\(517\) 15.3336 26.5585i 0.674370 1.16804i
\(518\) 0 0
\(519\) −10.1055 −0.443584
\(520\) 0 0
\(521\) 9.30988 0.407873 0.203937 0.978984i \(-0.434626\pi\)
0.203937 + 0.978984i \(0.434626\pi\)
\(522\) 0 0
\(523\) 7.25998 12.5747i 0.317457 0.549851i −0.662500 0.749062i \(-0.730504\pi\)
0.979957 + 0.199211i \(0.0638378\pi\)
\(524\) 0 0
\(525\) 0.654638i 0.0285708i
\(526\) 0 0
\(527\) −3.34705 + 1.93242i −0.145800 + 0.0841776i
\(528\) 0 0
\(529\) 9.61312 + 16.6504i 0.417962 + 0.723931i
\(530\) 0 0
\(531\) 87.9981 + 50.8058i 3.81879 + 2.20478i
\(532\) 0 0
\(533\) 14.9096 2.15627i 0.645806 0.0933986i
\(534\) 0 0
\(535\) −6.67717 3.85507i −0.288679 0.166669i
\(536\) 0 0
\(537\) 24.7713 + 42.9051i 1.06896 + 1.85149i
\(538\) 0 0
\(539\) 4.77925 2.75930i 0.205857 0.118852i
\(540\) 0 0
\(541\) 4.10390i 0.176440i 0.996101 + 0.0882202i \(0.0281179\pi\)
−0.996101 + 0.0882202i \(0.971882\pi\)
\(542\) 0 0
\(543\) 36.6946 63.5568i 1.57471 2.72748i
\(544\) 0 0
\(545\) −10.2238 −0.437939
\(546\) 0 0
\(547\) −8.59559 −0.367521 −0.183761 0.982971i \(-0.558827\pi\)
−0.183761 + 0.982971i \(0.558827\pi\)
\(548\) 0 0
\(549\) 25.2788 43.7842i 1.07887 1.86866i
\(550\) 0 0
\(551\) 18.6680i 0.795281i
\(552\) 0 0
\(553\) 5.97747 3.45110i 0.254188 0.146756i
\(554\) 0 0
\(555\) −22.3267 38.6709i −0.947715 1.64149i
\(556\) 0 0
\(557\) −4.75687 2.74638i −0.201555 0.116368i 0.395826 0.918326i \(-0.370458\pi\)
−0.597381 + 0.801958i \(0.703792\pi\)
\(558\) 0 0
\(559\) −27.5627 11.0080i −1.16578 0.465587i
\(560\) 0 0
\(561\) −83.9675 48.4786i −3.54511 2.04677i
\(562\) 0 0
\(563\) −4.87578 8.44509i −0.205489 0.355918i 0.744799 0.667289i \(-0.232545\pi\)
−0.950289 + 0.311371i \(0.899212\pi\)
\(564\) 0 0
\(565\) −4.92888 + 2.84569i −0.207359 + 0.119719i
\(566\) 0 0
\(567\) 17.0079i 0.714266i
\(568\) 0 0
\(569\) −3.77537 + 6.53913i −0.158272 + 0.274134i −0.934245 0.356631i \(-0.883925\pi\)
0.775974 + 0.630765i \(0.217259\pi\)
\(570\) 0 0
\(571\) −18.0170 −0.753989 −0.376995 0.926215i \(-0.623042\pi\)
−0.376995 + 0.926215i \(0.623042\pi\)
\(572\) 0 0
\(573\) 74.3998 3.10810
\(574\) 0 0
\(575\) 0.202953 0.351524i 0.00846372 0.0146596i
\(576\) 0 0
\(577\) 31.8628i 1.32646i 0.748413 + 0.663232i \(0.230816\pi\)
−0.748413 + 0.663232i \(0.769184\pi\)
\(578\) 0 0
\(579\) 42.2126 24.3715i 1.75430 1.01284i
\(580\) 0 0
\(581\) 7.92996 + 13.7351i 0.328990 + 0.569828i
\(582\) 0 0
\(583\) 28.9929 + 16.7391i 1.20076 + 0.693261i
\(584\) 0 0
\(585\) 20.8024 52.0869i 0.860075 2.15353i
\(586\) 0 0
\(587\) −18.9279 10.9280i −0.781239 0.451048i 0.0556303 0.998451i \(-0.482283\pi\)
−0.836869 + 0.547403i \(0.815617\pi\)
\(588\) 0 0
\(589\) −1.69507 2.93594i −0.0698440 0.120973i
\(590\) 0 0
\(591\) −43.3925 + 25.0527i −1.78493 + 1.03053i
\(592\) 0 0
\(593\) 21.1110i 0.866924i 0.901172 + 0.433462i \(0.142708\pi\)
−0.901172 + 0.433462i \(0.857292\pi\)
\(594\) 0 0
\(595\) 6.39930 11.0839i 0.262346 0.454396i
\(596\) 0 0
\(597\) −30.8961 −1.26449
\(598\) 0 0
\(599\) −5.84631 −0.238874 −0.119437 0.992842i \(-0.538109\pi\)
−0.119437 + 0.992842i \(0.538109\pi\)
\(600\) 0 0
\(601\) 6.63755 11.4966i 0.270751 0.468955i −0.698303 0.715802i \(-0.746061\pi\)
0.969054 + 0.246847i \(0.0793946\pi\)
\(602\) 0 0
\(603\) 62.2460i 2.53485i
\(604\) 0 0
\(605\) 38.4536 22.2012i 1.56336 0.902608i
\(606\) 0 0
\(607\) 8.45702 + 14.6480i 0.343260 + 0.594544i 0.985036 0.172348i \(-0.0551355\pi\)
−0.641776 + 0.766892i \(0.721802\pi\)
\(608\) 0 0
\(609\) −10.2972 5.94508i −0.417263 0.240907i
\(610\) 0 0
\(611\) 12.3986 + 15.7393i 0.501593 + 0.636743i
\(612\) 0 0
\(613\) 16.8024 + 9.70084i 0.678641 + 0.391813i 0.799343 0.600875i \(-0.205181\pi\)
−0.120702 + 0.992689i \(0.538515\pi\)
\(614\) 0 0
\(615\) −14.9382 25.8737i −0.602365 1.04333i
\(616\) 0 0
\(617\) −13.4303 + 7.75400i −0.540685 + 0.312164i −0.745356 0.666666i \(-0.767721\pi\)
0.204672 + 0.978831i \(0.434387\pi\)
\(618\) 0 0
\(619\) 21.0676i 0.846779i −0.905948 0.423389i \(-0.860840\pi\)
0.905948 0.423389i \(-0.139160\pi\)
\(620\) 0 0
\(621\) −11.6120 + 20.1126i −0.465974 + 0.807091i
\(622\) 0 0
\(623\) −8.32853 −0.333676
\(624\) 0 0
\(625\) −26.0011 −1.04004
\(626\) 0 0
\(627\) 42.5241 73.6539i 1.69825 2.94145i
\(628\) 0 0
\(629\) 35.0190i 1.39630i
\(630\) 0 0
\(631\) 30.4409 17.5750i 1.21183 0.699651i 0.248674 0.968587i \(-0.420005\pi\)
0.963158 + 0.268936i \(0.0866720\pi\)
\(632\) 0 0
\(633\) 3.15647 + 5.46716i 0.125458 + 0.217300i
\(634\) 0 0
\(635\) 6.30319 + 3.63915i 0.250134 + 0.144415i
\(636\) 0 0
\(637\) 0.516077 + 3.56843i 0.0204477 + 0.141386i
\(638\) 0 0
\(639\) 73.4831 + 42.4255i 2.90695 + 1.67833i
\(640\) 0 0
\(641\) 8.16151 + 14.1362i 0.322360 + 0.558345i 0.980975 0.194136i \(-0.0621904\pi\)
−0.658614 + 0.752481i \(0.728857\pi\)
\(642\) 0 0
\(643\) 20.3656 11.7581i 0.803142 0.463694i −0.0414269 0.999142i \(-0.513190\pi\)
0.844569 + 0.535447i \(0.179857\pi\)
\(644\) 0 0
\(645\) 58.8605i 2.31763i
\(646\) 0 0
\(647\) 1.56502 2.71069i 0.0615271 0.106568i −0.833621 0.552337i \(-0.813736\pi\)
0.895148 + 0.445769i \(0.147070\pi\)
\(648\) 0 0
\(649\) −82.2724 −3.22948
\(650\) 0 0
\(651\) −2.15927 −0.0846286
\(652\) 0 0
\(653\) −9.95585 + 17.2440i −0.389603 + 0.674811i −0.992396 0.123086i \(-0.960721\pi\)
0.602794 + 0.797897i \(0.294054\pi\)
\(654\) 0 0
\(655\) 14.2752i 0.557779i
\(656\) 0 0
\(657\) 29.5176 17.0420i 1.15159 0.664871i
\(658\) 0 0
\(659\) −0.655393 1.13517i −0.0255305 0.0442201i 0.852978 0.521947i \(-0.174794\pi\)
−0.878508 + 0.477727i \(0.841461\pi\)
\(660\) 0 0
\(661\) 3.39402 + 1.95954i 0.132012 + 0.0762172i 0.564552 0.825398i \(-0.309049\pi\)
−0.432540 + 0.901615i \(0.642382\pi\)
\(662\) 0 0
\(663\) 49.7613 39.1994i 1.93257 1.52238i
\(664\) 0 0
\(665\) 9.72250 + 5.61329i 0.377022 + 0.217674i
\(666\) 0 0
\(667\) −3.68622 6.38472i −0.142731 0.247217i
\(668\) 0 0
\(669\) −0.276157 + 0.159439i −0.0106768 + 0.00616428i
\(670\) 0 0
\(671\) 40.9353i 1.58029i
\(672\) 0 0
\(673\) 1.68733 2.92254i 0.0650418 0.112656i −0.831671 0.555269i \(-0.812615\pi\)
0.896713 + 0.442613i \(0.145949\pi\)
\(674\) 0 0
\(675\) −2.49798 −0.0961474
\(676\) 0 0
\(677\) −22.9100 −0.880504 −0.440252 0.897874i \(-0.645111\pi\)
−0.440252 + 0.897874i \(0.645111\pi\)
\(678\) 0 0
\(679\) 2.06833 3.58245i 0.0793752 0.137482i
\(680\) 0 0
\(681\) 16.4337i 0.629741i
\(682\) 0 0
\(683\) −28.3581 + 16.3725i −1.08509 + 0.626478i −0.932266 0.361775i \(-0.882171\pi\)
−0.152827 + 0.988253i \(0.548838\pi\)
\(684\) 0 0
\(685\) 14.0159 + 24.2762i 0.535518 + 0.927545i
\(686\) 0 0
\(687\) 58.1954 + 33.5991i 2.22029 + 1.28189i
\(688\) 0 0
\(689\) −17.1819 + 13.5351i −0.654580 + 0.515645i
\(690\) 0 0
\(691\) −30.8378 17.8042i −1.17313 0.677305i −0.218712 0.975789i \(-0.570185\pi\)
−0.954414 + 0.298485i \(0.903519\pi\)
\(692\) 0 0
\(693\) −18.8069 32.5745i −0.714416 1.23740i
\(694\) 0 0
\(695\) 31.5750 18.2298i 1.19771 0.691497i
\(696\) 0 0
\(697\) 23.4302i 0.887484i
\(698\) 0 0
\(699\) −38.1161 + 66.0191i −1.44168 + 2.49707i
\(700\) 0 0
\(701\) 40.6474 1.53523 0.767616 0.640910i \(-0.221443\pi\)
0.767616 + 0.640910i \(0.221443\pi\)
\(702\) 0 0
\(703\) 30.7177 1.15854
\(704\) 0 0
\(705\) 19.8679 34.4122i 0.748269 1.29604i
\(706\) 0 0
\(707\) 3.57669i 0.134515i
\(708\) 0 0
\(709\) 31.4372 18.1503i 1.18065 0.681647i 0.224484 0.974478i \(-0.427931\pi\)
0.956164 + 0.292831i \(0.0945972\pi\)
\(710\) 0 0
\(711\) −23.5220 40.7414i −0.882146 1.52792i
\(712\) 0 0
\(713\) −1.15948 0.669424i −0.0434227 0.0250701i
\(714\) 0 0
\(715\) 6.50009 + 44.9450i 0.243090 + 1.68085i
\(716\) 0 0
\(717\) −29.2899 16.9105i −1.09385 0.631536i
\(718\) 0 0
\(719\) 4.81863 + 8.34611i 0.179705 + 0.311257i 0.941779 0.336232i \(-0.109152\pi\)
−0.762075 + 0.647489i \(0.775819\pi\)
\(720\) 0 0
\(721\) 12.4025 7.16058i 0.461893 0.266674i
\(722\) 0 0
\(723\) 44.5572i 1.65710i
\(724\) 0 0
\(725\) 0.396490 0.686741i 0.0147253 0.0255049i
\(726\) 0 0
\(727\) 44.8859 1.66473 0.832363 0.554231i \(-0.186988\pi\)
0.832363 + 0.554231i \(0.186988\pi\)
\(728\) 0 0
\(729\) 3.55684 0.131735
\(730\) 0 0
\(731\) −23.0804 + 39.9764i −0.853660 + 1.47858i
\(732\) 0 0
\(733\) 10.4486i 0.385928i −0.981206 0.192964i \(-0.938190\pi\)
0.981206 0.192964i \(-0.0618101\pi\)
\(734\) 0 0
\(735\) 6.19254 3.57527i 0.228415 0.131876i
\(736\) 0 0
\(737\) 25.1995 + 43.6469i 0.928237 + 1.60775i
\(738\) 0 0
\(739\) −25.7001 14.8379i −0.945393 0.545823i −0.0537459 0.998555i \(-0.517116\pi\)
−0.891647 + 0.452732i \(0.850449\pi\)
\(740\) 0 0
\(741\) 34.3846 + 43.6492i 1.26315 + 1.60349i
\(742\) 0 0
\(743\) 25.0641 + 14.4708i 0.919513 + 0.530881i 0.883480 0.468469i \(-0.155194\pi\)
0.0360335 + 0.999351i \(0.488528\pi\)
\(744\) 0 0
\(745\) −14.6902 25.4441i −0.538207 0.932201i
\(746\) 0 0
\(747\) 93.6159 54.0492i 3.42523 1.97756i
\(748\) 0 0
\(749\) 3.37821i 0.123437i
\(750\) 0 0
\(751\) −7.05213 + 12.2147i −0.257336 + 0.445719i −0.965527 0.260301i \(-0.916178\pi\)
0.708191 + 0.706021i \(0.249511\pi\)
\(752\) 0 0
\(753\) 85.8871 3.12990
\(754\) 0 0
\(755\) −47.5149 −1.72924
\(756\) 0 0
\(757\) 1.00814 1.74616i 0.0366416 0.0634652i −0.847123 0.531397i \(-0.821667\pi\)
0.883765 + 0.467932i \(0.155001\pi\)
\(758\) 0 0
\(759\) 33.5876i 1.21915i
\(760\) 0 0
\(761\) 0.0420235 0.0242623i 0.00152335 0.000879506i −0.499238 0.866465i \(-0.666387\pi\)
0.500761 + 0.865585i \(0.333053\pi\)
\(762\) 0 0
\(763\) −2.23979 3.87943i −0.0810858 0.140445i
\(764\) 0 0
\(765\) −75.5460 43.6165i −2.73137 1.57696i
\(766\) 0 0
\(767\) 19.9364 49.9184i 0.719861 1.80245i
\(768\) 0 0
\(769\) −19.3050 11.1458i −0.696156 0.401926i 0.109758 0.993958i \(-0.464992\pi\)
−0.805914 + 0.592032i \(0.798326\pi\)
\(770\) 0 0
\(771\) 35.5006 + 61.4889i 1.27852 + 2.21447i
\(772\) 0 0
\(773\) −15.9029 + 9.18155i −0.571988 + 0.330237i −0.757943 0.652321i \(-0.773795\pi\)
0.185955 + 0.982558i \(0.440462\pi\)
\(774\) 0 0
\(775\) 0.144007i 0.00517287i
\(776\) 0 0
\(777\) 9.78248 16.9438i 0.350945 0.607854i
\(778\) 0 0
\(779\) 20.5523 0.736364
\(780\) 0 0
\(781\) −68.7018 −2.45834
\(782\) 0 0
\(783\) −22.6854 + 39.2922i −0.810708 + 1.40419i
\(784\) 0 0
\(785\) 19.9188i 0.710932i
\(786\) 0 0
\(787\) 28.7354 16.5904i 1.02430 0.591383i 0.108957 0.994046i \(-0.465249\pi\)
0.915348 + 0.402664i \(0.131916\pi\)
\(788\) 0 0
\(789\) −35.8004 62.0080i −1.27453 2.20754i
\(790\) 0 0
\(791\) −2.15960 1.24684i −0.0767864 0.0443327i
\(792\) 0 0
\(793\) −24.8373 9.91950i −0.881998 0.352252i
\(794\) 0 0
\(795\) 37.5665 + 21.6890i 1.33235 + 0.769231i
\(796\) 0 0
\(797\) −14.5892 25.2693i −0.516777 0.895085i −0.999810 0.0194825i \(-0.993798\pi\)
0.483033 0.875602i \(-0.339535\pi\)
\(798\) 0 0
\(799\) 26.9875 15.5812i 0.954748 0.551224i
\(800\) 0 0
\(801\) 56.7658i 2.00572i
\(802\) 0 0
\(803\) −13.7985 + 23.8997i −0.486938 + 0.843401i
\(804\) 0 0
\(805\) 4.43365 0.156266
\(806\) 0 0
\(807\) −30.1665 −1.06191
\(808\) 0 0
\(809\) 8.08358 14.0012i 0.284204 0.492255i −0.688212 0.725509i \(-0.741604\pi\)
0.972416 + 0.233255i \(0.0749375\pi\)
\(810\) 0 0
\(811\) 3.45855i 0.121446i 0.998155 + 0.0607230i \(0.0193406\pi\)
−0.998155 + 0.0607230i \(0.980659\pi\)
\(812\) 0 0
\(813\) 42.4070 24.4837i 1.48728 0.858681i
\(814\) 0 0
\(815\) −11.3132 19.5950i −0.396283 0.686382i
\(816\) 0 0
\(817\) −35.0662 20.2455i −1.22681 0.708300i
\(818\) 0 0
\(819\) 24.3217 3.51749i 0.849871 0.122911i
\(820\) 0 0
\(821\) −5.78541 3.34021i −0.201912 0.116574i 0.395635 0.918408i \(-0.370525\pi\)
−0.597547 + 0.801834i \(0.703858\pi\)
\(822\) 0 0
\(823\) 5.43236 + 9.40912i 0.189360 + 0.327981i 0.945037 0.326963i \(-0.106025\pi\)
−0.755677 + 0.654945i \(0.772692\pi\)
\(824\) 0 0
\(825\) 3.12868 1.80635i 0.108927 0.0628889i
\(826\) 0 0
\(827\) 48.6460i 1.69159i −0.533512 0.845793i \(-0.679128\pi\)
0.533512 0.845793i \(-0.320872\pi\)
\(828\) 0 0
\(829\) 3.45723 5.98809i 0.120074 0.207975i −0.799722 0.600370i \(-0.795020\pi\)
0.919797 + 0.392395i \(0.128353\pi\)
\(830\) 0 0
\(831\) −13.1042 −0.454581
\(832\) 0 0
\(833\) 5.60774 0.194297
\(834\) 0 0
\(835\) 10.9743 19.0081i 0.379783 0.657803i
\(836\) 0 0
\(837\) 8.23940i 0.284795i
\(838\) 0 0
\(839\) 19.7284 11.3902i 0.681101 0.393234i −0.119169 0.992874i \(-0.538023\pi\)
0.800270 + 0.599640i \(0.204690\pi\)
\(840\) 0 0
\(841\) 7.29857 + 12.6415i 0.251675 + 0.435913i
\(842\) 0 0
\(843\) 13.9224 + 8.03812i 0.479514 + 0.276848i
\(844\) 0 0
\(845\) −28.8452 6.94724i −0.992307 0.238992i
\(846\) 0 0
\(847\) 16.8485 + 9.72751i 0.578923 + 0.334241i
\(848\) 0 0
\(849\) 9.76061 + 16.9059i 0.334983 + 0.580208i
\(850\) 0 0
\(851\) 10.5059 6.06558i 0.360138 0.207926i
\(852\) 0 0
\(853\) 11.9607i 0.409527i −0.978811 0.204764i \(-0.934357\pi\)
0.978811 0.204764i \(-0.0656426\pi\)
\(854\) 0 0
\(855\) 38.2592 66.2668i 1.30844 2.26628i
\(856\) 0 0
\(857\) 10.3815 0.354627 0.177313 0.984154i \(-0.443259\pi\)
0.177313 + 0.984154i \(0.443259\pi\)
\(858\) 0 0
\(859\) 10.0436 0.342683 0.171341 0.985212i \(-0.445190\pi\)
0.171341 + 0.985212i \(0.445190\pi\)
\(860\) 0 0
\(861\) 6.54519 11.3366i 0.223060 0.386351i
\(862\) 0 0
\(863\) 30.1151i 1.02513i 0.858648 + 0.512565i \(0.171305\pi\)
−0.858648 + 0.512565i \(0.828695\pi\)
\(864\) 0 0
\(865\) 6.37532 3.68079i 0.216767 0.125151i
\(866\) 0 0
\(867\) −22.6309 39.1979i −0.768587 1.33123i
\(868\) 0 0
\(869\) 32.9873 + 19.0452i 1.11902 + 0.646066i
\(870\) 0 0
\(871\) −32.5889 + 4.71311i −1.10423 + 0.159698i
\(872\) 0 0
\(873\) −24.4173 14.0974i −0.826402 0.477123i
\(874\) 0 0
\(875\) −5.46734 9.46971i −0.184830 0.320135i
\(876\) 0 0
\(877\) −41.0471 + 23.6986i −1.38606 + 0.800244i −0.992869 0.119212i \(-0.961963\pi\)
−0.393194 + 0.919456i \(0.628630\pi\)
\(878\) 0 0
\(879\) 22.0268i 0.742945i
\(880\) 0 0
\(881\) −14.0650 + 24.3614i −0.473863 + 0.820755i −0.999552 0.0299215i \(-0.990474\pi\)
0.525689 + 0.850677i \(0.323808\pi\)
\(882\) 0 0
\(883\) −9.73484 −0.327604 −0.163802 0.986493i \(-0.552376\pi\)
−0.163802 + 0.986493i \(0.552376\pi\)
\(884\) 0 0
\(885\) −106.601 −3.58337
\(886\) 0 0
\(887\) −8.88854 + 15.3954i −0.298448 + 0.516927i −0.975781 0.218749i \(-0.929802\pi\)
0.677333 + 0.735676i \(0.263136\pi\)
\(888\) 0 0
\(889\) 3.18900i 0.106956i
\(890\) 0 0
\(891\) −81.2853 + 46.9301i −2.72316 + 1.57222i
\(892\) 0 0
\(893\) 13.6674 + 23.6726i 0.457362 + 0.792175i
\(894\) 0 0
\(895\) −31.2551 18.0451i −1.04474 0.603182i
\(896\) 0 0
\(897\) 20.3791 + 8.13901i 0.680439 + 0.271754i
\(898\) 0 0
\(899\) −2.26516 1.30779i −0.0755474 0.0436173i
\(900\) 0 0
\(901\) 17.0094 + 29.4612i 0.566666 + 0.981494i
\(902\) 0 0
\(903\) −22.3347 + 12.8949i −0.743252 + 0.429116i
\(904\) 0 0
\(905\) 53.4618i 1.77713i
\(906\) 0 0
\(907\) −18.8071 + 32.5748i −0.624478 + 1.08163i 0.364163 + 0.931335i \(0.381355\pi\)
−0.988642 + 0.150293i \(0.951978\pi\)
\(908\) 0 0
\(909\) −24.3781 −0.808569
\(910\) 0 0
\(911\) 55.1136 1.82599 0.912997 0.407966i \(-0.133762\pi\)
0.912997 + 0.407966i \(0.133762\pi\)
\(912\) 0 0
\(913\) −43.7623 + 75.7986i −1.44832 + 2.50857i
\(914\) 0 0
\(915\) 53.0404i 1.75346i
\(916\) 0 0
\(917\) −5.41675 + 3.12736i −0.178877 + 0.103275i
\(918\) 0 0
\(919\) 10.3413 + 17.9117i 0.341129 + 0.590853i 0.984643 0.174582i \(-0.0558574\pi\)
−0.643514 + 0.765435i \(0.722524\pi\)
\(920\) 0 0
\(921\) −18.5555 10.7130i −0.611426 0.353007i
\(922\) 0 0
\(923\) 16.6479 41.6845i 0.547973 1.37206i
\(924\) 0 0
\(925\) 1.13002 + 0.652415i 0.0371547 + 0.0214513i
\(926\) 0 0
\(927\) −48.8052 84.5331i −1.60297 2.77643i
\(928\) 0 0
\(929\) 25.5240 14.7363i 0.837415 0.483482i −0.0189695 0.999820i \(-0.506039\pi\)
0.856385 + 0.516338i \(0.172705\pi\)
\(930\) 0 0
\(931\) 4.91895i 0.161212i
\(932\) 0 0
\(933\) −22.7425 + 39.3912i −0.744557 + 1.28961i
\(934\) 0 0
\(935\) 70.6305 2.30986
\(936\) 0 0
\(937\) 46.0479 1.50432 0.752160 0.658980i \(-0.229012\pi\)
0.752160 + 0.658980i \(0.229012\pi\)
\(938\) 0 0
\(939\) −48.2642 + 83.5960i −1.57504 + 2.72805i
\(940\) 0 0
\(941\) 11.1787i 0.364414i −0.983260 0.182207i \(-0.941676\pi\)
0.983260 0.182207i \(-0.0583241\pi\)
\(942\) 0 0
\(943\) 7.02921 4.05832i 0.228903 0.132157i
\(944\) 0 0
\(945\) −13.6426 23.6296i −0.443793 0.768672i
\(946\) 0 0
\(947\) 15.3118 + 8.84027i 0.497567 + 0.287270i 0.727708 0.685887i \(-0.240586\pi\)
−0.230142 + 0.973157i \(0.573919\pi\)
\(948\) 0 0
\(949\) −11.1573 14.1636i −0.362182 0.459769i
\(950\) 0 0
\(951\) −18.4023 10.6246i −0.596736 0.344525i
\(952\) 0 0
\(953\) 7.74718 + 13.4185i 0.250956 + 0.434668i 0.963789 0.266665i \(-0.0859218\pi\)
−0.712833 + 0.701333i \(0.752588\pi\)
\(954\) 0 0
\(955\) −46.9369 + 27.0990i −1.51884 + 0.876903i
\(956\) 0 0
\(957\) 65.6171i 2.12110i
\(958\) 0 0
\(959\) −6.14108 + 10.6367i −0.198306 + 0.343476i
\(960\) 0 0
\(961\) 30.5250 0.984678
\(962\) 0 0
\(963\) −23.0253 −0.741980
\(964\) 0 0
\(965\) −17.7539 + 30.7506i −0.571518 + 0.989898i
\(966\) 0 0
\(967\) 10.9723i 0.352847i −0.984314 0.176423i \(-0.943547\pi\)
0.984314 0.176423i \(-0.0564528\pi\)
\(968\) 0 0
\(969\) 74.8434 43.2109i 2.40432 1.38813i
\(970\) 0 0
\(971\) 26.9868 + 46.7425i 0.866048 + 1.50004i 0.866003 + 0.500038i \(0.166681\pi\)
4.43892e−5 1.00000i \(0.499986\pi\)
\(972\) 0 0
\(973\) 13.8347 + 7.98744i 0.443519 + 0.256066i
\(974\) 0 0
\(975\) 0.337844 + 2.33603i 0.0108197 + 0.0748128i
\(976\) 0 0
\(977\) 51.6726 + 29.8332i 1.65315 + 0.954448i 0.975765 + 0.218820i \(0.0702209\pi\)
0.677387 + 0.735627i \(0.263112\pi\)
\(978\) 0 0
\(979\) −22.9809 39.8042i −0.734474 1.27215i
\(980\) 0 0
\(981\) −26.4415 + 15.2660i −0.844212 + 0.487406i
\(982\) 0 0
\(983\) 21.2863i 0.678926i −0.940619 0.339463i \(-0.889755\pi\)
0.940619 0.339463i \(-0.110245\pi\)
\(984\) 0 0
\(985\) 18.2501 31.6101i 0.581497 1.00718i
\(986\) 0 0
\(987\) 17.4103 0.554177
\(988\) 0 0
\(989\) −15.9909 −0.508481
\(990\) 0 0
\(991\) 1.48951 2.57991i 0.0473160 0.0819537i −0.841397 0.540417i \(-0.818267\pi\)
0.888713 + 0.458463i \(0.151600\pi\)
\(992\) 0 0
\(993\) 12.7907i 0.405900i
\(994\) 0 0
\(995\) 19.4915 11.2534i 0.617923 0.356758i
\(996\) 0 0
\(997\) 1.10898 + 1.92081i 0.0351217 + 0.0608326i 0.883052 0.469275i \(-0.155485\pi\)
−0.847930 + 0.530108i \(0.822151\pi\)
\(998\) 0 0
\(999\) −64.6543 37.3282i −2.04557 1.18101i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.bm.c.225.1 24
4.3 odd 2 1456.2.cc.g.225.12 24
13.6 odd 12 9464.2.a.bl.1.12 12
13.7 odd 12 9464.2.a.bm.1.12 12
13.10 even 6 inner 728.2.bm.c.673.1 yes 24
52.23 odd 6 1456.2.cc.g.673.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.bm.c.225.1 24 1.1 even 1 trivial
728.2.bm.c.673.1 yes 24 13.10 even 6 inner
1456.2.cc.g.225.12 24 4.3 odd 2
1456.2.cc.g.673.12 24 52.23 odd 6
9464.2.a.bl.1.12 12 13.6 odd 12
9464.2.a.bm.1.12 12 13.7 odd 12