Properties

Label 1452.4.a.s.1.5
Level $1452$
Weight $4$
Character 1452.1
Self dual yes
Analytic conductor $85.671$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,4,Mod(1,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1452.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,18,0,-12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(85.6707733283\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 57x^{4} - 42x^{3} + 603x^{2} + 630x - 882 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.65070\) of defining polynomial
Character \(\chi\) \(=\) 1452.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +14.3567 q^{5} -3.76593 q^{7} +9.00000 q^{9} -34.4466 q^{13} +43.0702 q^{15} -45.4425 q^{17} +21.9272 q^{19} -11.2978 q^{21} -0.925093 q^{23} +81.1158 q^{25} +27.0000 q^{27} +34.8415 q^{29} +186.302 q^{31} -54.0665 q^{35} +295.783 q^{37} -103.340 q^{39} +341.613 q^{41} -6.89371 q^{43} +129.211 q^{45} +307.418 q^{47} -328.818 q^{49} -136.328 q^{51} +480.495 q^{53} +65.7816 q^{57} +444.925 q^{59} +530.344 q^{61} -33.8934 q^{63} -494.540 q^{65} -227.084 q^{67} -2.77528 q^{69} +464.058 q^{71} +421.231 q^{73} +243.347 q^{75} -893.034 q^{79} +81.0000 q^{81} +409.671 q^{83} -652.406 q^{85} +104.525 q^{87} +908.963 q^{89} +129.723 q^{91} +558.905 q^{93} +314.803 q^{95} -437.148 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 18 q^{3} - 12 q^{5} + 54 q^{9} - 36 q^{15} + 156 q^{23} + 150 q^{25} + 162 q^{27} + 150 q^{31} + 366 q^{37} - 108 q^{45} + 540 q^{47} + 1308 q^{49} + 360 q^{53} + 2508 q^{59} + 1014 q^{67} + 468 q^{69}+ \cdots + 5790 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 14.3567 1.28411 0.642053 0.766661i \(-0.278083\pi\)
0.642053 + 0.766661i \(0.278083\pi\)
\(6\) 0 0
\(7\) −3.76593 −0.203341 −0.101671 0.994818i \(-0.532419\pi\)
−0.101671 + 0.994818i \(0.532419\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −34.4466 −0.734904 −0.367452 0.930042i \(-0.619770\pi\)
−0.367452 + 0.930042i \(0.619770\pi\)
\(14\) 0 0
\(15\) 43.0702 0.741378
\(16\) 0 0
\(17\) −45.4425 −0.648319 −0.324160 0.946002i \(-0.605082\pi\)
−0.324160 + 0.946002i \(0.605082\pi\)
\(18\) 0 0
\(19\) 21.9272 0.264760 0.132380 0.991199i \(-0.457738\pi\)
0.132380 + 0.991199i \(0.457738\pi\)
\(20\) 0 0
\(21\) −11.2978 −0.117399
\(22\) 0 0
\(23\) −0.925093 −0.00838675 −0.00419338 0.999991i \(-0.501335\pi\)
−0.00419338 + 0.999991i \(0.501335\pi\)
\(24\) 0 0
\(25\) 81.1158 0.648926
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 34.8415 0.223100 0.111550 0.993759i \(-0.464418\pi\)
0.111550 + 0.993759i \(0.464418\pi\)
\(30\) 0 0
\(31\) 186.302 1.07938 0.539690 0.841864i \(-0.318541\pi\)
0.539690 + 0.841864i \(0.318541\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −54.0665 −0.261112
\(36\) 0 0
\(37\) 295.783 1.31423 0.657113 0.753792i \(-0.271777\pi\)
0.657113 + 0.753792i \(0.271777\pi\)
\(38\) 0 0
\(39\) −103.340 −0.424297
\(40\) 0 0
\(41\) 341.613 1.30124 0.650622 0.759401i \(-0.274508\pi\)
0.650622 + 0.759401i \(0.274508\pi\)
\(42\) 0 0
\(43\) −6.89371 −0.0244484 −0.0122242 0.999925i \(-0.503891\pi\)
−0.0122242 + 0.999925i \(0.503891\pi\)
\(44\) 0 0
\(45\) 129.211 0.428035
\(46\) 0 0
\(47\) 307.418 0.954073 0.477037 0.878883i \(-0.341711\pi\)
0.477037 + 0.878883i \(0.341711\pi\)
\(48\) 0 0
\(49\) −328.818 −0.958652
\(50\) 0 0
\(51\) −136.328 −0.374307
\(52\) 0 0
\(53\) 480.495 1.24530 0.622652 0.782499i \(-0.286055\pi\)
0.622652 + 0.782499i \(0.286055\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 65.7816 0.152860
\(58\) 0 0
\(59\) 444.925 0.981768 0.490884 0.871225i \(-0.336674\pi\)
0.490884 + 0.871225i \(0.336674\pi\)
\(60\) 0 0
\(61\) 530.344 1.11317 0.556587 0.830790i \(-0.312111\pi\)
0.556587 + 0.830790i \(0.312111\pi\)
\(62\) 0 0
\(63\) −33.8934 −0.0677804
\(64\) 0 0
\(65\) −494.540 −0.943694
\(66\) 0 0
\(67\) −227.084 −0.414071 −0.207036 0.978333i \(-0.566382\pi\)
−0.207036 + 0.978333i \(0.566382\pi\)
\(68\) 0 0
\(69\) −2.77528 −0.00484209
\(70\) 0 0
\(71\) 464.058 0.775683 0.387842 0.921726i \(-0.373221\pi\)
0.387842 + 0.921726i \(0.373221\pi\)
\(72\) 0 0
\(73\) 421.231 0.675361 0.337681 0.941261i \(-0.390358\pi\)
0.337681 + 0.941261i \(0.390358\pi\)
\(74\) 0 0
\(75\) 243.347 0.374658
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −893.034 −1.27182 −0.635912 0.771761i \(-0.719376\pi\)
−0.635912 + 0.771761i \(0.719376\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 409.671 0.541774 0.270887 0.962611i \(-0.412683\pi\)
0.270887 + 0.962611i \(0.412683\pi\)
\(84\) 0 0
\(85\) −652.406 −0.832510
\(86\) 0 0
\(87\) 104.525 0.128807
\(88\) 0 0
\(89\) 908.963 1.08258 0.541292 0.840835i \(-0.317935\pi\)
0.541292 + 0.840835i \(0.317935\pi\)
\(90\) 0 0
\(91\) 129.723 0.149436
\(92\) 0 0
\(93\) 558.905 0.623180
\(94\) 0 0
\(95\) 314.803 0.339980
\(96\) 0 0
\(97\) −437.148 −0.457584 −0.228792 0.973475i \(-0.573478\pi\)
−0.228792 + 0.973475i \(0.573478\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1839.31 1.81206 0.906032 0.423209i \(-0.139096\pi\)
0.906032 + 0.423209i \(0.139096\pi\)
\(102\) 0 0
\(103\) 758.747 0.725840 0.362920 0.931820i \(-0.381780\pi\)
0.362920 + 0.931820i \(0.381780\pi\)
\(104\) 0 0
\(105\) −162.199 −0.150753
\(106\) 0 0
\(107\) −1086.12 −0.981299 −0.490650 0.871357i \(-0.663241\pi\)
−0.490650 + 0.871357i \(0.663241\pi\)
\(108\) 0 0
\(109\) −2094.95 −1.84092 −0.920459 0.390840i \(-0.872184\pi\)
−0.920459 + 0.390840i \(0.872184\pi\)
\(110\) 0 0
\(111\) 887.348 0.758769
\(112\) 0 0
\(113\) −1066.72 −0.888042 −0.444021 0.896016i \(-0.646448\pi\)
−0.444021 + 0.896016i \(0.646448\pi\)
\(114\) 0 0
\(115\) −13.2813 −0.0107695
\(116\) 0 0
\(117\) −310.019 −0.244968
\(118\) 0 0
\(119\) 171.133 0.131830
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 1024.84 0.751274
\(124\) 0 0
\(125\) −630.034 −0.450816
\(126\) 0 0
\(127\) 2758.48 1.92737 0.963683 0.267049i \(-0.0860486\pi\)
0.963683 + 0.267049i \(0.0860486\pi\)
\(128\) 0 0
\(129\) −20.6811 −0.0141153
\(130\) 0 0
\(131\) −1342.82 −0.895592 −0.447796 0.894136i \(-0.647791\pi\)
−0.447796 + 0.894136i \(0.647791\pi\)
\(132\) 0 0
\(133\) −82.5764 −0.0538367
\(134\) 0 0
\(135\) 387.632 0.247126
\(136\) 0 0
\(137\) −845.784 −0.527447 −0.263723 0.964598i \(-0.584951\pi\)
−0.263723 + 0.964598i \(0.584951\pi\)
\(138\) 0 0
\(139\) 2955.44 1.80343 0.901715 0.432330i \(-0.142309\pi\)
0.901715 + 0.432330i \(0.142309\pi\)
\(140\) 0 0
\(141\) 922.253 0.550835
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 500.211 0.286484
\(146\) 0 0
\(147\) −986.453 −0.553478
\(148\) 0 0
\(149\) −911.559 −0.501193 −0.250597 0.968092i \(-0.580627\pi\)
−0.250597 + 0.968092i \(0.580627\pi\)
\(150\) 0 0
\(151\) −3476.33 −1.87351 −0.936755 0.349986i \(-0.886186\pi\)
−0.936755 + 0.349986i \(0.886186\pi\)
\(152\) 0 0
\(153\) −408.983 −0.216106
\(154\) 0 0
\(155\) 2674.68 1.38604
\(156\) 0 0
\(157\) −1954.12 −0.993349 −0.496675 0.867937i \(-0.665446\pi\)
−0.496675 + 0.867937i \(0.665446\pi\)
\(158\) 0 0
\(159\) 1441.49 0.718976
\(160\) 0 0
\(161\) 3.48384 0.00170537
\(162\) 0 0
\(163\) 1326.73 0.637532 0.318766 0.947833i \(-0.396732\pi\)
0.318766 + 0.947833i \(0.396732\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1493.67 0.692119 0.346060 0.938212i \(-0.387519\pi\)
0.346060 + 0.938212i \(0.387519\pi\)
\(168\) 0 0
\(169\) −1010.43 −0.459916
\(170\) 0 0
\(171\) 197.345 0.0882535
\(172\) 0 0
\(173\) −431.962 −0.189835 −0.0949175 0.995485i \(-0.530259\pi\)
−0.0949175 + 0.995485i \(0.530259\pi\)
\(174\) 0 0
\(175\) −305.477 −0.131953
\(176\) 0 0
\(177\) 1334.78 0.566824
\(178\) 0 0
\(179\) −1220.71 −0.509722 −0.254861 0.966978i \(-0.582030\pi\)
−0.254861 + 0.966978i \(0.582030\pi\)
\(180\) 0 0
\(181\) −1437.21 −0.590206 −0.295103 0.955465i \(-0.595354\pi\)
−0.295103 + 0.955465i \(0.595354\pi\)
\(182\) 0 0
\(183\) 1591.03 0.642691
\(184\) 0 0
\(185\) 4246.47 1.68760
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −101.680 −0.0391330
\(190\) 0 0
\(191\) 1993.91 0.755364 0.377682 0.925935i \(-0.376721\pi\)
0.377682 + 0.925935i \(0.376721\pi\)
\(192\) 0 0
\(193\) 77.7041 0.0289806 0.0144903 0.999895i \(-0.495387\pi\)
0.0144903 + 0.999895i \(0.495387\pi\)
\(194\) 0 0
\(195\) −1483.62 −0.544842
\(196\) 0 0
\(197\) −3276.96 −1.18515 −0.592574 0.805516i \(-0.701888\pi\)
−0.592574 + 0.805516i \(0.701888\pi\)
\(198\) 0 0
\(199\) 1832.21 0.652672 0.326336 0.945254i \(-0.394186\pi\)
0.326336 + 0.945254i \(0.394186\pi\)
\(200\) 0 0
\(201\) −681.253 −0.239064
\(202\) 0 0
\(203\) −131.211 −0.0453655
\(204\) 0 0
\(205\) 4904.45 1.67093
\(206\) 0 0
\(207\) −8.32584 −0.00279558
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −4348.66 −1.41883 −0.709417 0.704789i \(-0.751042\pi\)
−0.709417 + 0.704789i \(0.751042\pi\)
\(212\) 0 0
\(213\) 1392.17 0.447841
\(214\) 0 0
\(215\) −98.9711 −0.0313943
\(216\) 0 0
\(217\) −701.600 −0.219482
\(218\) 0 0
\(219\) 1263.69 0.389920
\(220\) 0 0
\(221\) 1565.34 0.476453
\(222\) 0 0
\(223\) 3044.23 0.914156 0.457078 0.889427i \(-0.348896\pi\)
0.457078 + 0.889427i \(0.348896\pi\)
\(224\) 0 0
\(225\) 730.042 0.216309
\(226\) 0 0
\(227\) 5139.88 1.50285 0.751423 0.659821i \(-0.229368\pi\)
0.751423 + 0.659821i \(0.229368\pi\)
\(228\) 0 0
\(229\) 3667.42 1.05830 0.529148 0.848529i \(-0.322512\pi\)
0.529148 + 0.848529i \(0.322512\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1182.61 −0.332512 −0.166256 0.986083i \(-0.553168\pi\)
−0.166256 + 0.986083i \(0.553168\pi\)
\(234\) 0 0
\(235\) 4413.51 1.22513
\(236\) 0 0
\(237\) −2679.10 −0.734288
\(238\) 0 0
\(239\) 204.573 0.0553670 0.0276835 0.999617i \(-0.491187\pi\)
0.0276835 + 0.999617i \(0.491187\pi\)
\(240\) 0 0
\(241\) −321.769 −0.0860040 −0.0430020 0.999075i \(-0.513692\pi\)
−0.0430020 + 0.999075i \(0.513692\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) −4720.75 −1.23101
\(246\) 0 0
\(247\) −755.317 −0.194574
\(248\) 0 0
\(249\) 1229.01 0.312794
\(250\) 0 0
\(251\) 2815.22 0.707949 0.353975 0.935255i \(-0.384830\pi\)
0.353975 + 0.935255i \(0.384830\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −1957.22 −0.480650
\(256\) 0 0
\(257\) 1397.55 0.339210 0.169605 0.985512i \(-0.445751\pi\)
0.169605 + 0.985512i \(0.445751\pi\)
\(258\) 0 0
\(259\) −1113.90 −0.267236
\(260\) 0 0
\(261\) 313.574 0.0743668
\(262\) 0 0
\(263\) −6659.39 −1.56135 −0.780676 0.624936i \(-0.785125\pi\)
−0.780676 + 0.624936i \(0.785125\pi\)
\(264\) 0 0
\(265\) 6898.34 1.59910
\(266\) 0 0
\(267\) 2726.89 0.625030
\(268\) 0 0
\(269\) −4643.24 −1.05243 −0.526215 0.850352i \(-0.676389\pi\)
−0.526215 + 0.850352i \(0.676389\pi\)
\(270\) 0 0
\(271\) 2266.26 0.507991 0.253996 0.967205i \(-0.418255\pi\)
0.253996 + 0.967205i \(0.418255\pi\)
\(272\) 0 0
\(273\) 389.170 0.0862771
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3318.90 0.719903 0.359952 0.932971i \(-0.382793\pi\)
0.359952 + 0.932971i \(0.382793\pi\)
\(278\) 0 0
\(279\) 1676.72 0.359793
\(280\) 0 0
\(281\) −2107.00 −0.447307 −0.223654 0.974669i \(-0.571798\pi\)
−0.223654 + 0.974669i \(0.571798\pi\)
\(282\) 0 0
\(283\) 860.604 0.180769 0.0903844 0.995907i \(-0.471190\pi\)
0.0903844 + 0.995907i \(0.471190\pi\)
\(284\) 0 0
\(285\) 944.409 0.196288
\(286\) 0 0
\(287\) −1286.49 −0.264597
\(288\) 0 0
\(289\) −2847.98 −0.579682
\(290\) 0 0
\(291\) −1311.44 −0.264186
\(292\) 0 0
\(293\) 4615.86 0.920346 0.460173 0.887829i \(-0.347787\pi\)
0.460173 + 0.887829i \(0.347787\pi\)
\(294\) 0 0
\(295\) 6387.67 1.26069
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 31.8663 0.00616346
\(300\) 0 0
\(301\) 25.9612 0.00497137
\(302\) 0 0
\(303\) 5517.94 1.04620
\(304\) 0 0
\(305\) 7614.01 1.42943
\(306\) 0 0
\(307\) 1376.56 0.255910 0.127955 0.991780i \(-0.459159\pi\)
0.127955 + 0.991780i \(0.459159\pi\)
\(308\) 0 0
\(309\) 2276.24 0.419064
\(310\) 0 0
\(311\) −4324.67 −0.788520 −0.394260 0.918999i \(-0.628999\pi\)
−0.394260 + 0.918999i \(0.628999\pi\)
\(312\) 0 0
\(313\) 7184.28 1.29738 0.648689 0.761054i \(-0.275318\pi\)
0.648689 + 0.761054i \(0.275318\pi\)
\(314\) 0 0
\(315\) −486.598 −0.0870372
\(316\) 0 0
\(317\) 8606.78 1.52494 0.762468 0.647026i \(-0.223987\pi\)
0.762468 + 0.647026i \(0.223987\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −3258.36 −0.566553
\(322\) 0 0
\(323\) −996.428 −0.171649
\(324\) 0 0
\(325\) −2794.16 −0.476899
\(326\) 0 0
\(327\) −6284.85 −1.06285
\(328\) 0 0
\(329\) −1157.71 −0.194002
\(330\) 0 0
\(331\) 3651.76 0.606402 0.303201 0.952927i \(-0.401945\pi\)
0.303201 + 0.952927i \(0.401945\pi\)
\(332\) 0 0
\(333\) 2662.04 0.438075
\(334\) 0 0
\(335\) −3260.19 −0.531711
\(336\) 0 0
\(337\) −2835.73 −0.458374 −0.229187 0.973382i \(-0.573607\pi\)
−0.229187 + 0.973382i \(0.573607\pi\)
\(338\) 0 0
\(339\) −3200.16 −0.512711
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 2530.02 0.398275
\(344\) 0 0
\(345\) −39.8440 −0.00621776
\(346\) 0 0
\(347\) 9539.30 1.47578 0.737891 0.674920i \(-0.235822\pi\)
0.737891 + 0.674920i \(0.235822\pi\)
\(348\) 0 0
\(349\) −9866.52 −1.51330 −0.756652 0.653818i \(-0.773166\pi\)
−0.756652 + 0.653818i \(0.773166\pi\)
\(350\) 0 0
\(351\) −930.057 −0.141432
\(352\) 0 0
\(353\) −2902.64 −0.437654 −0.218827 0.975764i \(-0.570223\pi\)
−0.218827 + 0.975764i \(0.570223\pi\)
\(354\) 0 0
\(355\) 6662.35 0.996059
\(356\) 0 0
\(357\) 513.400 0.0761121
\(358\) 0 0
\(359\) −7147.49 −1.05078 −0.525390 0.850861i \(-0.676081\pi\)
−0.525390 + 0.850861i \(0.676081\pi\)
\(360\) 0 0
\(361\) −6378.20 −0.929902
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6047.50 0.867235
\(366\) 0 0
\(367\) 2084.01 0.296415 0.148207 0.988956i \(-0.452650\pi\)
0.148207 + 0.988956i \(0.452650\pi\)
\(368\) 0 0
\(369\) 3074.52 0.433748
\(370\) 0 0
\(371\) −1809.51 −0.253222
\(372\) 0 0
\(373\) 371.957 0.0516332 0.0258166 0.999667i \(-0.491781\pi\)
0.0258166 + 0.999667i \(0.491781\pi\)
\(374\) 0 0
\(375\) −1890.10 −0.260279
\(376\) 0 0
\(377\) −1200.17 −0.163957
\(378\) 0 0
\(379\) 9829.64 1.33223 0.666114 0.745850i \(-0.267956\pi\)
0.666114 + 0.745850i \(0.267956\pi\)
\(380\) 0 0
\(381\) 8275.44 1.11277
\(382\) 0 0
\(383\) −6956.98 −0.928160 −0.464080 0.885793i \(-0.653615\pi\)
−0.464080 + 0.885793i \(0.653615\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −62.0434 −0.00814946
\(388\) 0 0
\(389\) 1105.26 0.144059 0.0720297 0.997402i \(-0.477052\pi\)
0.0720297 + 0.997402i \(0.477052\pi\)
\(390\) 0 0
\(391\) 42.0386 0.00543729
\(392\) 0 0
\(393\) −4028.45 −0.517070
\(394\) 0 0
\(395\) −12821.0 −1.63316
\(396\) 0 0
\(397\) 11085.8 1.40146 0.700730 0.713426i \(-0.252858\pi\)
0.700730 + 0.713426i \(0.252858\pi\)
\(398\) 0 0
\(399\) −247.729 −0.0310826
\(400\) 0 0
\(401\) −6798.34 −0.846616 −0.423308 0.905986i \(-0.639131\pi\)
−0.423308 + 0.905986i \(0.639131\pi\)
\(402\) 0 0
\(403\) −6417.45 −0.793241
\(404\) 0 0
\(405\) 1162.90 0.142678
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 8173.41 0.988140 0.494070 0.869422i \(-0.335509\pi\)
0.494070 + 0.869422i \(0.335509\pi\)
\(410\) 0 0
\(411\) −2537.35 −0.304522
\(412\) 0 0
\(413\) −1675.56 −0.199634
\(414\) 0 0
\(415\) 5881.54 0.695695
\(416\) 0 0
\(417\) 8866.31 1.04121
\(418\) 0 0
\(419\) −13224.0 −1.54185 −0.770927 0.636924i \(-0.780207\pi\)
−0.770927 + 0.636924i \(0.780207\pi\)
\(420\) 0 0
\(421\) 1729.58 0.200225 0.100113 0.994976i \(-0.468080\pi\)
0.100113 + 0.994976i \(0.468080\pi\)
\(422\) 0 0
\(423\) 2766.76 0.318024
\(424\) 0 0
\(425\) −3686.11 −0.420711
\(426\) 0 0
\(427\) −1997.24 −0.226354
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8946.40 0.999844 0.499922 0.866070i \(-0.333362\pi\)
0.499922 + 0.866070i \(0.333362\pi\)
\(432\) 0 0
\(433\) −14201.3 −1.57615 −0.788073 0.615581i \(-0.788921\pi\)
−0.788073 + 0.615581i \(0.788921\pi\)
\(434\) 0 0
\(435\) 1500.63 0.165402
\(436\) 0 0
\(437\) −20.2847 −0.00222048
\(438\) 0 0
\(439\) −3959.72 −0.430495 −0.215247 0.976560i \(-0.569056\pi\)
−0.215247 + 0.976560i \(0.569056\pi\)
\(440\) 0 0
\(441\) −2959.36 −0.319551
\(442\) 0 0
\(443\) −8521.51 −0.913926 −0.456963 0.889486i \(-0.651063\pi\)
−0.456963 + 0.889486i \(0.651063\pi\)
\(444\) 0 0
\(445\) 13049.7 1.39015
\(446\) 0 0
\(447\) −2734.68 −0.289364
\(448\) 0 0
\(449\) −14904.6 −1.56658 −0.783288 0.621658i \(-0.786459\pi\)
−0.783288 + 0.621658i \(0.786459\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −10429.0 −1.08167
\(454\) 0 0
\(455\) 1862.40 0.191892
\(456\) 0 0
\(457\) −2071.71 −0.212058 −0.106029 0.994363i \(-0.533814\pi\)
−0.106029 + 0.994363i \(0.533814\pi\)
\(458\) 0 0
\(459\) −1226.95 −0.124769
\(460\) 0 0
\(461\) −9335.44 −0.943156 −0.471578 0.881824i \(-0.656315\pi\)
−0.471578 + 0.881824i \(0.656315\pi\)
\(462\) 0 0
\(463\) −6087.54 −0.611041 −0.305521 0.952185i \(-0.598830\pi\)
−0.305521 + 0.952185i \(0.598830\pi\)
\(464\) 0 0
\(465\) 8024.05 0.800229
\(466\) 0 0
\(467\) −15648.2 −1.55056 −0.775282 0.631616i \(-0.782392\pi\)
−0.775282 + 0.631616i \(0.782392\pi\)
\(468\) 0 0
\(469\) 855.184 0.0841978
\(470\) 0 0
\(471\) −5862.36 −0.573510
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1778.64 0.171810
\(476\) 0 0
\(477\) 4324.46 0.415101
\(478\) 0 0
\(479\) 11423.8 1.08970 0.544851 0.838533i \(-0.316586\pi\)
0.544851 + 0.838533i \(0.316586\pi\)
\(480\) 0 0
\(481\) −10188.7 −0.965830
\(482\) 0 0
\(483\) 10.4515 0.000984597 0
\(484\) 0 0
\(485\) −6276.01 −0.587586
\(486\) 0 0
\(487\) 9042.53 0.841389 0.420694 0.907202i \(-0.361786\pi\)
0.420694 + 0.907202i \(0.361786\pi\)
\(488\) 0 0
\(489\) 3980.20 0.368079
\(490\) 0 0
\(491\) −14756.3 −1.35630 −0.678150 0.734923i \(-0.737218\pi\)
−0.678150 + 0.734923i \(0.737218\pi\)
\(492\) 0 0
\(493\) −1583.29 −0.144640
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1747.61 −0.157728
\(498\) 0 0
\(499\) 11208.9 1.00557 0.502787 0.864411i \(-0.332308\pi\)
0.502787 + 0.864411i \(0.332308\pi\)
\(500\) 0 0
\(501\) 4481.02 0.399595
\(502\) 0 0
\(503\) 16075.5 1.42499 0.712495 0.701677i \(-0.247565\pi\)
0.712495 + 0.701677i \(0.247565\pi\)
\(504\) 0 0
\(505\) 26406.5 2.32688
\(506\) 0 0
\(507\) −3031.30 −0.265532
\(508\) 0 0
\(509\) −8451.55 −0.735969 −0.367985 0.929832i \(-0.619952\pi\)
−0.367985 + 0.929832i \(0.619952\pi\)
\(510\) 0 0
\(511\) −1586.33 −0.137329
\(512\) 0 0
\(513\) 592.035 0.0509532
\(514\) 0 0
\(515\) 10893.1 0.932055
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −1295.89 −0.109601
\(520\) 0 0
\(521\) −8139.22 −0.684426 −0.342213 0.939622i \(-0.611176\pi\)
−0.342213 + 0.939622i \(0.611176\pi\)
\(522\) 0 0
\(523\) 1771.23 0.148089 0.0740444 0.997255i \(-0.476409\pi\)
0.0740444 + 0.997255i \(0.476409\pi\)
\(524\) 0 0
\(525\) −916.430 −0.0761834
\(526\) 0 0
\(527\) −8466.02 −0.699783
\(528\) 0 0
\(529\) −12166.1 −0.999930
\(530\) 0 0
\(531\) 4004.33 0.327256
\(532\) 0 0
\(533\) −11767.4 −0.956290
\(534\) 0 0
\(535\) −15593.1 −1.26009
\(536\) 0 0
\(537\) −3662.13 −0.294288
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −11268.6 −0.895520 −0.447760 0.894154i \(-0.647778\pi\)
−0.447760 + 0.894154i \(0.647778\pi\)
\(542\) 0 0
\(543\) −4311.64 −0.340756
\(544\) 0 0
\(545\) −30076.7 −2.36393
\(546\) 0 0
\(547\) 19112.2 1.49393 0.746963 0.664865i \(-0.231511\pi\)
0.746963 + 0.664865i \(0.231511\pi\)
\(548\) 0 0
\(549\) 4773.09 0.371058
\(550\) 0 0
\(551\) 763.978 0.0590682
\(552\) 0 0
\(553\) 3363.10 0.258614
\(554\) 0 0
\(555\) 12739.4 0.974339
\(556\) 0 0
\(557\) −4836.24 −0.367896 −0.183948 0.982936i \(-0.558888\pi\)
−0.183948 + 0.982936i \(0.558888\pi\)
\(558\) 0 0
\(559\) 237.465 0.0179672
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7374.72 0.552056 0.276028 0.961150i \(-0.410982\pi\)
0.276028 + 0.961150i \(0.410982\pi\)
\(564\) 0 0
\(565\) −15314.6 −1.14034
\(566\) 0 0
\(567\) −305.041 −0.0225935
\(568\) 0 0
\(569\) 19402.6 1.42952 0.714761 0.699369i \(-0.246535\pi\)
0.714761 + 0.699369i \(0.246535\pi\)
\(570\) 0 0
\(571\) 17441.4 1.27828 0.639141 0.769090i \(-0.279290\pi\)
0.639141 + 0.769090i \(0.279290\pi\)
\(572\) 0 0
\(573\) 5981.74 0.436110
\(574\) 0 0
\(575\) −75.0397 −0.00544238
\(576\) 0 0
\(577\) 4011.75 0.289447 0.144724 0.989472i \(-0.453771\pi\)
0.144724 + 0.989472i \(0.453771\pi\)
\(578\) 0 0
\(579\) 233.112 0.0167320
\(580\) 0 0
\(581\) −1542.79 −0.110165
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −4450.86 −0.314565
\(586\) 0 0
\(587\) 10874.4 0.764628 0.382314 0.924033i \(-0.375127\pi\)
0.382314 + 0.924033i \(0.375127\pi\)
\(588\) 0 0
\(589\) 4085.08 0.285777
\(590\) 0 0
\(591\) −9830.89 −0.684245
\(592\) 0 0
\(593\) 28041.7 1.94188 0.970938 0.239330i \(-0.0769278\pi\)
0.970938 + 0.239330i \(0.0769278\pi\)
\(594\) 0 0
\(595\) 2456.92 0.169284
\(596\) 0 0
\(597\) 5496.62 0.376820
\(598\) 0 0
\(599\) −11472.4 −0.782555 −0.391278 0.920273i \(-0.627967\pi\)
−0.391278 + 0.920273i \(0.627967\pi\)
\(600\) 0 0
\(601\) 2005.60 0.136124 0.0680618 0.997681i \(-0.478319\pi\)
0.0680618 + 0.997681i \(0.478319\pi\)
\(602\) 0 0
\(603\) −2043.76 −0.138024
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −18394.0 −1.22996 −0.614982 0.788541i \(-0.710837\pi\)
−0.614982 + 0.788541i \(0.710837\pi\)
\(608\) 0 0
\(609\) −393.633 −0.0261918
\(610\) 0 0
\(611\) −10589.5 −0.701153
\(612\) 0 0
\(613\) −8351.93 −0.550296 −0.275148 0.961402i \(-0.588727\pi\)
−0.275148 + 0.961402i \(0.588727\pi\)
\(614\) 0 0
\(615\) 14713.4 0.964715
\(616\) 0 0
\(617\) −18241.1 −1.19021 −0.595103 0.803649i \(-0.702889\pi\)
−0.595103 + 0.803649i \(0.702889\pi\)
\(618\) 0 0
\(619\) 20683.9 1.34307 0.671533 0.740975i \(-0.265636\pi\)
0.671533 + 0.740975i \(0.265636\pi\)
\(620\) 0 0
\(621\) −24.9775 −0.00161403
\(622\) 0 0
\(623\) −3423.09 −0.220134
\(624\) 0 0
\(625\) −19184.7 −1.22782
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13441.1 −0.852038
\(630\) 0 0
\(631\) 13889.5 0.876277 0.438138 0.898908i \(-0.355638\pi\)
0.438138 + 0.898908i \(0.355638\pi\)
\(632\) 0 0
\(633\) −13046.0 −0.819164
\(634\) 0 0
\(635\) 39602.8 2.47494
\(636\) 0 0
\(637\) 11326.6 0.704518
\(638\) 0 0
\(639\) 4176.52 0.258561
\(640\) 0 0
\(641\) −14975.3 −0.922759 −0.461379 0.887203i \(-0.652645\pi\)
−0.461379 + 0.887203i \(0.652645\pi\)
\(642\) 0 0
\(643\) −5037.90 −0.308982 −0.154491 0.987994i \(-0.549374\pi\)
−0.154491 + 0.987994i \(0.549374\pi\)
\(644\) 0 0
\(645\) −296.913 −0.0181255
\(646\) 0 0
\(647\) −11042.8 −0.670998 −0.335499 0.942040i \(-0.608905\pi\)
−0.335499 + 0.942040i \(0.608905\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −2104.80 −0.126718
\(652\) 0 0
\(653\) −10095.2 −0.604983 −0.302492 0.953152i \(-0.597818\pi\)
−0.302492 + 0.953152i \(0.597818\pi\)
\(654\) 0 0
\(655\) −19278.5 −1.15003
\(656\) 0 0
\(657\) 3791.08 0.225120
\(658\) 0 0
\(659\) −24381.0 −1.44120 −0.720599 0.693352i \(-0.756133\pi\)
−0.720599 + 0.693352i \(0.756133\pi\)
\(660\) 0 0
\(661\) −978.393 −0.0575720 −0.0287860 0.999586i \(-0.509164\pi\)
−0.0287860 + 0.999586i \(0.509164\pi\)
\(662\) 0 0
\(663\) 4696.01 0.275080
\(664\) 0 0
\(665\) −1185.53 −0.0691320
\(666\) 0 0
\(667\) −32.2317 −0.00187109
\(668\) 0 0
\(669\) 9132.70 0.527788
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −25311.2 −1.44974 −0.724871 0.688884i \(-0.758101\pi\)
−0.724871 + 0.688884i \(0.758101\pi\)
\(674\) 0 0
\(675\) 2190.13 0.124886
\(676\) 0 0
\(677\) −11922.3 −0.676827 −0.338413 0.940998i \(-0.609890\pi\)
−0.338413 + 0.940998i \(0.609890\pi\)
\(678\) 0 0
\(679\) 1646.27 0.0930457
\(680\) 0 0
\(681\) 15419.6 0.867669
\(682\) 0 0
\(683\) −33145.2 −1.85691 −0.928453 0.371451i \(-0.878860\pi\)
−0.928453 + 0.371451i \(0.878860\pi\)
\(684\) 0 0
\(685\) −12142.7 −0.677297
\(686\) 0 0
\(687\) 11002.3 0.611008
\(688\) 0 0
\(689\) −16551.4 −0.915179
\(690\) 0 0
\(691\) −9402.26 −0.517625 −0.258813 0.965928i \(-0.583331\pi\)
−0.258813 + 0.965928i \(0.583331\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 42430.4 2.31579
\(696\) 0 0
\(697\) −15523.8 −0.843622
\(698\) 0 0
\(699\) −3547.82 −0.191976
\(700\) 0 0
\(701\) 26254.9 1.41460 0.707299 0.706914i \(-0.249913\pi\)
0.707299 + 0.706914i \(0.249913\pi\)
\(702\) 0 0
\(703\) 6485.69 0.347955
\(704\) 0 0
\(705\) 13240.5 0.707330
\(706\) 0 0
\(707\) −6926.73 −0.368467
\(708\) 0 0
\(709\) −17533.8 −0.928766 −0.464383 0.885635i \(-0.653724\pi\)
−0.464383 + 0.885635i \(0.653724\pi\)
\(710\) 0 0
\(711\) −8037.30 −0.423941
\(712\) 0 0
\(713\) −172.346 −0.00905249
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 613.718 0.0319661
\(718\) 0 0
\(719\) −20952.5 −1.08678 −0.543392 0.839479i \(-0.682860\pi\)
−0.543392 + 0.839479i \(0.682860\pi\)
\(720\) 0 0
\(721\) −2857.39 −0.147593
\(722\) 0 0
\(723\) −965.307 −0.0496544
\(724\) 0 0
\(725\) 2826.20 0.144776
\(726\) 0 0
\(727\) −33896.1 −1.72921 −0.864606 0.502450i \(-0.832432\pi\)
−0.864606 + 0.502450i \(0.832432\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 313.268 0.0158504
\(732\) 0 0
\(733\) 24580.7 1.23862 0.619311 0.785146i \(-0.287412\pi\)
0.619311 + 0.785146i \(0.287412\pi\)
\(734\) 0 0
\(735\) −14162.2 −0.710724
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −19835.6 −0.987369 −0.493685 0.869641i \(-0.664350\pi\)
−0.493685 + 0.869641i \(0.664350\pi\)
\(740\) 0 0
\(741\) −2265.95 −0.112337
\(742\) 0 0
\(743\) 7477.99 0.369234 0.184617 0.982811i \(-0.440896\pi\)
0.184617 + 0.982811i \(0.440896\pi\)
\(744\) 0 0
\(745\) −13087.0 −0.643585
\(746\) 0 0
\(747\) 3687.04 0.180591
\(748\) 0 0
\(749\) 4090.25 0.199539
\(750\) 0 0
\(751\) 2407.76 0.116991 0.0584956 0.998288i \(-0.481370\pi\)
0.0584956 + 0.998288i \(0.481370\pi\)
\(752\) 0 0
\(753\) 8445.66 0.408735
\(754\) 0 0
\(755\) −49908.8 −2.40578
\(756\) 0 0
\(757\) −25107.8 −1.20549 −0.602747 0.797932i \(-0.705927\pi\)
−0.602747 + 0.797932i \(0.705927\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −578.905 −0.0275759 −0.0137880 0.999905i \(-0.504389\pi\)
−0.0137880 + 0.999905i \(0.504389\pi\)
\(762\) 0 0
\(763\) 7889.45 0.374334
\(764\) 0 0
\(765\) −5871.66 −0.277503
\(766\) 0 0
\(767\) −15326.1 −0.721505
\(768\) 0 0
\(769\) 14516.6 0.680731 0.340366 0.940293i \(-0.389449\pi\)
0.340366 + 0.940293i \(0.389449\pi\)
\(770\) 0 0
\(771\) 4192.66 0.195843
\(772\) 0 0
\(773\) −27386.0 −1.27426 −0.637132 0.770755i \(-0.719879\pi\)
−0.637132 + 0.770755i \(0.719879\pi\)
\(774\) 0 0
\(775\) 15112.0 0.700438
\(776\) 0 0
\(777\) −3341.69 −0.154289
\(778\) 0 0
\(779\) 7490.63 0.344518
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 940.722 0.0429357
\(784\) 0 0
\(785\) −28054.8 −1.27556
\(786\) 0 0
\(787\) 26195.6 1.18650 0.593248 0.805020i \(-0.297845\pi\)
0.593248 + 0.805020i \(0.297845\pi\)
\(788\) 0 0
\(789\) −19978.2 −0.901447
\(790\) 0 0
\(791\) 4017.20 0.180576
\(792\) 0 0
\(793\) −18268.5 −0.818076
\(794\) 0 0
\(795\) 20695.0 0.923241
\(796\) 0 0
\(797\) −27947.2 −1.24208 −0.621042 0.783777i \(-0.713291\pi\)
−0.621042 + 0.783777i \(0.713291\pi\)
\(798\) 0 0
\(799\) −13969.8 −0.618544
\(800\) 0 0
\(801\) 8180.67 0.360861
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 50.0165 0.00218988
\(806\) 0 0
\(807\) −13929.7 −0.607620
\(808\) 0 0
\(809\) −22600.6 −0.982195 −0.491097 0.871105i \(-0.663404\pi\)
−0.491097 + 0.871105i \(0.663404\pi\)
\(810\) 0 0
\(811\) −14249.2 −0.616964 −0.308482 0.951230i \(-0.599821\pi\)
−0.308482 + 0.951230i \(0.599821\pi\)
\(812\) 0 0
\(813\) 6798.79 0.293289
\(814\) 0 0
\(815\) 19047.5 0.818658
\(816\) 0 0
\(817\) −151.160 −0.00647297
\(818\) 0 0
\(819\) 1167.51 0.0498121
\(820\) 0 0
\(821\) 40191.2 1.70850 0.854252 0.519858i \(-0.174015\pi\)
0.854252 + 0.519858i \(0.174015\pi\)
\(822\) 0 0
\(823\) −32296.0 −1.36788 −0.683941 0.729537i \(-0.739736\pi\)
−0.683941 + 0.729537i \(0.739736\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19874.0 0.835655 0.417828 0.908526i \(-0.362792\pi\)
0.417828 + 0.908526i \(0.362792\pi\)
\(828\) 0 0
\(829\) −10614.5 −0.444700 −0.222350 0.974967i \(-0.571373\pi\)
−0.222350 + 0.974967i \(0.571373\pi\)
\(830\) 0 0
\(831\) 9956.69 0.415636
\(832\) 0 0
\(833\) 14942.3 0.621513
\(834\) 0 0
\(835\) 21444.3 0.888754
\(836\) 0 0
\(837\) 5030.15 0.207727
\(838\) 0 0
\(839\) −2032.06 −0.0836167 −0.0418084 0.999126i \(-0.513312\pi\)
−0.0418084 + 0.999126i \(0.513312\pi\)
\(840\) 0 0
\(841\) −23175.1 −0.950226
\(842\) 0 0
\(843\) −6321.01 −0.258253
\(844\) 0 0
\(845\) −14506.5 −0.590580
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 2581.81 0.104367
\(850\) 0 0
\(851\) −273.627 −0.0110221
\(852\) 0 0
\(853\) 23107.0 0.927511 0.463756 0.885963i \(-0.346502\pi\)
0.463756 + 0.885963i \(0.346502\pi\)
\(854\) 0 0
\(855\) 2833.23 0.113327
\(856\) 0 0
\(857\) −30614.3 −1.22026 −0.610132 0.792300i \(-0.708884\pi\)
−0.610132 + 0.792300i \(0.708884\pi\)
\(858\) 0 0
\(859\) −9473.55 −0.376290 −0.188145 0.982141i \(-0.560248\pi\)
−0.188145 + 0.982141i \(0.560248\pi\)
\(860\) 0 0
\(861\) −3859.48 −0.152765
\(862\) 0 0
\(863\) 12421.9 0.489974 0.244987 0.969526i \(-0.421216\pi\)
0.244987 + 0.969526i \(0.421216\pi\)
\(864\) 0 0
\(865\) −6201.56 −0.243768
\(866\) 0 0
\(867\) −8543.93 −0.334680
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 7822.27 0.304303
\(872\) 0 0
\(873\) −3934.33 −0.152528
\(874\) 0 0
\(875\) 2372.67 0.0916694
\(876\) 0 0
\(877\) −28407.3 −1.09378 −0.546892 0.837203i \(-0.684189\pi\)
−0.546892 + 0.837203i \(0.684189\pi\)
\(878\) 0 0
\(879\) 13847.6 0.531362
\(880\) 0 0
\(881\) −42248.3 −1.61564 −0.807822 0.589427i \(-0.799354\pi\)
−0.807822 + 0.589427i \(0.799354\pi\)
\(882\) 0 0
\(883\) 40931.6 1.55998 0.779988 0.625794i \(-0.215225\pi\)
0.779988 + 0.625794i \(0.215225\pi\)
\(884\) 0 0
\(885\) 19163.0 0.727862
\(886\) 0 0
\(887\) −13691.8 −0.518293 −0.259147 0.965838i \(-0.583441\pi\)
−0.259147 + 0.965838i \(0.583441\pi\)
\(888\) 0 0
\(889\) −10388.2 −0.391913
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6740.81 0.252601
\(894\) 0 0
\(895\) −17525.4 −0.654536
\(896\) 0 0
\(897\) 95.5988 0.00355847
\(898\) 0 0
\(899\) 6491.04 0.240810
\(900\) 0 0
\(901\) −21834.9 −0.807354
\(902\) 0 0
\(903\) 77.8837 0.00287022
\(904\) 0 0
\(905\) −20633.7 −0.757887
\(906\) 0 0
\(907\) 38992.3 1.42747 0.713736 0.700414i \(-0.247001\pi\)
0.713736 + 0.700414i \(0.247001\pi\)
\(908\) 0 0
\(909\) 16553.8 0.604021
\(910\) 0 0
\(911\) 19075.5 0.693743 0.346872 0.937913i \(-0.387244\pi\)
0.346872 + 0.937913i \(0.387244\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 22842.0 0.825283
\(916\) 0 0
\(917\) 5056.96 0.182111
\(918\) 0 0
\(919\) 31574.9 1.13336 0.566681 0.823937i \(-0.308227\pi\)
0.566681 + 0.823937i \(0.308227\pi\)
\(920\) 0 0
\(921\) 4129.67 0.147749
\(922\) 0 0
\(923\) −15985.2 −0.570053
\(924\) 0 0
\(925\) 23992.6 0.852836
\(926\) 0 0
\(927\) 6828.72 0.241947
\(928\) 0 0
\(929\) −30478.8 −1.07640 −0.538201 0.842817i \(-0.680896\pi\)
−0.538201 + 0.842817i \(0.680896\pi\)
\(930\) 0 0
\(931\) −7210.06 −0.253813
\(932\) 0 0
\(933\) −12974.0 −0.455252
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 12422.6 0.433115 0.216557 0.976270i \(-0.430517\pi\)
0.216557 + 0.976270i \(0.430517\pi\)
\(938\) 0 0
\(939\) 21552.8 0.749042
\(940\) 0 0
\(941\) 5844.18 0.202460 0.101230 0.994863i \(-0.467722\pi\)
0.101230 + 0.994863i \(0.467722\pi\)
\(942\) 0 0
\(943\) −316.024 −0.0109132
\(944\) 0 0
\(945\) −1459.80 −0.0502509
\(946\) 0 0
\(947\) 44610.3 1.53077 0.765385 0.643572i \(-0.222548\pi\)
0.765385 + 0.643572i \(0.222548\pi\)
\(948\) 0 0
\(949\) −14510.0 −0.496326
\(950\) 0 0
\(951\) 25820.3 0.880422
\(952\) 0 0
\(953\) −56139.2 −1.90821 −0.954107 0.299466i \(-0.903191\pi\)
−0.954107 + 0.299466i \(0.903191\pi\)
\(954\) 0 0
\(955\) 28626.1 0.969967
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3185.17 0.107252
\(960\) 0 0
\(961\) 4917.34 0.165061
\(962\) 0 0
\(963\) −9775.07 −0.327100
\(964\) 0 0
\(965\) 1115.58 0.0372142
\(966\) 0 0
\(967\) −17998.7 −0.598550 −0.299275 0.954167i \(-0.596745\pi\)
−0.299275 + 0.954167i \(0.596745\pi\)
\(968\) 0 0
\(969\) −2989.28 −0.0991018
\(970\) 0 0
\(971\) 4024.47 0.133009 0.0665043 0.997786i \(-0.478815\pi\)
0.0665043 + 0.997786i \(0.478815\pi\)
\(972\) 0 0
\(973\) −11130.0 −0.366712
\(974\) 0 0
\(975\) −8382.48 −0.275338
\(976\) 0 0
\(977\) −15981.6 −0.523333 −0.261666 0.965158i \(-0.584272\pi\)
−0.261666 + 0.965158i \(0.584272\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −18854.6 −0.613639
\(982\) 0 0
\(983\) 59406.7 1.92755 0.963775 0.266718i \(-0.0859393\pi\)
0.963775 + 0.266718i \(0.0859393\pi\)
\(984\) 0 0
\(985\) −47046.5 −1.52185
\(986\) 0 0
\(987\) −3473.14 −0.112007
\(988\) 0 0
\(989\) 6.37732 0.000205043 0
\(990\) 0 0
\(991\) 13485.5 0.432270 0.216135 0.976363i \(-0.430655\pi\)
0.216135 + 0.976363i \(0.430655\pi\)
\(992\) 0 0
\(993\) 10955.3 0.350106
\(994\) 0 0
\(995\) 26304.5 0.838100
\(996\) 0 0
\(997\) 57247.5 1.81850 0.909250 0.416250i \(-0.136656\pi\)
0.909250 + 0.416250i \(0.136656\pi\)
\(998\) 0 0
\(999\) 7986.13 0.252923
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.4.a.s.1.5 6
11.10 odd 2 inner 1452.4.a.s.1.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1452.4.a.s.1.5 6 1.1 even 1 trivial
1452.4.a.s.1.6 yes 6 11.10 odd 2 inner