Defining parameters
| Level: | \( N \) | \(=\) | \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1452.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 21 \) | ||
| Sturm bound: | \(1056\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1452))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 828 | 55 | 773 |
| Cusp forms | 756 | 55 | 701 |
| Eisenstein series | 72 | 0 | 72 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(108\) | \(0\) | \(108\) | \(96\) | \(0\) | \(96\) | \(12\) | \(0\) | \(12\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(102\) | \(0\) | \(102\) | \(90\) | \(0\) | \(90\) | \(12\) | \(0\) | \(12\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(102\) | \(0\) | \(102\) | \(90\) | \(0\) | \(90\) | \(12\) | \(0\) | \(12\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(108\) | \(0\) | \(108\) | \(96\) | \(0\) | \(96\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(102\) | \(14\) | \(88\) | \(96\) | \(14\) | \(82\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(102\) | \(13\) | \(89\) | \(96\) | \(13\) | \(83\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(102\) | \(16\) | \(86\) | \(96\) | \(16\) | \(80\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(102\) | \(12\) | \(90\) | \(96\) | \(12\) | \(84\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(420\) | \(29\) | \(391\) | \(384\) | \(29\) | \(355\) | \(36\) | \(0\) | \(36\) | |||||
| Minus space | \(-\) | \(408\) | \(26\) | \(382\) | \(372\) | \(26\) | \(346\) | \(36\) | \(0\) | \(36\) | |||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1452))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1452))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1452)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(363))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(484))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(726))\)\(^{\oplus 2}\)