Properties

Label 2-1452-1.1-c3-0-21
Degree $2$
Conductor $1452$
Sign $1$
Analytic cond. $85.6707$
Root an. cond. $9.25585$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 14.3·5-s − 3.76·7-s + 9·9-s − 34.4·13-s + 43.0·15-s − 45.4·17-s + 21.9·19-s − 11.2·21-s − 0.925·23-s + 81.1·25-s + 27·27-s + 34.8·29-s + 186.·31-s − 54.0·35-s + 295.·37-s − 103.·39-s + 341.·41-s − 6.89·43-s + 129.·45-s + 307.·47-s − 328.·49-s − 136.·51-s + 480.·53-s + 65.7·57-s + 444.·59-s + 530.·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.28·5-s − 0.203·7-s + 0.333·9-s − 0.734·13-s + 0.741·15-s − 0.648·17-s + 0.264·19-s − 0.117·21-s − 0.00838·23-s + 0.648·25-s + 0.192·27-s + 0.223·29-s + 1.07·31-s − 0.261·35-s + 1.31·37-s − 0.424·39-s + 1.30·41-s − 0.0244·43-s + 0.428·45-s + 0.954·47-s − 0.958·49-s − 0.374·51-s + 1.24·53-s + 0.152·57-s + 0.981·59-s + 1.11·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1452\)    =    \(2^{2} \cdot 3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(85.6707\)
Root analytic conductor: \(9.25585\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1452,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.479539865\)
\(L(\frac12)\) \(\approx\) \(3.479539865\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
11 \( 1 \)
good5 \( 1 - 14.3T + 125T^{2} \)
7 \( 1 + 3.76T + 343T^{2} \)
13 \( 1 + 34.4T + 2.19e3T^{2} \)
17 \( 1 + 45.4T + 4.91e3T^{2} \)
19 \( 1 - 21.9T + 6.85e3T^{2} \)
23 \( 1 + 0.925T + 1.21e4T^{2} \)
29 \( 1 - 34.8T + 2.43e4T^{2} \)
31 \( 1 - 186.T + 2.97e4T^{2} \)
37 \( 1 - 295.T + 5.06e4T^{2} \)
41 \( 1 - 341.T + 6.89e4T^{2} \)
43 \( 1 + 6.89T + 7.95e4T^{2} \)
47 \( 1 - 307.T + 1.03e5T^{2} \)
53 \( 1 - 480.T + 1.48e5T^{2} \)
59 \( 1 - 444.T + 2.05e5T^{2} \)
61 \( 1 - 530.T + 2.26e5T^{2} \)
67 \( 1 + 227.T + 3.00e5T^{2} \)
71 \( 1 - 464.T + 3.57e5T^{2} \)
73 \( 1 - 421.T + 3.89e5T^{2} \)
79 \( 1 + 893.T + 4.93e5T^{2} \)
83 \( 1 - 409.T + 5.71e5T^{2} \)
89 \( 1 - 908.T + 7.04e5T^{2} \)
97 \( 1 + 437.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.320382381421025862869987006457, −8.472495924794470392052621059607, −7.54833351138109380414270887771, −6.66601825286706087297255843867, −5.93017194697858350348087407599, −5.00400297251129831412999300244, −4.04733803716166598797532412680, −2.70088242064609160486526761069, −2.21036550700652578446556782613, −0.905188935480392563796496788606, 0.905188935480392563796496788606, 2.21036550700652578446556782613, 2.70088242064609160486526761069, 4.04733803716166598797532412680, 5.00400297251129831412999300244, 5.93017194697858350348087407599, 6.66601825286706087297255843867, 7.54833351138109380414270887771, 8.472495924794470392052621059607, 9.320382381421025862869987006457

Graph of the $Z$-function along the critical line