Properties

Label 1452.3.f.a.241.4
Level $1452$
Weight $3$
Character 1452.241
Analytic conductor $39.564$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,3,Mod(241,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.241"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5641343851\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.4
Root \(0.517638i\) of defining polynomial
Character \(\chi\) \(=\) 1452.241
Dual form 1452.3.f.a.241.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{3} +0.267949 q^{5} +2.44949i q^{7} +3.00000 q^{9} +7.48717i q^{13} +0.464102 q^{15} +18.4219i q^{17} +7.72741i q^{19} +4.24264i q^{21} -23.5167 q^{23} -24.9282 q^{25} +5.19615 q^{27} -8.52245i q^{29} -8.53590 q^{31} +0.656339i q^{35} -7.48334 q^{37} +12.9682i q^{39} +3.69780i q^{41} +4.24264i q^{43} +0.803848 q^{45} -24.5359 q^{47} +43.0000 q^{49} +31.9077i q^{51} -17.0000 q^{53} +13.3843i q^{57} -11.8038 q^{59} +101.038i q^{61} +7.34847i q^{63} +2.00618i q^{65} -65.0859 q^{67} -40.7321 q^{69} +79.2679 q^{71} +75.1763i q^{73} -43.1769 q^{75} -31.4644i q^{79} +9.00000 q^{81} +97.1275i q^{83} +4.93614i q^{85} -14.7613i q^{87} -112.124 q^{89} -18.3397 q^{91} -14.7846 q^{93} +2.07055i q^{95} -99.3397 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{5} + 12 q^{9} - 12 q^{15} - 4 q^{23} - 72 q^{25} - 48 q^{31} - 120 q^{37} + 24 q^{45} - 112 q^{47} + 172 q^{49} - 68 q^{53} - 68 q^{59} - 4 q^{67} - 156 q^{69} + 324 q^{71} - 48 q^{75} + 36 q^{81}+ \cdots - 432 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205 0.577350
\(4\) 0 0
\(5\) 0.267949 0.0535898 0.0267949 0.999641i \(-0.491470\pi\)
0.0267949 + 0.999641i \(0.491470\pi\)
\(6\) 0 0
\(7\) 2.44949i 0.349927i 0.984575 + 0.174964i \(0.0559808\pi\)
−0.984575 + 0.174964i \(0.944019\pi\)
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 7.48717i 0.575936i 0.957640 + 0.287968i \(0.0929797\pi\)
−0.957640 + 0.287968i \(0.907020\pi\)
\(14\) 0 0
\(15\) 0.464102 0.0309401
\(16\) 0 0
\(17\) 18.4219i 1.08364i 0.840493 + 0.541822i \(0.182265\pi\)
−0.840493 + 0.541822i \(0.817735\pi\)
\(18\) 0 0
\(19\) 7.72741i 0.406706i 0.979106 + 0.203353i \(0.0651838\pi\)
−0.979106 + 0.203353i \(0.934816\pi\)
\(20\) 0 0
\(21\) 4.24264i 0.202031i
\(22\) 0 0
\(23\) −23.5167 −1.02246 −0.511232 0.859443i \(-0.670811\pi\)
−0.511232 + 0.859443i \(0.670811\pi\)
\(24\) 0 0
\(25\) −24.9282 −0.997128
\(26\) 0 0
\(27\) 5.19615 0.192450
\(28\) 0 0
\(29\) − 8.52245i − 0.293877i −0.989146 0.146939i \(-0.953058\pi\)
0.989146 0.146939i \(-0.0469420\pi\)
\(30\) 0 0
\(31\) −8.53590 −0.275352 −0.137676 0.990477i \(-0.543963\pi\)
−0.137676 + 0.990477i \(0.543963\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.656339i 0.0187525i
\(36\) 0 0
\(37\) −7.48334 −0.202252 −0.101126 0.994874i \(-0.532245\pi\)
−0.101126 + 0.994874i \(0.532245\pi\)
\(38\) 0 0
\(39\) 12.9682i 0.332517i
\(40\) 0 0
\(41\) 3.69780i 0.0901901i 0.998983 + 0.0450951i \(0.0143591\pi\)
−0.998983 + 0.0450951i \(0.985641\pi\)
\(42\) 0 0
\(43\) 4.24264i 0.0986661i 0.998782 + 0.0493330i \(0.0157096\pi\)
−0.998782 + 0.0493330i \(0.984290\pi\)
\(44\) 0 0
\(45\) 0.803848 0.0178633
\(46\) 0 0
\(47\) −24.5359 −0.522040 −0.261020 0.965333i \(-0.584059\pi\)
−0.261020 + 0.965333i \(0.584059\pi\)
\(48\) 0 0
\(49\) 43.0000 0.877551
\(50\) 0 0
\(51\) 31.9077i 0.625642i
\(52\) 0 0
\(53\) −17.0000 −0.320755 −0.160377 0.987056i \(-0.551271\pi\)
−0.160377 + 0.987056i \(0.551271\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 13.3843i 0.234812i
\(58\) 0 0
\(59\) −11.8038 −0.200065 −0.100033 0.994984i \(-0.531895\pi\)
−0.100033 + 0.994984i \(0.531895\pi\)
\(60\) 0 0
\(61\) 101.038i 1.65637i 0.560458 + 0.828183i \(0.310625\pi\)
−0.560458 + 0.828183i \(0.689375\pi\)
\(62\) 0 0
\(63\) 7.34847i 0.116642i
\(64\) 0 0
\(65\) 2.00618i 0.0308643i
\(66\) 0 0
\(67\) −65.0859 −0.971431 −0.485716 0.874117i \(-0.661441\pi\)
−0.485716 + 0.874117i \(0.661441\pi\)
\(68\) 0 0
\(69\) −40.7321 −0.590320
\(70\) 0 0
\(71\) 79.2679 1.11645 0.558225 0.829690i \(-0.311483\pi\)
0.558225 + 0.829690i \(0.311483\pi\)
\(72\) 0 0
\(73\) 75.1763i 1.02981i 0.857247 + 0.514906i \(0.172173\pi\)
−0.857247 + 0.514906i \(0.827827\pi\)
\(74\) 0 0
\(75\) −43.1769 −0.575692
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 31.4644i − 0.398284i −0.979971 0.199142i \(-0.936185\pi\)
0.979971 0.199142i \(-0.0638155\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 97.1275i 1.17021i 0.810957 + 0.585105i \(0.198947\pi\)
−0.810957 + 0.585105i \(0.801053\pi\)
\(84\) 0 0
\(85\) 4.93614i 0.0580723i
\(86\) 0 0
\(87\) − 14.7613i − 0.169670i
\(88\) 0 0
\(89\) −112.124 −1.25982 −0.629912 0.776666i \(-0.716909\pi\)
−0.629912 + 0.776666i \(0.716909\pi\)
\(90\) 0 0
\(91\) −18.3397 −0.201536
\(92\) 0 0
\(93\) −14.7846 −0.158974
\(94\) 0 0
\(95\) 2.07055i 0.0217953i
\(96\) 0 0
\(97\) −99.3397 −1.02412 −0.512061 0.858949i \(-0.671118\pi\)
−0.512061 + 0.858949i \(0.671118\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 124.424i − 1.23192i −0.787779 0.615958i \(-0.788769\pi\)
0.787779 0.615958i \(-0.211231\pi\)
\(102\) 0 0
\(103\) 98.9038 0.960231 0.480116 0.877205i \(-0.340595\pi\)
0.480116 + 0.877205i \(0.340595\pi\)
\(104\) 0 0
\(105\) 1.13681i 0.0108268i
\(106\) 0 0
\(107\) 180.606i 1.68791i 0.536417 + 0.843953i \(0.319777\pi\)
−0.536417 + 0.843953i \(0.680223\pi\)
\(108\) 0 0
\(109\) 2.22917i 0.0204511i 0.999948 + 0.0102255i \(0.00325495\pi\)
−0.999948 + 0.0102255i \(0.996745\pi\)
\(110\) 0 0
\(111\) −12.9615 −0.116770
\(112\) 0 0
\(113\) −33.9282 −0.300250 −0.150125 0.988667i \(-0.547968\pi\)
−0.150125 + 0.988667i \(0.547968\pi\)
\(114\) 0 0
\(115\) −6.30127 −0.0547937
\(116\) 0 0
\(117\) 22.4615i 0.191979i
\(118\) 0 0
\(119\) −45.1244 −0.379196
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 6.40477i 0.0520713i
\(124\) 0 0
\(125\) −13.3782 −0.107026
\(126\) 0 0
\(127\) 65.1282i 0.512820i 0.966568 + 0.256410i \(0.0825397\pi\)
−0.966568 + 0.256410i \(0.917460\pi\)
\(128\) 0 0
\(129\) 7.34847i 0.0569649i
\(130\) 0 0
\(131\) − 178.089i − 1.35946i −0.733462 0.679730i \(-0.762097\pi\)
0.733462 0.679730i \(-0.237903\pi\)
\(132\) 0 0
\(133\) −18.9282 −0.142317
\(134\) 0 0
\(135\) 1.39230 0.0103134
\(136\) 0 0
\(137\) 215.205 1.57084 0.785420 0.618963i \(-0.212447\pi\)
0.785420 + 0.618963i \(0.212447\pi\)
\(138\) 0 0
\(139\) 168.108i 1.20941i 0.796449 + 0.604706i \(0.206709\pi\)
−0.796449 + 0.604706i \(0.793291\pi\)
\(140\) 0 0
\(141\) −42.4974 −0.301400
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 2.28358i − 0.0157488i
\(146\) 0 0
\(147\) 74.4782 0.506654
\(148\) 0 0
\(149\) 281.837i 1.89153i 0.324858 + 0.945763i \(0.394683\pi\)
−0.324858 + 0.945763i \(0.605317\pi\)
\(150\) 0 0
\(151\) 177.324i 1.17433i 0.809466 + 0.587166i \(0.199757\pi\)
−0.809466 + 0.587166i \(0.800243\pi\)
\(152\) 0 0
\(153\) 55.2658i 0.361215i
\(154\) 0 0
\(155\) −2.28719 −0.0147560
\(156\) 0 0
\(157\) −215.033 −1.36964 −0.684819 0.728713i \(-0.740119\pi\)
−0.684819 + 0.728713i \(0.740119\pi\)
\(158\) 0 0
\(159\) −29.4449 −0.185188
\(160\) 0 0
\(161\) − 57.6038i − 0.357788i
\(162\) 0 0
\(163\) −249.899 −1.53312 −0.766560 0.642172i \(-0.778033\pi\)
−0.766560 + 0.642172i \(0.778033\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 235.768i − 1.41178i −0.708321 0.705891i \(-0.750547\pi\)
0.708321 0.705891i \(-0.249453\pi\)
\(168\) 0 0
\(169\) 112.942 0.668298
\(170\) 0 0
\(171\) 23.1822i 0.135569i
\(172\) 0 0
\(173\) − 35.6128i − 0.205854i −0.994689 0.102927i \(-0.967179\pi\)
0.994689 0.102927i \(-0.0328209\pi\)
\(174\) 0 0
\(175\) − 61.0614i − 0.348922i
\(176\) 0 0
\(177\) −20.4449 −0.115508
\(178\) 0 0
\(179\) 267.310 1.49335 0.746677 0.665187i \(-0.231648\pi\)
0.746677 + 0.665187i \(0.231648\pi\)
\(180\) 0 0
\(181\) 53.9808 0.298236 0.149118 0.988819i \(-0.452357\pi\)
0.149118 + 0.988819i \(0.452357\pi\)
\(182\) 0 0
\(183\) 175.003i 0.956303i
\(184\) 0 0
\(185\) −2.00515 −0.0108387
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 12.7279i 0.0673435i
\(190\) 0 0
\(191\) −15.4256 −0.0807624 −0.0403812 0.999184i \(-0.512857\pi\)
−0.0403812 + 0.999184i \(0.512857\pi\)
\(192\) 0 0
\(193\) 23.7271i 0.122938i 0.998109 + 0.0614691i \(0.0195786\pi\)
−0.998109 + 0.0614691i \(0.980421\pi\)
\(194\) 0 0
\(195\) 3.47481i 0.0178195i
\(196\) 0 0
\(197\) − 56.8161i − 0.288406i −0.989548 0.144203i \(-0.953938\pi\)
0.989548 0.144203i \(-0.0460619\pi\)
\(198\) 0 0
\(199\) −64.0807 −0.322014 −0.161007 0.986953i \(-0.551474\pi\)
−0.161007 + 0.986953i \(0.551474\pi\)
\(200\) 0 0
\(201\) −112.732 −0.560856
\(202\) 0 0
\(203\) 20.8756 0.102836
\(204\) 0 0
\(205\) 0.990821i 0.00483328i
\(206\) 0 0
\(207\) −70.5500 −0.340821
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 192.454i − 0.912107i −0.889952 0.456053i \(-0.849263\pi\)
0.889952 0.456053i \(-0.150737\pi\)
\(212\) 0 0
\(213\) 137.296 0.644583
\(214\) 0 0
\(215\) 1.13681i 0.00528750i
\(216\) 0 0
\(217\) − 20.9086i − 0.0963530i
\(218\) 0 0
\(219\) 130.209i 0.594562i
\(220\) 0 0
\(221\) −137.928 −0.624110
\(222\) 0 0
\(223\) −15.0436 −0.0674602 −0.0337301 0.999431i \(-0.510739\pi\)
−0.0337301 + 0.999431i \(0.510739\pi\)
\(224\) 0 0
\(225\) −74.7846 −0.332376
\(226\) 0 0
\(227\) − 263.611i − 1.16128i −0.814159 0.580641i \(-0.802802\pi\)
0.814159 0.580641i \(-0.197198\pi\)
\(228\) 0 0
\(229\) 78.5936 0.343204 0.171602 0.985166i \(-0.445106\pi\)
0.171602 + 0.985166i \(0.445106\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 87.7854i 0.376762i 0.982096 + 0.188381i \(0.0603239\pi\)
−0.982096 + 0.188381i \(0.939676\pi\)
\(234\) 0 0
\(235\) −6.57437 −0.0279761
\(236\) 0 0
\(237\) − 54.4980i − 0.229949i
\(238\) 0 0
\(239\) 55.7762i 0.233373i 0.993169 + 0.116687i \(0.0372273\pi\)
−0.993169 + 0.116687i \(0.962773\pi\)
\(240\) 0 0
\(241\) 180.789i 0.750162i 0.926992 + 0.375081i \(0.122385\pi\)
−0.926992 + 0.375081i \(0.877615\pi\)
\(242\) 0 0
\(243\) 15.5885 0.0641500
\(244\) 0 0
\(245\) 11.5218 0.0470278
\(246\) 0 0
\(247\) −57.8564 −0.234236
\(248\) 0 0
\(249\) 168.230i 0.675621i
\(250\) 0 0
\(251\) 22.1474 0.0882365 0.0441183 0.999026i \(-0.485952\pi\)
0.0441183 + 0.999026i \(0.485952\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 8.54965i 0.0335280i
\(256\) 0 0
\(257\) −373.252 −1.45234 −0.726172 0.687513i \(-0.758702\pi\)
−0.726172 + 0.687513i \(0.758702\pi\)
\(258\) 0 0
\(259\) − 18.3304i − 0.0707736i
\(260\) 0 0
\(261\) − 25.5673i − 0.0979592i
\(262\) 0 0
\(263\) − 248.664i − 0.945491i −0.881199 0.472745i \(-0.843263\pi\)
0.881199 0.472745i \(-0.156737\pi\)
\(264\) 0 0
\(265\) −4.55514 −0.0171892
\(266\) 0 0
\(267\) −194.205 −0.727360
\(268\) 0 0
\(269\) 454.664 1.69020 0.845100 0.534608i \(-0.179541\pi\)
0.845100 + 0.534608i \(0.179541\pi\)
\(270\) 0 0
\(271\) 363.582i 1.34163i 0.741625 + 0.670815i \(0.234055\pi\)
−0.741625 + 0.670815i \(0.765945\pi\)
\(272\) 0 0
\(273\) −31.7654 −0.116357
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 397.486i 1.43497i 0.696576 + 0.717483i \(0.254706\pi\)
−0.696576 + 0.717483i \(0.745294\pi\)
\(278\) 0 0
\(279\) −25.6077 −0.0917839
\(280\) 0 0
\(281\) 227.193i 0.808517i 0.914645 + 0.404259i \(0.132470\pi\)
−0.914645 + 0.404259i \(0.867530\pi\)
\(282\) 0 0
\(283\) − 71.6643i − 0.253231i −0.991952 0.126615i \(-0.959589\pi\)
0.991952 0.126615i \(-0.0404114\pi\)
\(284\) 0 0
\(285\) 3.58630i 0.0125835i
\(286\) 0 0
\(287\) −9.05771 −0.0315600
\(288\) 0 0
\(289\) −50.3679 −0.174283
\(290\) 0 0
\(291\) −172.061 −0.591277
\(292\) 0 0
\(293\) − 400.401i − 1.36656i −0.730158 0.683278i \(-0.760554\pi\)
0.730158 0.683278i \(-0.239446\pi\)
\(294\) 0 0
\(295\) −3.16283 −0.0107215
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 176.073i − 0.588874i
\(300\) 0 0
\(301\) −10.3923 −0.0345259
\(302\) 0 0
\(303\) − 215.508i − 0.711247i
\(304\) 0 0
\(305\) 27.0731i 0.0887644i
\(306\) 0 0
\(307\) 80.5159i 0.262267i 0.991365 + 0.131133i \(0.0418616\pi\)
−0.991365 + 0.131133i \(0.958138\pi\)
\(308\) 0 0
\(309\) 171.306 0.554390
\(310\) 0 0
\(311\) 299.895 0.964292 0.482146 0.876091i \(-0.339857\pi\)
0.482146 + 0.876091i \(0.339857\pi\)
\(312\) 0 0
\(313\) −368.061 −1.17592 −0.587958 0.808892i \(-0.700068\pi\)
−0.587958 + 0.808892i \(0.700068\pi\)
\(314\) 0 0
\(315\) 1.96902i 0.00625085i
\(316\) 0 0
\(317\) 383.990 1.21132 0.605662 0.795722i \(-0.292908\pi\)
0.605662 + 0.795722i \(0.292908\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 312.819i 0.974513i
\(322\) 0 0
\(323\) −142.354 −0.440724
\(324\) 0 0
\(325\) − 186.642i − 0.574282i
\(326\) 0 0
\(327\) 3.86103i 0.0118074i
\(328\) 0 0
\(329\) − 60.1004i − 0.182676i
\(330\) 0 0
\(331\) 233.895 0.706631 0.353316 0.935504i \(-0.385054\pi\)
0.353316 + 0.935504i \(0.385054\pi\)
\(332\) 0 0
\(333\) −22.4500 −0.0674175
\(334\) 0 0
\(335\) −17.4397 −0.0520588
\(336\) 0 0
\(337\) 15.9452i 0.0473153i 0.999720 + 0.0236576i \(0.00753116\pi\)
−0.999720 + 0.0236576i \(0.992469\pi\)
\(338\) 0 0
\(339\) −58.7654 −0.173349
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 225.353i 0.657006i
\(344\) 0 0
\(345\) −10.9141 −0.0316351
\(346\) 0 0
\(347\) − 219.845i − 0.633559i −0.948499 0.316779i \(-0.897399\pi\)
0.948499 0.316779i \(-0.102601\pi\)
\(348\) 0 0
\(349\) − 444.992i − 1.27505i −0.770430 0.637525i \(-0.779958\pi\)
0.770430 0.637525i \(-0.220042\pi\)
\(350\) 0 0
\(351\) 38.9045i 0.110839i
\(352\) 0 0
\(353\) −156.068 −0.442119 −0.221060 0.975260i \(-0.570952\pi\)
−0.221060 + 0.975260i \(0.570952\pi\)
\(354\) 0 0
\(355\) 21.2398 0.0598304
\(356\) 0 0
\(357\) −78.1577 −0.218929
\(358\) 0 0
\(359\) − 661.999i − 1.84401i −0.387181 0.922004i \(-0.626551\pi\)
0.387181 0.922004i \(-0.373449\pi\)
\(360\) 0 0
\(361\) 301.287 0.834591
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 20.1434i 0.0551875i
\(366\) 0 0
\(367\) 384.627 1.04803 0.524015 0.851709i \(-0.324434\pi\)
0.524015 + 0.851709i \(0.324434\pi\)
\(368\) 0 0
\(369\) 11.0934i 0.0300634i
\(370\) 0 0
\(371\) − 41.6413i − 0.112241i
\(372\) 0 0
\(373\) 537.082i 1.43990i 0.694027 + 0.719949i \(0.255835\pi\)
−0.694027 + 0.719949i \(0.744165\pi\)
\(374\) 0 0
\(375\) −23.1718 −0.0617914
\(376\) 0 0
\(377\) 63.8090 0.169255
\(378\) 0 0
\(379\) −313.611 −0.827471 −0.413735 0.910397i \(-0.635776\pi\)
−0.413735 + 0.910397i \(0.635776\pi\)
\(380\) 0 0
\(381\) 112.805i 0.296077i
\(382\) 0 0
\(383\) 667.458 1.74271 0.871355 0.490654i \(-0.163242\pi\)
0.871355 + 0.490654i \(0.163242\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 12.7279i 0.0328887i
\(388\) 0 0
\(389\) −494.878 −1.27218 −0.636090 0.771615i \(-0.719449\pi\)
−0.636090 + 0.771615i \(0.719449\pi\)
\(390\) 0 0
\(391\) − 433.223i − 1.10799i
\(392\) 0 0
\(393\) − 308.460i − 0.784885i
\(394\) 0 0
\(395\) − 8.43087i − 0.0213440i
\(396\) 0 0
\(397\) −12.1384 −0.0305754 −0.0152877 0.999883i \(-0.504866\pi\)
−0.0152877 + 0.999883i \(0.504866\pi\)
\(398\) 0 0
\(399\) −32.7846 −0.0821669
\(400\) 0 0
\(401\) 98.1281 0.244709 0.122354 0.992486i \(-0.460956\pi\)
0.122354 + 0.992486i \(0.460956\pi\)
\(402\) 0 0
\(403\) − 63.9097i − 0.158585i
\(404\) 0 0
\(405\) 2.41154 0.00595443
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 467.939i 1.14410i 0.820217 + 0.572052i \(0.193853\pi\)
−0.820217 + 0.572052i \(0.806147\pi\)
\(410\) 0 0
\(411\) 372.746 0.906925
\(412\) 0 0
\(413\) − 28.9134i − 0.0700082i
\(414\) 0 0
\(415\) 26.0252i 0.0627114i
\(416\) 0 0
\(417\) 291.172i 0.698254i
\(418\) 0 0
\(419\) 428.922 1.02368 0.511840 0.859081i \(-0.328964\pi\)
0.511840 + 0.859081i \(0.328964\pi\)
\(420\) 0 0
\(421\) −252.818 −0.600518 −0.300259 0.953858i \(-0.597073\pi\)
−0.300259 + 0.953858i \(0.597073\pi\)
\(422\) 0 0
\(423\) −73.6077 −0.174013
\(424\) 0 0
\(425\) − 459.226i − 1.08053i
\(426\) 0 0
\(427\) −247.492 −0.579607
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 430.300i − 0.998376i −0.866494 0.499188i \(-0.833632\pi\)
0.866494 0.499188i \(-0.166368\pi\)
\(432\) 0 0
\(433\) −440.142 −1.01649 −0.508247 0.861211i \(-0.669706\pi\)
−0.508247 + 0.861211i \(0.669706\pi\)
\(434\) 0 0
\(435\) − 3.95528i − 0.00909260i
\(436\) 0 0
\(437\) − 181.723i − 0.415842i
\(438\) 0 0
\(439\) − 478.678i − 1.09038i −0.838311 0.545192i \(-0.816457\pi\)
0.838311 0.545192i \(-0.183543\pi\)
\(440\) 0 0
\(441\) 129.000 0.292517
\(442\) 0 0
\(443\) 779.229 1.75898 0.879492 0.475915i \(-0.157883\pi\)
0.879492 + 0.475915i \(0.157883\pi\)
\(444\) 0 0
\(445\) −30.0436 −0.0675138
\(446\) 0 0
\(447\) 488.157i 1.09207i
\(448\) 0 0
\(449\) 542.976 1.20930 0.604650 0.796491i \(-0.293313\pi\)
0.604650 + 0.796491i \(0.293313\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 307.135i 0.678001i
\(454\) 0 0
\(455\) −4.91412 −0.0108003
\(456\) 0 0
\(457\) − 342.737i − 0.749972i −0.927030 0.374986i \(-0.877647\pi\)
0.927030 0.374986i \(-0.122353\pi\)
\(458\) 0 0
\(459\) 95.7232i 0.208547i
\(460\) 0 0
\(461\) − 30.1544i − 0.0654109i −0.999465 0.0327054i \(-0.989588\pi\)
0.999465 0.0327054i \(-0.0104123\pi\)
\(462\) 0 0
\(463\) 844.424 1.82381 0.911905 0.410401i \(-0.134611\pi\)
0.911905 + 0.410401i \(0.134611\pi\)
\(464\) 0 0
\(465\) −3.96152 −0.00851941
\(466\) 0 0
\(467\) −236.799 −0.507064 −0.253532 0.967327i \(-0.581592\pi\)
−0.253532 + 0.967327i \(0.581592\pi\)
\(468\) 0 0
\(469\) − 159.427i − 0.339930i
\(470\) 0 0
\(471\) −372.449 −0.790761
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 192.630i − 0.405538i
\(476\) 0 0
\(477\) −51.0000 −0.106918
\(478\) 0 0
\(479\) − 706.877i − 1.47573i −0.674946 0.737867i \(-0.735833\pi\)
0.674946 0.737867i \(-0.264167\pi\)
\(480\) 0 0
\(481\) − 56.0290i − 0.116484i
\(482\) 0 0
\(483\) − 99.7727i − 0.206569i
\(484\) 0 0
\(485\) −26.6180 −0.0548825
\(486\) 0 0
\(487\) 326.760 0.670966 0.335483 0.942046i \(-0.391101\pi\)
0.335483 + 0.942046i \(0.391101\pi\)
\(488\) 0 0
\(489\) −432.837 −0.885148
\(490\) 0 0
\(491\) − 505.630i − 1.02980i −0.857251 0.514898i \(-0.827830\pi\)
0.857251 0.514898i \(-0.172170\pi\)
\(492\) 0 0
\(493\) 157.000 0.318458
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 194.166i 0.390676i
\(498\) 0 0
\(499\) 56.6551 0.113537 0.0567686 0.998387i \(-0.481920\pi\)
0.0567686 + 0.998387i \(0.481920\pi\)
\(500\) 0 0
\(501\) − 408.361i − 0.815092i
\(502\) 0 0
\(503\) − 458.118i − 0.910772i −0.890294 0.455386i \(-0.849501\pi\)
0.890294 0.455386i \(-0.150499\pi\)
\(504\) 0 0
\(505\) − 33.3392i − 0.0660182i
\(506\) 0 0
\(507\) 195.622 0.385842
\(508\) 0 0
\(509\) 203.167 0.399149 0.199574 0.979883i \(-0.436044\pi\)
0.199574 + 0.979883i \(0.436044\pi\)
\(510\) 0 0
\(511\) −184.144 −0.360359
\(512\) 0 0
\(513\) 40.1528i 0.0782705i
\(514\) 0 0
\(515\) 26.5012 0.0514586
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) − 61.6832i − 0.118850i
\(520\) 0 0
\(521\) −349.395 −0.670623 −0.335312 0.942107i \(-0.608842\pi\)
−0.335312 + 0.942107i \(0.608842\pi\)
\(522\) 0 0
\(523\) − 792.351i − 1.51501i −0.652828 0.757506i \(-0.726418\pi\)
0.652828 0.757506i \(-0.273582\pi\)
\(524\) 0 0
\(525\) − 105.761i − 0.201450i
\(526\) 0 0
\(527\) − 157.248i − 0.298383i
\(528\) 0 0
\(529\) 24.0333 0.0454316
\(530\) 0 0
\(531\) −35.4115 −0.0666884
\(532\) 0 0
\(533\) −27.6860 −0.0519438
\(534\) 0 0
\(535\) 48.3932i 0.0904546i
\(536\) 0 0
\(537\) 462.995 0.862188
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 349.588i 0.646189i 0.946367 + 0.323094i \(0.104723\pi\)
−0.946367 + 0.323094i \(0.895277\pi\)
\(542\) 0 0
\(543\) 93.4974 0.172187
\(544\) 0 0
\(545\) 0.597304i 0.00109597i
\(546\) 0 0
\(547\) − 228.296i − 0.417359i −0.977984 0.208680i \(-0.933083\pi\)
0.977984 0.208680i \(-0.0669166\pi\)
\(548\) 0 0
\(549\) 303.115i 0.552122i
\(550\) 0 0
\(551\) 65.8564 0.119522
\(552\) 0 0
\(553\) 77.0718 0.139370
\(554\) 0 0
\(555\) −3.47303 −0.00625771
\(556\) 0 0
\(557\) − 441.044i − 0.791821i −0.918289 0.395910i \(-0.870429\pi\)
0.918289 0.395910i \(-0.129571\pi\)
\(558\) 0 0
\(559\) −31.7654 −0.0568254
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 373.880i − 0.664085i −0.943264 0.332043i \(-0.892262\pi\)
0.943264 0.332043i \(-0.107738\pi\)
\(564\) 0 0
\(565\) −9.09103 −0.0160903
\(566\) 0 0
\(567\) 22.0454i 0.0388808i
\(568\) 0 0
\(569\) 624.738i 1.09796i 0.835836 + 0.548979i \(0.184983\pi\)
−0.835836 + 0.548979i \(0.815017\pi\)
\(570\) 0 0
\(571\) 504.909i 0.884253i 0.896953 + 0.442127i \(0.145776\pi\)
−0.896953 + 0.442127i \(0.854224\pi\)
\(572\) 0 0
\(573\) −26.7180 −0.0466282
\(574\) 0 0
\(575\) 586.228 1.01953
\(576\) 0 0
\(577\) −783.942 −1.35865 −0.679326 0.733837i \(-0.737728\pi\)
−0.679326 + 0.733837i \(0.737728\pi\)
\(578\) 0 0
\(579\) 41.0965i 0.0709784i
\(580\) 0 0
\(581\) −237.913 −0.409488
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 6.01854i 0.0102881i
\(586\) 0 0
\(587\) −65.8743 −0.112222 −0.0561110 0.998425i \(-0.517870\pi\)
−0.0561110 + 0.998425i \(0.517870\pi\)
\(588\) 0 0
\(589\) − 65.9604i − 0.111987i
\(590\) 0 0
\(591\) − 98.4083i − 0.166512i
\(592\) 0 0
\(593\) − 441.252i − 0.744101i −0.928212 0.372050i \(-0.878655\pi\)
0.928212 0.372050i \(-0.121345\pi\)
\(594\) 0 0
\(595\) −12.0910 −0.0203211
\(596\) 0 0
\(597\) −110.991 −0.185915
\(598\) 0 0
\(599\) 444.497 0.742066 0.371033 0.928620i \(-0.379004\pi\)
0.371033 + 0.928620i \(0.379004\pi\)
\(600\) 0 0
\(601\) 465.995i 0.775366i 0.921793 + 0.387683i \(0.126724\pi\)
−0.921793 + 0.387683i \(0.873276\pi\)
\(602\) 0 0
\(603\) −195.258 −0.323810
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 729.957i − 1.20257i −0.799036 0.601283i \(-0.794657\pi\)
0.799036 0.601283i \(-0.205343\pi\)
\(608\) 0 0
\(609\) 36.1577 0.0593722
\(610\) 0 0
\(611\) − 183.704i − 0.300662i
\(612\) 0 0
\(613\) − 145.134i − 0.236760i −0.992968 0.118380i \(-0.962230\pi\)
0.992968 0.118380i \(-0.0377701\pi\)
\(614\) 0 0
\(615\) 1.71615i 0.00279049i
\(616\) 0 0
\(617\) −484.751 −0.785658 −0.392829 0.919611i \(-0.628504\pi\)
−0.392829 + 0.919611i \(0.628504\pi\)
\(618\) 0 0
\(619\) 221.709 0.358173 0.179086 0.983833i \(-0.442686\pi\)
0.179086 + 0.983833i \(0.442686\pi\)
\(620\) 0 0
\(621\) −122.196 −0.196773
\(622\) 0 0
\(623\) − 274.647i − 0.440847i
\(624\) 0 0
\(625\) 619.620 0.991393
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 137.858i − 0.219170i
\(630\) 0 0
\(631\) 840.894 1.33264 0.666318 0.745668i \(-0.267869\pi\)
0.666318 + 0.745668i \(0.267869\pi\)
\(632\) 0 0
\(633\) − 333.341i − 0.526605i
\(634\) 0 0
\(635\) 17.4510i 0.0274819i
\(636\) 0 0
\(637\) 321.948i 0.505413i
\(638\) 0 0
\(639\) 237.804 0.372150
\(640\) 0 0
\(641\) 124.212 0.193778 0.0968889 0.995295i \(-0.469111\pi\)
0.0968889 + 0.995295i \(0.469111\pi\)
\(642\) 0 0
\(643\) −110.908 −0.172485 −0.0862423 0.996274i \(-0.527486\pi\)
−0.0862423 + 0.996274i \(0.527486\pi\)
\(644\) 0 0
\(645\) 1.96902i 0.00305274i
\(646\) 0 0
\(647\) 38.8897 0.0601078 0.0300539 0.999548i \(-0.490432\pi\)
0.0300539 + 0.999548i \(0.490432\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) − 36.2147i − 0.0556294i
\(652\) 0 0
\(653\) 50.4514 0.0772609 0.0386305 0.999254i \(-0.487700\pi\)
0.0386305 + 0.999254i \(0.487700\pi\)
\(654\) 0 0
\(655\) − 47.7189i − 0.0728533i
\(656\) 0 0
\(657\) 225.529i 0.343271i
\(658\) 0 0
\(659\) − 406.684i − 0.617123i −0.951204 0.308562i \(-0.900152\pi\)
0.951204 0.308562i \(-0.0998476\pi\)
\(660\) 0 0
\(661\) 540.682 0.817976 0.408988 0.912540i \(-0.365882\pi\)
0.408988 + 0.912540i \(0.365882\pi\)
\(662\) 0 0
\(663\) −238.899 −0.360330
\(664\) 0 0
\(665\) −5.07180 −0.00762676
\(666\) 0 0
\(667\) 200.419i 0.300479i
\(668\) 0 0
\(669\) −26.0563 −0.0389482
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 680.797i 1.01159i 0.862655 + 0.505793i \(0.168800\pi\)
−0.862655 + 0.505793i \(0.831200\pi\)
\(674\) 0 0
\(675\) −129.531 −0.191897
\(676\) 0 0
\(677\) 828.271i 1.22344i 0.791073 + 0.611722i \(0.209523\pi\)
−0.791073 + 0.611722i \(0.790477\pi\)
\(678\) 0 0
\(679\) − 243.332i − 0.358368i
\(680\) 0 0
\(681\) − 456.588i − 0.670467i
\(682\) 0 0
\(683\) 1174.40 1.71947 0.859734 0.510743i \(-0.170630\pi\)
0.859734 + 0.510743i \(0.170630\pi\)
\(684\) 0 0
\(685\) 57.6640 0.0841811
\(686\) 0 0
\(687\) 136.128 0.198149
\(688\) 0 0
\(689\) − 127.282i − 0.184734i
\(690\) 0 0
\(691\) −586.540 −0.848827 −0.424414 0.905468i \(-0.639520\pi\)
−0.424414 + 0.905468i \(0.639520\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 45.0445i 0.0648122i
\(696\) 0 0
\(697\) −68.1206 −0.0977340
\(698\) 0 0
\(699\) 152.049i 0.217523i
\(700\) 0 0
\(701\) − 427.469i − 0.609799i −0.952385 0.304899i \(-0.901377\pi\)
0.952385 0.304899i \(-0.0986228\pi\)
\(702\) 0 0
\(703\) − 57.8268i − 0.0822572i
\(704\) 0 0
\(705\) −11.3872 −0.0161520
\(706\) 0 0
\(707\) 304.774 0.431081
\(708\) 0 0
\(709\) 388.851 0.548450 0.274225 0.961666i \(-0.411579\pi\)
0.274225 + 0.961666i \(0.411579\pi\)
\(710\) 0 0
\(711\) − 94.3933i − 0.132761i
\(712\) 0 0
\(713\) 200.736 0.281537
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 96.6072i 0.134738i
\(718\) 0 0
\(719\) −229.404 −0.319060 −0.159530 0.987193i \(-0.550998\pi\)
−0.159530 + 0.987193i \(0.550998\pi\)
\(720\) 0 0
\(721\) 242.264i 0.336011i
\(722\) 0 0
\(723\) 313.136i 0.433106i
\(724\) 0 0
\(725\) 212.449i 0.293033i
\(726\) 0 0
\(727\) −611.850 −0.841609 −0.420805 0.907151i \(-0.638252\pi\)
−0.420805 + 0.907151i \(0.638252\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) −78.1577 −0.106919
\(732\) 0 0
\(733\) − 101.021i − 0.137819i −0.997623 0.0689093i \(-0.978048\pi\)
0.997623 0.0689093i \(-0.0219519\pi\)
\(734\) 0 0
\(735\) 19.9564 0.0271515
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 245.881i − 0.332721i −0.986065 0.166360i \(-0.946798\pi\)
0.986065 0.166360i \(-0.0532015\pi\)
\(740\) 0 0
\(741\) −100.210 −0.135236
\(742\) 0 0
\(743\) − 729.089i − 0.981277i −0.871363 0.490638i \(-0.836764\pi\)
0.871363 0.490638i \(-0.163236\pi\)
\(744\) 0 0
\(745\) 75.5181i 0.101367i
\(746\) 0 0
\(747\) 291.382i 0.390070i
\(748\) 0 0
\(749\) −442.392 −0.590644
\(750\) 0 0
\(751\) −811.055 −1.07997 −0.539983 0.841676i \(-0.681569\pi\)
−0.539983 + 0.841676i \(0.681569\pi\)
\(752\) 0 0
\(753\) 38.3604 0.0509434
\(754\) 0 0
\(755\) 47.5139i 0.0629323i
\(756\) 0 0
\(757\) −3.34352 −0.00441680 −0.00220840 0.999998i \(-0.500703\pi\)
−0.00220840 + 0.999998i \(0.500703\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 737.559i 0.969196i 0.874737 + 0.484598i \(0.161034\pi\)
−0.874737 + 0.484598i \(0.838966\pi\)
\(762\) 0 0
\(763\) −5.46033 −0.00715639
\(764\) 0 0
\(765\) 14.8084i 0.0193574i
\(766\) 0 0
\(767\) − 88.3774i − 0.115225i
\(768\) 0 0
\(769\) − 328.412i − 0.427064i −0.976936 0.213532i \(-0.931503\pi\)
0.976936 0.213532i \(-0.0684967\pi\)
\(770\) 0 0
\(771\) −646.492 −0.838511
\(772\) 0 0
\(773\) −1291.64 −1.67095 −0.835474 0.549529i \(-0.814807\pi\)
−0.835474 + 0.549529i \(0.814807\pi\)
\(774\) 0 0
\(775\) 212.785 0.274561
\(776\) 0 0
\(777\) − 31.7491i − 0.0408612i
\(778\) 0 0
\(779\) −28.5744 −0.0366808
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) − 44.2839i − 0.0565567i
\(784\) 0 0
\(785\) −57.6180 −0.0733987
\(786\) 0 0
\(787\) 1062.74i 1.35036i 0.737651 + 0.675182i \(0.235935\pi\)
−0.737651 + 0.675182i \(0.764065\pi\)
\(788\) 0 0
\(789\) − 430.699i − 0.545879i
\(790\) 0 0
\(791\) − 83.1068i − 0.105065i
\(792\) 0 0
\(793\) −756.491 −0.953961
\(794\) 0 0
\(795\) −7.88973 −0.00992419
\(796\) 0 0
\(797\) 695.836 0.873069 0.436534 0.899688i \(-0.356206\pi\)
0.436534 + 0.899688i \(0.356206\pi\)
\(798\) 0 0
\(799\) − 451.999i − 0.565706i
\(800\) 0 0
\(801\) −336.373 −0.419941
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) − 15.4349i − 0.0191738i
\(806\) 0 0
\(807\) 787.501 0.975838
\(808\) 0 0
\(809\) 1222.28i 1.51086i 0.655230 + 0.755429i \(0.272572\pi\)
−0.655230 + 0.755429i \(0.727428\pi\)
\(810\) 0 0
\(811\) 1480.11i 1.82504i 0.409028 + 0.912522i \(0.365868\pi\)
−0.409028 + 0.912522i \(0.634132\pi\)
\(812\) 0 0
\(813\) 629.742i 0.774590i
\(814\) 0 0
\(815\) −66.9601 −0.0821597
\(816\) 0 0
\(817\) −32.7846 −0.0401280
\(818\) 0 0
\(819\) −55.0192 −0.0671786
\(820\) 0 0
\(821\) 1100.83i 1.34084i 0.741984 + 0.670418i \(0.233885\pi\)
−0.741984 + 0.670418i \(0.766115\pi\)
\(822\) 0 0
\(823\) −465.212 −0.565263 −0.282632 0.959229i \(-0.591207\pi\)
−0.282632 + 0.959229i \(0.591207\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 538.409i − 0.651039i −0.945535 0.325519i \(-0.894461\pi\)
0.945535 0.325519i \(-0.105539\pi\)
\(828\) 0 0
\(829\) −652.069 −0.786573 −0.393287 0.919416i \(-0.628662\pi\)
−0.393287 + 0.919416i \(0.628662\pi\)
\(830\) 0 0
\(831\) 688.465i 0.828478i
\(832\) 0 0
\(833\) 792.143i 0.950953i
\(834\) 0 0
\(835\) − 63.1737i − 0.0756571i
\(836\) 0 0
\(837\) −44.3538 −0.0529914
\(838\) 0 0
\(839\) −212.308 −0.253049 −0.126524 0.991964i \(-0.540382\pi\)
−0.126524 + 0.991964i \(0.540382\pi\)
\(840\) 0 0
\(841\) 768.368 0.913636
\(842\) 0 0
\(843\) 393.510i 0.466798i
\(844\) 0 0
\(845\) 30.2628 0.0358140
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) − 124.126i − 0.146203i
\(850\) 0 0
\(851\) 175.983 0.206796
\(852\) 0 0
\(853\) − 187.375i − 0.219666i −0.993950 0.109833i \(-0.964968\pi\)
0.993950 0.109833i \(-0.0350316\pi\)
\(854\) 0 0
\(855\) 6.21166i 0.00726510i
\(856\) 0 0
\(857\) 609.486i 0.711186i 0.934641 + 0.355593i \(0.115721\pi\)
−0.934641 + 0.355593i \(0.884279\pi\)
\(858\) 0 0
\(859\) −392.193 −0.456570 −0.228285 0.973594i \(-0.573312\pi\)
−0.228285 + 0.973594i \(0.573312\pi\)
\(860\) 0 0
\(861\) −15.6884 −0.0182212
\(862\) 0 0
\(863\) −783.934 −0.908383 −0.454191 0.890904i \(-0.650072\pi\)
−0.454191 + 0.890904i \(0.650072\pi\)
\(864\) 0 0
\(865\) − 9.54243i − 0.0110317i
\(866\) 0 0
\(867\) −87.2398 −0.100623
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) − 487.309i − 0.559482i
\(872\) 0 0
\(873\) −298.019 −0.341374
\(874\) 0 0
\(875\) − 32.7698i − 0.0374512i
\(876\) 0 0
\(877\) − 815.132i − 0.929455i −0.885454 0.464727i \(-0.846152\pi\)
0.885454 0.464727i \(-0.153848\pi\)
\(878\) 0 0
\(879\) − 693.515i − 0.788982i
\(880\) 0 0
\(881\) −1458.83 −1.65587 −0.827937 0.560821i \(-0.810486\pi\)
−0.827937 + 0.560821i \(0.810486\pi\)
\(882\) 0 0
\(883\) −274.633 −0.311023 −0.155512 0.987834i \(-0.549703\pi\)
−0.155512 + 0.987834i \(0.549703\pi\)
\(884\) 0 0
\(885\) −5.47818 −0.00619004
\(886\) 0 0
\(887\) 693.280i 0.781601i 0.920475 + 0.390800i \(0.127802\pi\)
−0.920475 + 0.390800i \(0.872198\pi\)
\(888\) 0 0
\(889\) −159.531 −0.179450
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 189.599i − 0.212317i
\(894\) 0 0
\(895\) 71.6256 0.0800285
\(896\) 0 0
\(897\) − 304.968i − 0.339986i
\(898\) 0 0
\(899\) 72.7467i 0.0809196i
\(900\) 0 0
\(901\) − 313.173i − 0.347584i
\(902\) 0 0
\(903\) −18.0000 −0.0199336
\(904\) 0 0
\(905\) 14.4641 0.0159824
\(906\) 0 0
\(907\) 606.024 0.668164 0.334082 0.942544i \(-0.391574\pi\)
0.334082 + 0.942544i \(0.391574\pi\)
\(908\) 0 0
\(909\) − 373.271i − 0.410639i
\(910\) 0 0
\(911\) −347.419 −0.381360 −0.190680 0.981652i \(-0.561069\pi\)
−0.190680 + 0.981652i \(0.561069\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 46.8920i 0.0512481i
\(916\) 0 0
\(917\) 436.228 0.475712
\(918\) 0 0
\(919\) 1207.58i 1.31402i 0.753883 + 0.657009i \(0.228179\pi\)
−0.753883 + 0.657009i \(0.771821\pi\)
\(920\) 0 0
\(921\) 139.458i 0.151420i
\(922\) 0 0
\(923\) 593.493i 0.643004i
\(924\) 0 0
\(925\) 186.546 0.201672
\(926\) 0 0
\(927\) 296.711 0.320077
\(928\) 0 0
\(929\) 1189.26 1.28015 0.640073 0.768314i \(-0.278904\pi\)
0.640073 + 0.768314i \(0.278904\pi\)
\(930\) 0 0
\(931\) 332.278i 0.356905i
\(932\) 0 0
\(933\) 519.433 0.556734
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 844.259i 0.901023i 0.892771 + 0.450512i \(0.148758\pi\)
−0.892771 + 0.450512i \(0.851242\pi\)
\(938\) 0 0
\(939\) −637.501 −0.678915
\(940\) 0 0
\(941\) 1739.58i 1.84865i 0.381609 + 0.924324i \(0.375370\pi\)
−0.381609 + 0.924324i \(0.624630\pi\)
\(942\) 0 0
\(943\) − 86.9598i − 0.0922161i
\(944\) 0 0
\(945\) 3.41044i 0.00360893i
\(946\) 0 0
\(947\) 227.124 0.239836 0.119918 0.992784i \(-0.461737\pi\)
0.119918 + 0.992784i \(0.461737\pi\)
\(948\) 0 0
\(949\) −562.858 −0.593106
\(950\) 0 0
\(951\) 665.090 0.699358
\(952\) 0 0
\(953\) 1717.25i 1.80194i 0.433885 + 0.900968i \(0.357142\pi\)
−0.433885 + 0.900968i \(0.642858\pi\)
\(954\) 0 0
\(955\) −4.13328 −0.00432805
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 527.143i 0.549679i
\(960\) 0 0
\(961\) −888.138 −0.924182
\(962\) 0 0
\(963\) 541.818i 0.562635i
\(964\) 0 0
\(965\) 6.35765i 0.00658824i
\(966\) 0 0
\(967\) − 555.142i − 0.574087i −0.957918 0.287044i \(-0.907328\pi\)
0.957918 0.287044i \(-0.0926724\pi\)
\(968\) 0 0
\(969\) −246.564 −0.254452
\(970\) 0 0
\(971\) −411.317 −0.423601 −0.211801 0.977313i \(-0.567933\pi\)
−0.211801 + 0.977313i \(0.567933\pi\)
\(972\) 0 0
\(973\) −411.779 −0.423206
\(974\) 0 0
\(975\) − 323.273i − 0.331562i
\(976\) 0 0
\(977\) −1519.62 −1.55539 −0.777697 0.628639i \(-0.783612\pi\)
−0.777697 + 0.628639i \(0.783612\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 6.68751i 0.00681703i
\(982\) 0 0
\(983\) 445.577 0.453283 0.226641 0.973978i \(-0.427225\pi\)
0.226641 + 0.973978i \(0.427225\pi\)
\(984\) 0 0
\(985\) − 15.2238i − 0.0154557i
\(986\) 0 0
\(987\) − 104.097i − 0.105468i
\(988\) 0 0
\(989\) − 99.7727i − 0.100882i
\(990\) 0 0
\(991\) −1044.25 −1.05373 −0.526866 0.849948i \(-0.676633\pi\)
−0.526866 + 0.849948i \(0.676633\pi\)
\(992\) 0 0
\(993\) 405.118 0.407974
\(994\) 0 0
\(995\) −17.1704 −0.0172567
\(996\) 0 0
\(997\) − 170.660i − 0.171174i −0.996331 0.0855868i \(-0.972724\pi\)
0.996331 0.0855868i \(-0.0272765\pi\)
\(998\) 0 0
\(999\) −38.8846 −0.0389235
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.3.f.a.241.4 yes 4
3.2 odd 2 4356.3.f.d.1693.4 4
11.10 odd 2 inner 1452.3.f.a.241.3 4
33.32 even 2 4356.3.f.d.1693.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1452.3.f.a.241.3 4 11.10 odd 2 inner
1452.3.f.a.241.4 yes 4 1.1 even 1 trivial
4356.3.f.d.1693.3 4 33.32 even 2
4356.3.f.d.1693.4 4 3.2 odd 2