Properties

Label 1452.3.e.i.485.6
Level $1452$
Weight $3$
Character 1452.485
Analytic conductor $39.564$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,3,Mod(485,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.485"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,4,0,0,0,-16,0,-6,0,0,0,6,0,-12,0,0,0,-12,0,-4,0,0,0,-44, 0,10,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5641343851\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.46805967296.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 6x^{4} + 2x^{3} + 62x^{2} + 174x + 486 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 485.6
Root \(-1.69245 - 1.32314i\) of defining polynomial
Character \(\chi\) \(=\) 1452.485
Dual form 1452.3.e.i.485.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.69245 + 1.32314i) q^{3} +8.37865i q^{5} -7.27992 q^{7} +(5.49862 + 7.12497i) q^{9} +17.4871 q^{13} +(-11.0861 + 22.5591i) q^{15} +19.9823i q^{17} +20.5046 q^{19} +(-19.6009 - 9.63233i) q^{21} +31.1461i q^{23} -45.2017 q^{25} +(5.37749 + 26.4591i) q^{27} -45.5581i q^{29} -8.48714 q^{31} -60.9959i q^{35} +26.5073 q^{37} +(47.0833 + 23.1379i) q^{39} +26.6247i q^{41} -6.57729 q^{43} +(-59.6976 + 46.0710i) q^{45} +9.84434i q^{47} +3.99724 q^{49} +(-26.4393 + 53.8015i) q^{51} +80.9782i q^{53} +(55.2077 + 27.1304i) q^{57} -73.6716i q^{59} -81.2541 q^{61} +(-40.0295 - 51.8692i) q^{63} +146.519i q^{65} -86.4357 q^{67} +(-41.2106 + 83.8596i) q^{69} -105.088i q^{71} -106.036 q^{73} +(-121.704 - 59.8080i) q^{75} +74.6567 q^{79} +(-20.5303 + 78.3550i) q^{81} -56.4514i q^{83} -167.425 q^{85} +(60.2795 - 122.663i) q^{87} -45.8286i q^{89} -127.305 q^{91} +(-22.8512 - 11.2296i) q^{93} +171.801i q^{95} +5.58831 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{3} - 16 q^{7} - 6 q^{9} + 6 q^{13} - 12 q^{15} - 12 q^{19} - 4 q^{21} - 44 q^{25} + 10 q^{27} + 48 q^{31} + 102 q^{37} + 150 q^{39} + 52 q^{43} - 14 q^{45} - 54 q^{49} + 22 q^{51} + 8 q^{57}+ \cdots + 254 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.69245 + 1.32314i 0.897485 + 0.441045i
\(4\) 0 0
\(5\) 8.37865i 1.67573i 0.545878 + 0.837865i \(0.316196\pi\)
−0.545878 + 0.837865i \(0.683804\pi\)
\(6\) 0 0
\(7\) −7.27992 −1.03999 −0.519994 0.854170i \(-0.674066\pi\)
−0.519994 + 0.854170i \(0.674066\pi\)
\(8\) 0 0
\(9\) 5.49862 + 7.12497i 0.610958 + 0.791663i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 17.4871 1.34516 0.672582 0.740022i \(-0.265185\pi\)
0.672582 + 0.740022i \(0.265185\pi\)
\(14\) 0 0
\(15\) −11.0861 + 22.5591i −0.739073 + 1.50394i
\(16\) 0 0
\(17\) 19.9823i 1.17543i 0.809068 + 0.587715i \(0.199972\pi\)
−0.809068 + 0.587715i \(0.800028\pi\)
\(18\) 0 0
\(19\) 20.5046 1.07919 0.539595 0.841925i \(-0.318578\pi\)
0.539595 + 0.841925i \(0.318578\pi\)
\(20\) 0 0
\(21\) −19.6009 9.63233i −0.933374 0.458682i
\(22\) 0 0
\(23\) 31.1461i 1.35418i 0.735900 + 0.677090i \(0.236759\pi\)
−0.735900 + 0.677090i \(0.763241\pi\)
\(24\) 0 0
\(25\) −45.2017 −1.80807
\(26\) 0 0
\(27\) 5.37749 + 26.4591i 0.199166 + 0.979966i
\(28\) 0 0
\(29\) 45.5581i 1.57097i −0.618882 0.785484i \(-0.712414\pi\)
0.618882 0.785484i \(-0.287586\pi\)
\(30\) 0 0
\(31\) −8.48714 −0.273779 −0.136889 0.990586i \(-0.543710\pi\)
−0.136889 + 0.990586i \(0.543710\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 60.9959i 1.74274i
\(36\) 0 0
\(37\) 26.5073 0.716415 0.358207 0.933642i \(-0.383388\pi\)
0.358207 + 0.933642i \(0.383388\pi\)
\(38\) 0 0
\(39\) 47.0833 + 23.1379i 1.20726 + 0.593279i
\(40\) 0 0
\(41\) 26.6247i 0.649383i 0.945820 + 0.324692i \(0.105261\pi\)
−0.945820 + 0.324692i \(0.894739\pi\)
\(42\) 0 0
\(43\) −6.57729 −0.152960 −0.0764801 0.997071i \(-0.524368\pi\)
−0.0764801 + 0.997071i \(0.524368\pi\)
\(44\) 0 0
\(45\) −59.6976 + 46.0710i −1.32661 + 1.02380i
\(46\) 0 0
\(47\) 9.84434i 0.209454i 0.994501 + 0.104727i \(0.0333969\pi\)
−0.994501 + 0.104727i \(0.966603\pi\)
\(48\) 0 0
\(49\) 3.99724 0.0815764
\(50\) 0 0
\(51\) −26.4393 + 53.8015i −0.518418 + 1.05493i
\(52\) 0 0
\(53\) 80.9782i 1.52789i 0.645281 + 0.763945i \(0.276740\pi\)
−0.645281 + 0.763945i \(0.723260\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 55.2077 + 27.1304i 0.968556 + 0.475971i
\(58\) 0 0
\(59\) 73.6716i 1.24867i −0.781156 0.624335i \(-0.785370\pi\)
0.781156 0.624335i \(-0.214630\pi\)
\(60\) 0 0
\(61\) −81.2541 −1.33203 −0.666017 0.745937i \(-0.732002\pi\)
−0.666017 + 0.745937i \(0.732002\pi\)
\(62\) 0 0
\(63\) −40.0295 51.8692i −0.635389 0.823321i
\(64\) 0 0
\(65\) 146.519i 2.25413i
\(66\) 0 0
\(67\) −86.4357 −1.29009 −0.645043 0.764147i \(-0.723160\pi\)
−0.645043 + 0.764147i \(0.723160\pi\)
\(68\) 0 0
\(69\) −41.2106 + 83.8596i −0.597255 + 1.21536i
\(70\) 0 0
\(71\) 105.088i 1.48012i −0.672543 0.740058i \(-0.734798\pi\)
0.672543 0.740058i \(-0.265202\pi\)
\(72\) 0 0
\(73\) −106.036 −1.45255 −0.726275 0.687405i \(-0.758750\pi\)
−0.726275 + 0.687405i \(0.758750\pi\)
\(74\) 0 0
\(75\) −121.704 59.8080i −1.62271 0.797440i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 74.6567 0.945022 0.472511 0.881325i \(-0.343348\pi\)
0.472511 + 0.881325i \(0.343348\pi\)
\(80\) 0 0
\(81\) −20.5303 + 78.3550i −0.253461 + 0.967346i
\(82\) 0 0
\(83\) 56.4514i 0.680137i −0.940401 0.340069i \(-0.889550\pi\)
0.940401 0.340069i \(-0.110450\pi\)
\(84\) 0 0
\(85\) −167.425 −1.96970
\(86\) 0 0
\(87\) 60.2795 122.663i 0.692868 1.40992i
\(88\) 0 0
\(89\) 45.8286i 0.514928i −0.966288 0.257464i \(-0.917113\pi\)
0.966288 0.257464i \(-0.0828869\pi\)
\(90\) 0 0
\(91\) −127.305 −1.39896
\(92\) 0 0
\(93\) −22.8512 11.2296i −0.245712 0.120749i
\(94\) 0 0
\(95\) 171.801i 1.80843i
\(96\) 0 0
\(97\) 5.58831 0.0576115 0.0288057 0.999585i \(-0.490830\pi\)
0.0288057 + 0.999585i \(0.490830\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 112.903i 1.11785i −0.829219 0.558924i \(-0.811214\pi\)
0.829219 0.558924i \(-0.188786\pi\)
\(102\) 0 0
\(103\) 84.9164 0.824431 0.412216 0.911086i \(-0.364755\pi\)
0.412216 + 0.911086i \(0.364755\pi\)
\(104\) 0 0
\(105\) 80.7058 164.229i 0.768627 1.56408i
\(106\) 0 0
\(107\) 40.7199i 0.380560i 0.981730 + 0.190280i \(0.0609396\pi\)
−0.981730 + 0.190280i \(0.939060\pi\)
\(108\) 0 0
\(109\) 38.3607 0.351933 0.175967 0.984396i \(-0.443695\pi\)
0.175967 + 0.984396i \(0.443695\pi\)
\(110\) 0 0
\(111\) 71.3698 + 35.0728i 0.642971 + 0.315971i
\(112\) 0 0
\(113\) 89.2556i 0.789872i 0.918709 + 0.394936i \(0.129233\pi\)
−0.918709 + 0.394936i \(0.870767\pi\)
\(114\) 0 0
\(115\) −260.962 −2.26924
\(116\) 0 0
\(117\) 96.1552 + 124.595i 0.821839 + 1.06492i
\(118\) 0 0
\(119\) 145.470i 1.22243i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −35.2281 + 71.6859i −0.286408 + 0.582812i
\(124\) 0 0
\(125\) 169.263i 1.35410i
\(126\) 0 0
\(127\) 213.975 1.68484 0.842420 0.538822i \(-0.181131\pi\)
0.842420 + 0.538822i \(0.181131\pi\)
\(128\) 0 0
\(129\) −17.7091 8.70265i −0.137280 0.0674624i
\(130\) 0 0
\(131\) 132.940i 1.01481i −0.861708 0.507405i \(-0.830605\pi\)
0.861708 0.507405i \(-0.169395\pi\)
\(132\) 0 0
\(133\) −149.272 −1.12234
\(134\) 0 0
\(135\) −221.691 + 45.0561i −1.64216 + 0.333749i
\(136\) 0 0
\(137\) 79.2420i 0.578408i 0.957267 + 0.289204i \(0.0933907\pi\)
−0.957267 + 0.289204i \(0.906609\pi\)
\(138\) 0 0
\(139\) −183.265 −1.31845 −0.659225 0.751946i \(-0.729116\pi\)
−0.659225 + 0.751946i \(0.729116\pi\)
\(140\) 0 0
\(141\) −13.0254 + 26.5054i −0.0923787 + 0.187982i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 381.715 2.63252
\(146\) 0 0
\(147\) 10.7624 + 5.28890i 0.0732136 + 0.0359789i
\(148\) 0 0
\(149\) 109.756i 0.736617i −0.929704 0.368308i \(-0.879937\pi\)
0.929704 0.368308i \(-0.120063\pi\)
\(150\) 0 0
\(151\) −160.632 −1.06379 −0.531894 0.846811i \(-0.678520\pi\)
−0.531894 + 0.846811i \(0.678520\pi\)
\(152\) 0 0
\(153\) −142.373 + 109.875i −0.930544 + 0.718138i
\(154\) 0 0
\(155\) 71.1108i 0.458779i
\(156\) 0 0
\(157\) 27.0429 0.172248 0.0861238 0.996284i \(-0.472552\pi\)
0.0861238 + 0.996284i \(0.472552\pi\)
\(158\) 0 0
\(159\) −107.145 + 218.030i −0.673869 + 1.37126i
\(160\) 0 0
\(161\) 226.741i 1.40833i
\(162\) 0 0
\(163\) 239.660 1.47031 0.735155 0.677900i \(-0.237110\pi\)
0.735155 + 0.677900i \(0.237110\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19.9272i 0.119325i −0.998219 0.0596624i \(-0.980998\pi\)
0.998219 0.0596624i \(-0.0190024\pi\)
\(168\) 0 0
\(169\) 136.800 0.809468
\(170\) 0 0
\(171\) 112.747 + 146.095i 0.659339 + 0.854354i
\(172\) 0 0
\(173\) 310.628i 1.79554i 0.440468 + 0.897769i \(0.354813\pi\)
−0.440468 + 0.897769i \(0.645187\pi\)
\(174\) 0 0
\(175\) 329.065 1.88037
\(176\) 0 0
\(177\) 97.4775 198.357i 0.550720 1.12066i
\(178\) 0 0
\(179\) 9.96867i 0.0556909i −0.999612 0.0278455i \(-0.991135\pi\)
0.999612 0.0278455i \(-0.00886463\pi\)
\(180\) 0 0
\(181\) 309.372 1.70924 0.854618 0.519257i \(-0.173791\pi\)
0.854618 + 0.519257i \(0.173791\pi\)
\(182\) 0 0
\(183\) −218.773 107.510i −1.19548 0.587487i
\(184\) 0 0
\(185\) 222.096i 1.20052i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −39.1477 192.620i −0.207131 1.01915i
\(190\) 0 0
\(191\) 116.083i 0.607763i 0.952710 + 0.303882i \(0.0982827\pi\)
−0.952710 + 0.303882i \(0.901717\pi\)
\(192\) 0 0
\(193\) −14.9939 −0.0776884 −0.0388442 0.999245i \(-0.512368\pi\)
−0.0388442 + 0.999245i \(0.512368\pi\)
\(194\) 0 0
\(195\) −193.864 + 394.495i −0.994174 + 2.02305i
\(196\) 0 0
\(197\) 159.048i 0.807351i −0.914902 0.403675i \(-0.867733\pi\)
0.914902 0.403675i \(-0.132267\pi\)
\(198\) 0 0
\(199\) 249.578 1.25416 0.627079 0.778955i \(-0.284250\pi\)
0.627079 + 0.778955i \(0.284250\pi\)
\(200\) 0 0
\(201\) −232.724 114.366i −1.15783 0.568986i
\(202\) 0 0
\(203\) 331.659i 1.63379i
\(204\) 0 0
\(205\) −223.079 −1.08819
\(206\) 0 0
\(207\) −221.915 + 171.261i −1.07205 + 0.827347i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 22.2657 0.105525 0.0527624 0.998607i \(-0.483197\pi\)
0.0527624 + 0.998607i \(0.483197\pi\)
\(212\) 0 0
\(213\) 139.046 282.945i 0.652798 1.32838i
\(214\) 0 0
\(215\) 55.1088i 0.256320i
\(216\) 0 0
\(217\) 61.7857 0.284727
\(218\) 0 0
\(219\) −285.497 140.300i −1.30364 0.640640i
\(220\) 0 0
\(221\) 349.433i 1.58115i
\(222\) 0 0
\(223\) 59.9979 0.269049 0.134524 0.990910i \(-0.457049\pi\)
0.134524 + 0.990910i \(0.457049\pi\)
\(224\) 0 0
\(225\) −248.547 322.061i −1.10465 1.43138i
\(226\) 0 0
\(227\) 139.821i 0.615952i 0.951394 + 0.307976i \(0.0996516\pi\)
−0.951394 + 0.307976i \(0.900348\pi\)
\(228\) 0 0
\(229\) −104.494 −0.456306 −0.228153 0.973625i \(-0.573269\pi\)
−0.228153 + 0.973625i \(0.573269\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 162.489i 0.697376i 0.937239 + 0.348688i \(0.113373\pi\)
−0.937239 + 0.348688i \(0.886627\pi\)
\(234\) 0 0
\(235\) −82.4823 −0.350988
\(236\) 0 0
\(237\) 201.010 + 98.7810i 0.848143 + 0.416797i
\(238\) 0 0
\(239\) 96.7647i 0.404873i −0.979295 0.202437i \(-0.935114\pi\)
0.979295 0.202437i \(-0.0648860\pi\)
\(240\) 0 0
\(241\) 28.3306 0.117554 0.0587771 0.998271i \(-0.481280\pi\)
0.0587771 + 0.998271i \(0.481280\pi\)
\(242\) 0 0
\(243\) −158.951 + 183.803i −0.654120 + 0.756390i
\(244\) 0 0
\(245\) 33.4915i 0.136700i
\(246\) 0 0
\(247\) 358.567 1.45169
\(248\) 0 0
\(249\) 74.6928 151.993i 0.299971 0.610413i
\(250\) 0 0
\(251\) 107.795i 0.429463i −0.976673 0.214732i \(-0.931112\pi\)
0.976673 0.214732i \(-0.0688877\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −450.783 221.526i −1.76778 0.868728i
\(256\) 0 0
\(257\) 317.215i 1.23430i 0.786845 + 0.617150i \(0.211713\pi\)
−0.786845 + 0.617150i \(0.788287\pi\)
\(258\) 0 0
\(259\) −192.971 −0.745063
\(260\) 0 0
\(261\) 324.600 250.507i 1.24368 0.959796i
\(262\) 0 0
\(263\) 116.343i 0.442370i −0.975232 0.221185i \(-0.929008\pi\)
0.975232 0.221185i \(-0.0709924\pi\)
\(264\) 0 0
\(265\) −678.488 −2.56033
\(266\) 0 0
\(267\) 60.6375 123.391i 0.227107 0.462140i
\(268\) 0 0
\(269\) 90.3058i 0.335709i 0.985812 + 0.167855i \(0.0536839\pi\)
−0.985812 + 0.167855i \(0.946316\pi\)
\(270\) 0 0
\(271\) 157.530 0.581290 0.290645 0.956831i \(-0.406130\pi\)
0.290645 + 0.956831i \(0.406130\pi\)
\(272\) 0 0
\(273\) −342.763 168.442i −1.25554 0.617003i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 185.978 0.671402 0.335701 0.941969i \(-0.391027\pi\)
0.335701 + 0.941969i \(0.391027\pi\)
\(278\) 0 0
\(279\) −46.6676 60.4706i −0.167267 0.216741i
\(280\) 0 0
\(281\) 470.138i 1.67309i 0.547900 + 0.836544i \(0.315427\pi\)
−0.547900 + 0.836544i \(0.684573\pi\)
\(282\) 0 0
\(283\) −238.743 −0.843616 −0.421808 0.906685i \(-0.638604\pi\)
−0.421808 + 0.906685i \(0.638604\pi\)
\(284\) 0 0
\(285\) −227.316 + 462.566i −0.797599 + 1.62304i
\(286\) 0 0
\(287\) 193.826i 0.675351i
\(288\) 0 0
\(289\) −110.293 −0.381635
\(290\) 0 0
\(291\) 15.0463 + 7.39410i 0.0517054 + 0.0254093i
\(292\) 0 0
\(293\) 507.781i 1.73304i 0.499141 + 0.866521i \(0.333649\pi\)
−0.499141 + 0.866521i \(0.666351\pi\)
\(294\) 0 0
\(295\) 617.268 2.09243
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 544.657i 1.82160i
\(300\) 0 0
\(301\) 47.8822 0.159077
\(302\) 0 0
\(303\) 149.386 303.986i 0.493022 1.00325i
\(304\) 0 0
\(305\) 680.799i 2.23213i
\(306\) 0 0
\(307\) 464.465 1.51291 0.756457 0.654043i \(-0.226928\pi\)
0.756457 + 0.654043i \(0.226928\pi\)
\(308\) 0 0
\(309\) 228.634 + 112.356i 0.739915 + 0.363612i
\(310\) 0 0
\(311\) 540.293i 1.73728i 0.495447 + 0.868638i \(0.335004\pi\)
−0.495447 + 0.868638i \(0.664996\pi\)
\(312\) 0 0
\(313\) −236.564 −0.755796 −0.377898 0.925847i \(-0.623353\pi\)
−0.377898 + 0.925847i \(0.623353\pi\)
\(314\) 0 0
\(315\) 434.594 335.393i 1.37966 1.06474i
\(316\) 0 0
\(317\) 175.782i 0.554518i −0.960795 0.277259i \(-0.910574\pi\)
0.960795 0.277259i \(-0.0894260\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −53.8780 + 109.637i −0.167844 + 0.341547i
\(322\) 0 0
\(323\) 409.729i 1.26851i
\(324\) 0 0
\(325\) −790.449 −2.43215
\(326\) 0 0
\(327\) 103.285 + 50.7565i 0.315855 + 0.155219i
\(328\) 0 0
\(329\) 71.6660i 0.217830i
\(330\) 0 0
\(331\) 231.001 0.697888 0.348944 0.937144i \(-0.386540\pi\)
0.348944 + 0.937144i \(0.386540\pi\)
\(332\) 0 0
\(333\) 145.754 + 188.864i 0.437699 + 0.567159i
\(334\) 0 0
\(335\) 724.214i 2.16183i
\(336\) 0 0
\(337\) 11.6789 0.0346555 0.0173277 0.999850i \(-0.494484\pi\)
0.0173277 + 0.999850i \(0.494484\pi\)
\(338\) 0 0
\(339\) −118.097 + 240.317i −0.348370 + 0.708899i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 327.616 0.955150
\(344\) 0 0
\(345\) −702.630 345.289i −2.03661 1.00084i
\(346\) 0 0
\(347\) 559.872i 1.61346i −0.590918 0.806731i \(-0.701234\pi\)
0.590918 0.806731i \(-0.298766\pi\)
\(348\) 0 0
\(349\) 528.668 1.51481 0.757404 0.652947i \(-0.226467\pi\)
0.757404 + 0.652947i \(0.226467\pi\)
\(350\) 0 0
\(351\) 94.0369 + 462.694i 0.267911 + 1.31822i
\(352\) 0 0
\(353\) 218.146i 0.617978i 0.951066 + 0.308989i \(0.0999906\pi\)
−0.951066 + 0.308989i \(0.900009\pi\)
\(354\) 0 0
\(355\) 880.497 2.48027
\(356\) 0 0
\(357\) 192.476 391.670i 0.539149 1.09712i
\(358\) 0 0
\(359\) 243.577i 0.678487i 0.940699 + 0.339244i \(0.110171\pi\)
−0.940699 + 0.339244i \(0.889829\pi\)
\(360\) 0 0
\(361\) 59.4383 0.164649
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 888.439i 2.43408i
\(366\) 0 0
\(367\) −21.2934 −0.0580200 −0.0290100 0.999579i \(-0.509235\pi\)
−0.0290100 + 0.999579i \(0.509235\pi\)
\(368\) 0 0
\(369\) −189.700 + 146.399i −0.514093 + 0.396746i
\(370\) 0 0
\(371\) 589.515i 1.58899i
\(372\) 0 0
\(373\) −557.973 −1.49591 −0.747953 0.663752i \(-0.768963\pi\)
−0.747953 + 0.663752i \(0.768963\pi\)
\(374\) 0 0
\(375\) 223.958 455.733i 0.597221 1.21529i
\(376\) 0 0
\(377\) 796.681i 2.11321i
\(378\) 0 0
\(379\) −304.928 −0.804559 −0.402280 0.915517i \(-0.631782\pi\)
−0.402280 + 0.915517i \(0.631782\pi\)
\(380\) 0 0
\(381\) 576.117 + 283.117i 1.51212 + 0.743090i
\(382\) 0 0
\(383\) 104.006i 0.271556i −0.990739 0.135778i \(-0.956647\pi\)
0.990739 0.135778i \(-0.0433535\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −36.1660 46.8630i −0.0934523 0.121093i
\(388\) 0 0
\(389\) 242.201i 0.622625i 0.950308 + 0.311312i \(0.100769\pi\)
−0.950308 + 0.311312i \(0.899231\pi\)
\(390\) 0 0
\(391\) −622.372 −1.59174
\(392\) 0 0
\(393\) 175.898 357.935i 0.447577 0.910777i
\(394\) 0 0
\(395\) 625.522i 1.58360i
\(396\) 0 0
\(397\) −7.60465 −0.0191553 −0.00957764 0.999954i \(-0.503049\pi\)
−0.00957764 + 0.999954i \(0.503049\pi\)
\(398\) 0 0
\(399\) −401.908 197.507i −1.00729 0.495005i
\(400\) 0 0
\(401\) 91.6483i 0.228549i 0.993449 + 0.114275i \(0.0364544\pi\)
−0.993449 + 0.114275i \(0.963546\pi\)
\(402\) 0 0
\(403\) −148.416 −0.368278
\(404\) 0 0
\(405\) −656.509 172.016i −1.62101 0.424731i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −424.666 −1.03830 −0.519152 0.854682i \(-0.673752\pi\)
−0.519152 + 0.854682i \(0.673752\pi\)
\(410\) 0 0
\(411\) −104.848 + 213.355i −0.255104 + 0.519113i
\(412\) 0 0
\(413\) 536.323i 1.29860i
\(414\) 0 0
\(415\) 472.986 1.13973
\(416\) 0 0
\(417\) −493.432 242.484i −1.18329 0.581496i
\(418\) 0 0
\(419\) 166.320i 0.396946i −0.980106 0.198473i \(-0.936402\pi\)
0.980106 0.198473i \(-0.0635982\pi\)
\(420\) 0 0
\(421\) 648.061 1.53934 0.769668 0.638444i \(-0.220422\pi\)
0.769668 + 0.638444i \(0.220422\pi\)
\(422\) 0 0
\(423\) −70.1406 + 54.1303i −0.165817 + 0.127968i
\(424\) 0 0
\(425\) 903.234i 2.12526i
\(426\) 0 0
\(427\) 591.523 1.38530
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 747.095i 1.73340i 0.498831 + 0.866699i \(0.333763\pi\)
−0.498831 + 0.866699i \(0.666237\pi\)
\(432\) 0 0
\(433\) 15.6775 0.0362066 0.0181033 0.999836i \(-0.494237\pi\)
0.0181033 + 0.999836i \(0.494237\pi\)
\(434\) 0 0
\(435\) 1027.75 + 505.061i 2.36264 + 1.16106i
\(436\) 0 0
\(437\) 638.639i 1.46142i
\(438\) 0 0
\(439\) −0.168208 −0.000383162 −0.000191581 1.00000i \(-0.500061\pi\)
−0.000191581 1.00000i \(0.500061\pi\)
\(440\) 0 0
\(441\) 21.9793 + 28.4802i 0.0498398 + 0.0645810i
\(442\) 0 0
\(443\) 266.640i 0.601895i −0.953641 0.300948i \(-0.902697\pi\)
0.953641 0.300948i \(-0.0973030\pi\)
\(444\) 0 0
\(445\) 383.982 0.862880
\(446\) 0 0
\(447\) 145.222 295.513i 0.324881 0.661102i
\(448\) 0 0
\(449\) 237.442i 0.528825i −0.964410 0.264412i \(-0.914822\pi\)
0.964410 0.264412i \(-0.0851780\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −432.494 212.538i −0.954734 0.469179i
\(454\) 0 0
\(455\) 1066.64i 2.34427i
\(456\) 0 0
\(457\) −179.258 −0.392249 −0.196124 0.980579i \(-0.562836\pi\)
−0.196124 + 0.980579i \(0.562836\pi\)
\(458\) 0 0
\(459\) −528.713 + 107.455i −1.15188 + 0.234106i
\(460\) 0 0
\(461\) 299.328i 0.649301i −0.945834 0.324651i \(-0.894753\pi\)
0.945834 0.324651i \(-0.105247\pi\)
\(462\) 0 0
\(463\) 669.950 1.44698 0.723488 0.690336i \(-0.242537\pi\)
0.723488 + 0.690336i \(0.242537\pi\)
\(464\) 0 0
\(465\) 94.0892 191.462i 0.202342 0.411747i
\(466\) 0 0
\(467\) 233.594i 0.500201i 0.968220 + 0.250101i \(0.0804637\pi\)
−0.968220 + 0.250101i \(0.919536\pi\)
\(468\) 0 0
\(469\) 629.245 1.34167
\(470\) 0 0
\(471\) 72.8117 + 35.7814i 0.154590 + 0.0759690i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −926.843 −1.95125
\(476\) 0 0
\(477\) −576.967 + 445.268i −1.20957 + 0.933477i
\(478\) 0 0
\(479\) 105.783i 0.220842i −0.993885 0.110421i \(-0.964780\pi\)
0.993885 0.110421i \(-0.0352199\pi\)
\(480\) 0 0
\(481\) 463.538 0.963696
\(482\) 0 0
\(483\) 300.010 610.491i 0.621138 1.26396i
\(484\) 0 0
\(485\) 46.8225i 0.0965412i
\(486\) 0 0
\(487\) 682.210 1.40084 0.700421 0.713730i \(-0.252996\pi\)
0.700421 + 0.713730i \(0.252996\pi\)
\(488\) 0 0
\(489\) 645.275 + 317.103i 1.31958 + 0.648473i
\(490\) 0 0
\(491\) 597.301i 1.21650i −0.793746 0.608249i \(-0.791872\pi\)
0.793746 0.608249i \(-0.208128\pi\)
\(492\) 0 0
\(493\) 910.356 1.84656
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 765.034i 1.53930i
\(498\) 0 0
\(499\) 985.228 1.97440 0.987202 0.159472i \(-0.0509793\pi\)
0.987202 + 0.159472i \(0.0509793\pi\)
\(500\) 0 0
\(501\) 26.3665 53.6532i 0.0526277 0.107092i
\(502\) 0 0
\(503\) 329.323i 0.654717i 0.944900 + 0.327359i \(0.106158\pi\)
−0.944900 + 0.327359i \(0.893842\pi\)
\(504\) 0 0
\(505\) 945.972 1.87321
\(506\) 0 0
\(507\) 368.328 + 181.005i 0.726485 + 0.357012i
\(508\) 0 0
\(509\) 584.161i 1.14766i 0.818973 + 0.573832i \(0.194544\pi\)
−0.818973 + 0.573832i \(0.805456\pi\)
\(510\) 0 0
\(511\) 771.934 1.51063
\(512\) 0 0
\(513\) 110.263 + 542.533i 0.214938 + 1.05757i
\(514\) 0 0
\(515\) 711.485i 1.38152i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −411.003 + 836.352i −0.791913 + 1.61147i
\(520\) 0 0
\(521\) 433.397i 0.831856i 0.909398 + 0.415928i \(0.136543\pi\)
−0.909398 + 0.415928i \(0.863457\pi\)
\(522\) 0 0
\(523\) −641.835 −1.22722 −0.613609 0.789610i \(-0.710283\pi\)
−0.613609 + 0.789610i \(0.710283\pi\)
\(524\) 0 0
\(525\) 885.992 + 435.398i 1.68760 + 0.829329i
\(526\) 0 0
\(527\) 169.593i 0.321808i
\(528\) 0 0
\(529\) −441.082 −0.833803
\(530\) 0 0
\(531\) 524.908 405.092i 0.988527 0.762886i
\(532\) 0 0
\(533\) 465.590i 0.873528i
\(534\) 0 0
\(535\) −341.178 −0.637716
\(536\) 0 0
\(537\) 13.1899 26.8402i 0.0245622 0.0499817i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 210.690 0.389445 0.194722 0.980858i \(-0.437619\pi\)
0.194722 + 0.980858i \(0.437619\pi\)
\(542\) 0 0
\(543\) 832.969 + 409.341i 1.53401 + 0.753851i
\(544\) 0 0
\(545\) 321.411i 0.589745i
\(546\) 0 0
\(547\) −372.667 −0.681292 −0.340646 0.940192i \(-0.610646\pi\)
−0.340646 + 0.940192i \(0.610646\pi\)
\(548\) 0 0
\(549\) −446.785 578.932i −0.813817 1.05452i
\(550\) 0 0
\(551\) 934.150i 1.69537i
\(552\) 0 0
\(553\) −543.495 −0.982812
\(554\) 0 0
\(555\) −293.863 + 597.983i −0.529483 + 1.07745i
\(556\) 0 0
\(557\) 776.588i 1.39423i −0.716958 0.697117i \(-0.754466\pi\)
0.716958 0.697117i \(-0.245534\pi\)
\(558\) 0 0
\(559\) −115.018 −0.205757
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1029.71i 1.82897i −0.404614 0.914487i \(-0.632594\pi\)
0.404614 0.914487i \(-0.367406\pi\)
\(564\) 0 0
\(565\) −747.841 −1.32361
\(566\) 0 0
\(567\) 149.459 570.418i 0.263596 1.00603i
\(568\) 0 0
\(569\) 169.522i 0.297930i −0.988842 0.148965i \(-0.952406\pi\)
0.988842 0.148965i \(-0.0475942\pi\)
\(570\) 0 0
\(571\) 235.262 0.412017 0.206009 0.978550i \(-0.433953\pi\)
0.206009 + 0.978550i \(0.433953\pi\)
\(572\) 0 0
\(573\) −153.593 + 312.548i −0.268051 + 0.545458i
\(574\) 0 0
\(575\) 1407.86i 2.44845i
\(576\) 0 0
\(577\) 548.736 0.951015 0.475508 0.879712i \(-0.342264\pi\)
0.475508 + 0.879712i \(0.342264\pi\)
\(578\) 0 0
\(579\) −40.3703 19.8389i −0.0697242 0.0342641i
\(580\) 0 0
\(581\) 410.962i 0.707335i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1043.94 + 805.650i −1.78451 + 1.37718i
\(586\) 0 0
\(587\) 437.920i 0.746030i −0.927825 0.373015i \(-0.878324\pi\)
0.927825 0.373015i \(-0.121676\pi\)
\(588\) 0 0
\(589\) −174.025 −0.295459
\(590\) 0 0
\(591\) 210.442 428.230i 0.356078 0.724585i
\(592\) 0 0
\(593\) 174.581i 0.294402i −0.989107 0.147201i \(-0.952974\pi\)
0.989107 0.147201i \(-0.0470265\pi\)
\(594\) 0 0
\(595\) 1218.84 2.04847
\(596\) 0 0
\(597\) 671.976 + 330.225i 1.12559 + 0.553141i
\(598\) 0 0
\(599\) 349.360i 0.583239i −0.956534 0.291619i \(-0.905806\pi\)
0.956534 0.291619i \(-0.0941941\pi\)
\(600\) 0 0
\(601\) −773.473 −1.28698 −0.643488 0.765456i \(-0.722513\pi\)
−0.643488 + 0.765456i \(0.722513\pi\)
\(602\) 0 0
\(603\) −475.277 615.852i −0.788188 1.02131i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −129.695 −0.213666 −0.106833 0.994277i \(-0.534071\pi\)
−0.106833 + 0.994277i \(0.534071\pi\)
\(608\) 0 0
\(609\) −438.830 + 892.977i −0.720575 + 1.46630i
\(610\) 0 0
\(611\) 172.149i 0.281750i
\(612\) 0 0
\(613\) −497.059 −0.810863 −0.405431 0.914125i \(-0.632879\pi\)
−0.405431 + 0.914125i \(0.632879\pi\)
\(614\) 0 0
\(615\) −600.630 295.164i −0.976635 0.479942i
\(616\) 0 0
\(617\) 54.9436i 0.0890496i 0.999008 + 0.0445248i \(0.0141774\pi\)
−0.999008 + 0.0445248i \(0.985823\pi\)
\(618\) 0 0
\(619\) 872.824 1.41005 0.705027 0.709180i \(-0.250935\pi\)
0.705027 + 0.709180i \(0.250935\pi\)
\(620\) 0 0
\(621\) −824.098 + 167.488i −1.32705 + 0.269707i
\(622\) 0 0
\(623\) 333.629i 0.535520i
\(624\) 0 0
\(625\) 288.152 0.461043
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 529.678i 0.842095i
\(630\) 0 0
\(631\) 130.706 0.207141 0.103570 0.994622i \(-0.466973\pi\)
0.103570 + 0.994622i \(0.466973\pi\)
\(632\) 0 0
\(633\) 59.9494 + 29.4606i 0.0947068 + 0.0465412i
\(634\) 0 0
\(635\) 1792.82i 2.82333i
\(636\) 0 0
\(637\) 69.9004 0.109734
\(638\) 0 0
\(639\) 748.750 577.841i 1.17175 0.904289i
\(640\) 0 0
\(641\) 883.070i 1.37764i −0.724930 0.688822i \(-0.758128\pi\)
0.724930 0.688822i \(-0.241872\pi\)
\(642\) 0 0
\(643\) −322.647 −0.501784 −0.250892 0.968015i \(-0.580724\pi\)
−0.250892 + 0.968015i \(0.580724\pi\)
\(644\) 0 0
\(645\) 72.9164 148.378i 0.113049 0.230043i
\(646\) 0 0
\(647\) 1091.68i 1.68729i −0.536899 0.843646i \(-0.680405\pi\)
0.536899 0.843646i \(-0.319595\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 166.355 + 81.7509i 0.255538 + 0.125577i
\(652\) 0 0
\(653\) 769.561i 1.17850i −0.807951 0.589250i \(-0.799423\pi\)
0.807951 0.589250i \(-0.200577\pi\)
\(654\) 0 0
\(655\) 1113.86 1.70055
\(656\) 0 0
\(657\) −583.052 755.504i −0.887447 1.14993i
\(658\) 0 0
\(659\) 399.019i 0.605492i 0.953071 + 0.302746i \(0.0979034\pi\)
−0.953071 + 0.302746i \(0.902097\pi\)
\(660\) 0 0
\(661\) 122.307 0.185033 0.0925163 0.995711i \(-0.470509\pi\)
0.0925163 + 0.995711i \(0.470509\pi\)
\(662\) 0 0
\(663\) −462.348 + 940.834i −0.697357 + 1.41906i
\(664\) 0 0
\(665\) 1250.70i 1.88075i
\(666\) 0 0
\(667\) 1418.96 2.12737
\(668\) 0 0
\(669\) 161.542 + 79.3854i 0.241467 + 0.118663i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1065.47 1.58316 0.791580 0.611066i \(-0.209259\pi\)
0.791580 + 0.611066i \(0.209259\pi\)
\(674\) 0 0
\(675\) −243.072 1196.00i −0.360106 1.77185i
\(676\) 0 0
\(677\) 557.073i 0.822856i −0.911442 0.411428i \(-0.865030\pi\)
0.911442 0.411428i \(-0.134970\pi\)
\(678\) 0 0
\(679\) −40.6825 −0.0599153
\(680\) 0 0
\(681\) −185.002 + 376.462i −0.271663 + 0.552808i
\(682\) 0 0
\(683\) 756.144i 1.10709i −0.832818 0.553546i \(-0.813274\pi\)
0.832818 0.553546i \(-0.186726\pi\)
\(684\) 0 0
\(685\) −663.940 −0.969256
\(686\) 0 0
\(687\) −281.346 138.260i −0.409528 0.201252i
\(688\) 0 0
\(689\) 1416.08i 2.05526i
\(690\) 0 0
\(691\) 1.91179 0.00276670 0.00138335 0.999999i \(-0.499560\pi\)
0.00138335 + 0.999999i \(0.499560\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1535.51i 2.20937i
\(696\) 0 0
\(697\) −532.023 −0.763305
\(698\) 0 0
\(699\) −214.994 + 437.493i −0.307574 + 0.625884i
\(700\) 0 0
\(701\) 1217.71i 1.73710i −0.495602 0.868550i \(-0.665053\pi\)
0.495602 0.868550i \(-0.334947\pi\)
\(702\) 0 0
\(703\) 543.522 0.773147
\(704\) 0 0
\(705\) −222.080 109.135i −0.315007 0.154802i
\(706\) 0 0
\(707\) 821.923i 1.16255i
\(708\) 0 0
\(709\) −573.617 −0.809051 −0.404525 0.914527i \(-0.632563\pi\)
−0.404525 + 0.914527i \(0.632563\pi\)
\(710\) 0 0
\(711\) 410.509 + 531.927i 0.577369 + 0.748139i
\(712\) 0 0
\(713\) 264.342i 0.370746i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 128.033 260.534i 0.178567 0.363367i
\(718\) 0 0
\(719\) 396.242i 0.551101i −0.961287 0.275551i \(-0.911140\pi\)
0.961287 0.275551i \(-0.0888602\pi\)
\(720\) 0 0
\(721\) −618.185 −0.857399
\(722\) 0 0
\(723\) 76.2788 + 37.4852i 0.105503 + 0.0518468i
\(724\) 0 0
\(725\) 2059.30i 2.84042i
\(726\) 0 0
\(727\) −956.423 −1.31557 −0.657787 0.753204i \(-0.728507\pi\)
−0.657787 + 0.753204i \(0.728507\pi\)
\(728\) 0 0
\(729\) −671.165 + 284.567i −0.920666 + 0.390352i
\(730\) 0 0
\(731\) 131.429i 0.179794i
\(732\) 0 0
\(733\) 468.899 0.639699 0.319849 0.947468i \(-0.396368\pi\)
0.319849 + 0.947468i \(0.396368\pi\)
\(734\) 0 0
\(735\) −44.3138 + 90.1743i −0.0602909 + 0.122686i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −285.619 −0.386494 −0.193247 0.981150i \(-0.561902\pi\)
−0.193247 + 0.981150i \(0.561902\pi\)
\(740\) 0 0
\(741\) 965.425 + 474.433i 1.30287 + 0.640260i
\(742\) 0 0
\(743\) 489.071i 0.658238i −0.944288 0.329119i \(-0.893248\pi\)
0.944288 0.329119i \(-0.106752\pi\)
\(744\) 0 0
\(745\) 919.606 1.23437
\(746\) 0 0
\(747\) 402.214 310.405i 0.538439 0.415535i
\(748\) 0 0
\(749\) 296.438i 0.395778i
\(750\) 0 0
\(751\) 1257.57 1.67453 0.837263 0.546800i \(-0.184154\pi\)
0.837263 + 0.546800i \(0.184154\pi\)
\(752\) 0 0
\(753\) 142.628 290.234i 0.189413 0.385437i
\(754\) 0 0
\(755\) 1345.88i 1.78262i
\(756\) 0 0
\(757\) −389.306 −0.514274 −0.257137 0.966375i \(-0.582779\pi\)
−0.257137 + 0.966375i \(0.582779\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 106.334i 0.139729i −0.997556 0.0698645i \(-0.977743\pi\)
0.997556 0.0698645i \(-0.0222567\pi\)
\(762\) 0 0
\(763\) −279.263 −0.366007
\(764\) 0 0
\(765\) −920.605 1192.90i −1.20341 1.55934i
\(766\) 0 0
\(767\) 1288.31i 1.67967i
\(768\) 0 0
\(769\) −410.462 −0.533761 −0.266881 0.963730i \(-0.585993\pi\)
−0.266881 + 0.963730i \(0.585993\pi\)
\(770\) 0 0
\(771\) −419.719 + 854.088i −0.544383 + 1.10777i
\(772\) 0 0
\(773\) 1373.12i 1.77635i 0.459509 + 0.888173i \(0.348025\pi\)
−0.459509 + 0.888173i \(0.651975\pi\)
\(774\) 0 0
\(775\) 383.633 0.495011
\(776\) 0 0
\(777\) −519.567 255.327i −0.668683 0.328607i
\(778\) 0 0
\(779\) 545.929i 0.700808i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 1205.42 244.988i 1.53949 0.312884i
\(784\) 0 0
\(785\) 226.583i 0.288640i
\(786\) 0 0
\(787\) 263.656 0.335014 0.167507 0.985871i \(-0.446428\pi\)
0.167507 + 0.985871i \(0.446428\pi\)
\(788\) 0 0
\(789\) 153.938 313.249i 0.195105 0.397020i
\(790\) 0 0
\(791\) 649.774i 0.821458i
\(792\) 0 0
\(793\) −1420.90 −1.79180
\(794\) 0 0
\(795\) −1826.80 897.731i −2.29786 1.12922i
\(796\) 0 0
\(797\) 33.2222i 0.0416840i 0.999783 + 0.0208420i \(0.00663470\pi\)
−0.999783 + 0.0208420i \(0.993365\pi\)
\(798\) 0 0
\(799\) −196.713 −0.246199
\(800\) 0 0
\(801\) 326.527 251.994i 0.407650 0.314600i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 1899.79 2.35998
\(806\) 0 0
\(807\) −119.487 + 243.144i −0.148063 + 0.301294i
\(808\) 0 0
\(809\) 294.199i 0.363658i −0.983330 0.181829i \(-0.941798\pi\)
0.983330 0.181829i \(-0.0582017\pi\)
\(810\) 0 0
\(811\) −788.003 −0.971644 −0.485822 0.874058i \(-0.661480\pi\)
−0.485822 + 0.874058i \(0.661480\pi\)
\(812\) 0 0
\(813\) 424.141 + 208.433i 0.521699 + 0.256375i
\(814\) 0 0
\(815\) 2008.03i 2.46384i
\(816\) 0 0
\(817\) −134.865 −0.165073
\(818\) 0 0
\(819\) −700.002 907.044i −0.854703 1.10750i
\(820\) 0 0
\(821\) 377.639i 0.459975i 0.973194 + 0.229987i \(0.0738685\pi\)
−0.973194 + 0.229987i \(0.926132\pi\)
\(822\) 0 0
\(823\) 190.681 0.231690 0.115845 0.993267i \(-0.463042\pi\)
0.115845 + 0.993267i \(0.463042\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1170.25i 1.41505i 0.706686 + 0.707527i \(0.250189\pi\)
−0.706686 + 0.707527i \(0.749811\pi\)
\(828\) 0 0
\(829\) 573.179 0.691411 0.345705 0.938343i \(-0.387640\pi\)
0.345705 + 0.938343i \(0.387640\pi\)
\(830\) 0 0
\(831\) 500.738 + 246.075i 0.602573 + 0.296119i
\(832\) 0 0
\(833\) 79.8742i 0.0958874i
\(834\) 0 0
\(835\) 166.963 0.199956
\(836\) 0 0
\(837\) −45.6395 224.562i −0.0545275 0.268294i
\(838\) 0 0
\(839\) 479.253i 0.571220i −0.958346 0.285610i \(-0.907804\pi\)
0.958346 0.285610i \(-0.0921962\pi\)
\(840\) 0 0
\(841\) −1234.54 −1.46794
\(842\) 0 0
\(843\) −622.056 + 1265.82i −0.737908 + 1.50157i
\(844\) 0 0
\(845\) 1146.20i 1.35645i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −642.806 315.890i −0.757133 0.372073i
\(850\) 0 0
\(851\) 825.602i 0.970155i
\(852\) 0 0
\(853\) 41.7560 0.0489519 0.0244759 0.999700i \(-0.492208\pi\)
0.0244759 + 0.999700i \(0.492208\pi\)
\(854\) 0 0
\(855\) −1224.07 + 944.667i −1.43167 + 1.10487i
\(856\) 0 0
\(857\) 394.533i 0.460365i −0.973147 0.230182i \(-0.926068\pi\)
0.973147 0.230182i \(-0.0739323\pi\)
\(858\) 0 0
\(859\) −142.959 −0.166425 −0.0832124 0.996532i \(-0.526518\pi\)
−0.0832124 + 0.996532i \(0.526518\pi\)
\(860\) 0 0
\(861\) 256.458 521.867i 0.297861 0.606118i
\(862\) 0 0
\(863\) 89.9020i 0.104174i 0.998643 + 0.0520869i \(0.0165873\pi\)
−0.998643 + 0.0520869i \(0.983413\pi\)
\(864\) 0 0
\(865\) −2602.64 −3.00883
\(866\) 0 0
\(867\) −296.958 145.932i −0.342512 0.168319i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −1511.51 −1.73538
\(872\) 0 0
\(873\) 30.7280 + 39.8166i 0.0351982 + 0.0456089i
\(874\) 0 0
\(875\) 1232.22i 1.40825i
\(876\) 0 0
\(877\) −643.269 −0.733487 −0.366744 0.930322i \(-0.619527\pi\)
−0.366744 + 0.930322i \(0.619527\pi\)
\(878\) 0 0
\(879\) −671.864 + 1367.18i −0.764350 + 1.55538i
\(880\) 0 0
\(881\) 156.970i 0.178172i 0.996024 + 0.0890860i \(0.0283946\pi\)
−0.996024 + 0.0890860i \(0.971605\pi\)
\(882\) 0 0
\(883\) −1504.02 −1.70330 −0.851651 0.524109i \(-0.824398\pi\)
−0.851651 + 0.524109i \(0.824398\pi\)
\(884\) 0 0
\(885\) 1661.97 + 816.730i 1.87793 + 0.922858i
\(886\) 0 0
\(887\) 1243.76i 1.40221i 0.713057 + 0.701106i \(0.247310\pi\)
−0.713057 + 0.701106i \(0.752690\pi\)
\(888\) 0 0
\(889\) −1557.72 −1.75221
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 201.854i 0.226041i
\(894\) 0 0
\(895\) 83.5240 0.0933229
\(896\) 0 0
\(897\) −720.655 + 1466.46i −0.803406 + 1.63485i
\(898\) 0 0
\(899\) 386.658i 0.430098i
\(900\) 0 0
\(901\) −1618.13 −1.79593
\(902\) 0 0
\(903\) 128.921 + 63.3546i 0.142769 + 0.0701601i
\(904\) 0 0
\(905\) 2592.12i 2.86422i
\(906\) 0 0
\(907\) 198.465 0.218814 0.109407 0.993997i \(-0.465105\pi\)
0.109407 + 0.993997i \(0.465105\pi\)
\(908\) 0 0
\(909\) 804.428 620.810i 0.884960 0.682959i
\(910\) 0 0
\(911\) 923.510i 1.01373i −0.862025 0.506866i \(-0.830804\pi\)
0.862025 0.506866i \(-0.169196\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 900.790 1833.02i 0.984470 2.00330i
\(916\) 0 0
\(917\) 967.793i 1.05539i
\(918\) 0 0
\(919\) 1340.69 1.45886 0.729429 0.684057i \(-0.239786\pi\)
0.729429 + 0.684057i \(0.239786\pi\)
\(920\) 0 0
\(921\) 1250.55 + 614.550i 1.35782 + 0.667264i
\(922\) 0 0
\(923\) 1837.69i 1.99100i
\(924\) 0 0
\(925\) −1198.18 −1.29533
\(926\) 0 0
\(927\) 466.923 + 605.027i 0.503693 + 0.652672i
\(928\) 0 0
\(929\) 1528.15i 1.64495i 0.568805 + 0.822473i \(0.307406\pi\)
−0.568805 + 0.822473i \(0.692594\pi\)
\(930\) 0 0
\(931\) 81.9619 0.0880364
\(932\) 0 0
\(933\) −714.881 + 1454.71i −0.766218 + 1.55918i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 300.687 0.320904 0.160452 0.987044i \(-0.448705\pi\)
0.160452 + 0.987044i \(0.448705\pi\)
\(938\) 0 0
\(939\) −636.938 313.007i −0.678315 0.333340i
\(940\) 0 0
\(941\) 581.086i 0.617520i −0.951140 0.308760i \(-0.900086\pi\)
0.951140 0.308760i \(-0.0999140\pi\)
\(942\) 0 0
\(943\) −829.257 −0.879382
\(944\) 0 0
\(945\) 1613.89 328.005i 1.70782 0.347095i
\(946\) 0 0
\(947\) 1422.46i 1.50207i 0.660264 + 0.751034i \(0.270444\pi\)
−0.660264 + 0.751034i \(0.729556\pi\)
\(948\) 0 0
\(949\) −1854.27 −1.95392
\(950\) 0 0
\(951\) 232.584 473.286i 0.244568 0.497672i
\(952\) 0 0
\(953\) 447.348i 0.469410i 0.972067 + 0.234705i \(0.0754124\pi\)
−0.972067 + 0.234705i \(0.924588\pi\)
\(954\) 0 0
\(955\) −972.617 −1.01845
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 576.875i 0.601538i
\(960\) 0 0
\(961\) −888.968 −0.925045
\(962\) 0 0
\(963\) −290.128 + 223.904i −0.301275 + 0.232506i
\(964\) 0 0
\(965\) 125.628i 0.130185i
\(966\) 0 0
\(967\) −1379.18 −1.42625 −0.713125 0.701037i \(-0.752721\pi\)
−0.713125 + 0.701037i \(0.752721\pi\)
\(968\) 0 0
\(969\) −542.127 + 1103.18i −0.559471 + 1.13847i
\(970\) 0 0
\(971\) 748.375i 0.770726i −0.922765 0.385363i \(-0.874076\pi\)
0.922765 0.385363i \(-0.125924\pi\)
\(972\) 0 0
\(973\) 1334.15 1.37117
\(974\) 0 0
\(975\) −2128.25 1045.87i −2.18282 1.07269i
\(976\) 0 0
\(977\) 37.2883i 0.0381662i −0.999818 0.0190831i \(-0.993925\pi\)
0.999818 0.0190831i \(-0.00607470\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 210.931 + 273.319i 0.215017 + 0.278613i
\(982\) 0 0
\(983\) 394.691i 0.401517i 0.979641 + 0.200759i \(0.0643407\pi\)
−0.979641 + 0.200759i \(0.935659\pi\)
\(984\) 0 0
\(985\) 1332.61 1.35290
\(986\) 0 0
\(987\) 94.8239 192.958i 0.0960728 0.195499i
\(988\) 0 0
\(989\) 204.857i 0.207136i
\(990\) 0 0
\(991\) 8.78560 0.00886538 0.00443269 0.999990i \(-0.498589\pi\)
0.00443269 + 0.999990i \(0.498589\pi\)
\(992\) 0 0
\(993\) 621.959 + 305.646i 0.626344 + 0.307800i
\(994\) 0 0
\(995\) 2091.12i 2.10163i
\(996\) 0 0
\(997\) −786.155 −0.788521 −0.394260 0.918999i \(-0.628999\pi\)
−0.394260 + 0.918999i \(0.628999\pi\)
\(998\) 0 0
\(999\) 142.543 + 701.360i 0.142686 + 0.702062i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.3.e.i.485.6 yes 6
3.2 odd 2 inner 1452.3.e.i.485.5 6
11.10 odd 2 1452.3.e.j.485.6 yes 6
33.32 even 2 1452.3.e.j.485.5 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1452.3.e.i.485.5 6 3.2 odd 2 inner
1452.3.e.i.485.6 yes 6 1.1 even 1 trivial
1452.3.e.j.485.5 yes 6 33.32 even 2
1452.3.e.j.485.6 yes 6 11.10 odd 2