Properties

Label 1452.3.e.i
Level $1452$
Weight $3$
Character orbit 1452.e
Analytic conductor $39.564$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,3,Mod(485,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.485"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,4,0,0,0,-16,0,-6,0,0,0,6,0,-12,0,0,0,-12,0,-4,0,0,0,-44, 0,10,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5641343851\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.46805967296.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 6x^{4} + 2x^{3} + 62x^{2} + 174x + 486 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} + \beta_{2} q^{5} + (2 \beta_{5} + \beta_{3} - \beta_1 - 2) q^{7} + ( - \beta_{5} + \beta_{4} - 1) q^{9} + ( - \beta_{5} + 3 \beta_{3} - 3 \beta_1 + 3) q^{13} + (4 \beta_{5} + \beta_{4} + 2 \beta_{3} + \cdots - 1) q^{15}+ \cdots + (\beta_{5} - 8 \beta_{3} + 8 \beta_1 + 37) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{3} - 16 q^{7} - 6 q^{9} + 6 q^{13} - 12 q^{15} - 12 q^{19} - 4 q^{21} - 44 q^{25} + 10 q^{27} + 48 q^{31} + 102 q^{37} + 150 q^{39} + 52 q^{43} - 14 q^{45} - 54 q^{49} + 22 q^{51} + 8 q^{57}+ \cdots + 254 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 6x^{4} + 2x^{3} + 62x^{2} + 174x + 486 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{5} + 20\nu^{4} - 91\nu^{3} + 157\nu^{2} - 246\nu + 243 ) / 243 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - \nu^{4} + 5\nu^{3} + 7\nu^{2} + 69\nu + 162 ) / 81 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -4\nu^{5} + 13\nu^{4} - 20\nu^{3} + 179\nu^{2} - 492\nu ) / 243 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -4\nu^{5} + 13\nu^{4} - 20\nu^{3} - 64\nu^{2} - 6\nu - 486 ) / 243 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{4} + 2\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{5} + 3\beta_{4} + 6\beta_{3} - 3\beta_{2} - 2\beta _1 - 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 23\beta_{5} + 4\beta_{4} + 36\beta_{3} - 22\beta _1 - 26 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 15\beta_{5} - 18\beta_{4} + 87\beta_{3} + 15\beta_{2} - 95\beta _1 - 159 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
485.1
2.84805 + 2.36320i
2.84805 2.36320i
−0.155595 + 2.76850i
−0.155595 2.76850i
−1.69245 + 1.32314i
−1.69245 1.32314i
0 −1.84805 2.36320i 0 2.88401i 0 −6.13687 0 −2.16942 + 8.73462i 0
485.2 0 −1.84805 + 2.36320i 0 2.88401i 0 −6.13687 0 −2.16942 8.73462i 0
485.3 0 1.15560 2.76850i 0 4.29893i 0 5.41679 0 −6.32920 6.39853i 0
485.4 0 1.15560 + 2.76850i 0 4.29893i 0 5.41679 0 −6.32920 + 6.39853i 0
485.5 0 2.69245 1.32314i 0 8.37865i 0 −7.27992 0 5.49862 7.12497i 0
485.6 0 2.69245 + 1.32314i 0 8.37865i 0 −7.27992 0 5.49862 + 7.12497i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 485.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1452.3.e.i 6
3.b odd 2 1 inner 1452.3.e.i 6
11.b odd 2 1 1452.3.e.j yes 6
33.d even 2 1 1452.3.e.j yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1452.3.e.i 6 1.a even 1 1 trivial
1452.3.e.i 6 3.b odd 2 1 inner
1452.3.e.j yes 6 11.b odd 2 1
1452.3.e.j yes 6 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1452, [\chi])\):

\( T_{5}^{6} + 97T_{5}^{4} + 2035T_{5}^{2} + 10791 \) Copy content Toggle raw display
\( T_{7}^{3} + 8T_{7}^{2} - 28T_{7} - 242 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 4 T^{5} + \cdots + 729 \) Copy content Toggle raw display
$5$ \( T^{6} + 97 T^{4} + \cdots + 10791 \) Copy content Toggle raw display
$7$ \( (T^{3} + 8 T^{2} + \cdots - 242)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( (T^{3} - 3 T^{2} - 259 T + 99)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + 781 T^{4} + \cdots + 1305711 \) Copy content Toggle raw display
$19$ \( (T^{3} + 6 T^{2} + \cdots + 4686)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 2852 T^{4} + \cdots + 858143484 \) Copy content Toggle raw display
$29$ \( T^{6} + 3509 T^{4} + \cdots + 951863319 \) Copy content Toggle raw display
$31$ \( (T^{3} - 24 T^{2} + \cdots + 1746)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} - 51 T^{2} + \cdots + 2763)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 1421919279 \) Copy content Toggle raw display
$43$ \( (T^{3} - 26 T^{2} + \cdots - 8404)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 8888 T^{4} + \cdots + 423050364 \) Copy content Toggle raw display
$53$ \( T^{6} + 7249 T^{4} + \cdots + 11751399 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 232726648176 \) Copy content Toggle raw display
$61$ \( (T^{3} + 76 T^{2} + \cdots - 495088)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} + 12 T^{2} + \cdots - 5886)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 69181359984 \) Copy content Toggle raw display
$73$ \( (T^{3} + 140 T^{2} + \cdots - 445500)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} - 136 T^{2} + \cdots + 320254)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 103835361564 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 423278798679 \) Copy content Toggle raw display
$97$ \( (T^{3} - 127 T^{2} + \cdots - 17729)^{2} \) Copy content Toggle raw display
show more
show less