Properties

Label 2-1452-3.2-c2-0-68
Degree $2$
Conductor $1452$
Sign $-0.897 + 0.441i$
Analytic cond. $39.5641$
Root an. cond. $6.29000$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.69 − 1.32i)3-s − 8.37i·5-s − 7.27·7-s + (5.49 − 7.12i)9-s + 17.4·13-s + (−11.0 − 22.5i)15-s − 19.9i·17-s + 20.5·19-s + (−19.6 + 9.63i)21-s − 31.1i·23-s − 45.2·25-s + (5.37 − 26.4i)27-s + 45.5i·29-s − 8.48·31-s + 60.9i·35-s + ⋯
L(s)  = 1  + (0.897 − 0.441i)3-s − 1.67i·5-s − 1.03·7-s + (0.610 − 0.791i)9-s + 1.34·13-s + (−0.739 − 1.50i)15-s − 1.17i·17-s + 1.07·19-s + (−0.933 + 0.458i)21-s − 1.35i·23-s − 1.80·25-s + (0.199 − 0.979i)27-s + 1.57i·29-s − 0.273·31-s + 1.74i·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.897 + 0.441i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.897 + 0.441i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1452\)    =    \(2^{2} \cdot 3 \cdot 11^{2}\)
Sign: $-0.897 + 0.441i$
Analytic conductor: \(39.5641\)
Root analytic conductor: \(6.29000\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1452} (485, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1452,\ (\ :1),\ -0.897 + 0.441i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.356112671\)
\(L(\frac12)\) \(\approx\) \(2.356112671\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-2.69 + 1.32i)T \)
11 \( 1 \)
good5 \( 1 + 8.37iT - 25T^{2} \)
7 \( 1 + 7.27T + 49T^{2} \)
13 \( 1 - 17.4T + 169T^{2} \)
17 \( 1 + 19.9iT - 289T^{2} \)
19 \( 1 - 20.5T + 361T^{2} \)
23 \( 1 + 31.1iT - 529T^{2} \)
29 \( 1 - 45.5iT - 841T^{2} \)
31 \( 1 + 8.48T + 961T^{2} \)
37 \( 1 - 26.5T + 1.36e3T^{2} \)
41 \( 1 + 26.6iT - 1.68e3T^{2} \)
43 \( 1 + 6.57T + 1.84e3T^{2} \)
47 \( 1 + 9.84iT - 2.20e3T^{2} \)
53 \( 1 + 80.9iT - 2.80e3T^{2} \)
59 \( 1 - 73.6iT - 3.48e3T^{2} \)
61 \( 1 + 81.2T + 3.72e3T^{2} \)
67 \( 1 + 86.4T + 4.48e3T^{2} \)
71 \( 1 - 105. iT - 5.04e3T^{2} \)
73 \( 1 + 106.T + 5.32e3T^{2} \)
79 \( 1 - 74.6T + 6.24e3T^{2} \)
83 \( 1 - 56.4iT - 6.88e3T^{2} \)
89 \( 1 - 45.8iT - 7.92e3T^{2} \)
97 \( 1 - 5.58T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.937211251182375409113069062264, −8.464616669106263567640022643775, −7.47466682931994335232708894503, −6.63923164961598939733903959578, −5.67830742266898520260060332163, −4.69941363386687386177353121853, −3.71096837946244842271664235782, −2.86079228298298958748228944151, −1.41491940307560568883213914105, −0.60110571070774308170480483300, 1.73481085132354448555946540746, 3.08705685869769922806992203448, 3.31659379986469537579805299093, 4.20195799019062296322894431630, 5.94988395956141413155181457661, 6.29488822317785172480218493569, 7.45249058127982944901391937629, 7.87820813619217361579429912562, 9.070557498585086434848616639001, 9.715543315810857614290070690232

Graph of the $Z$-function along the critical line