Properties

Label 1452.3.e.h.485.1
Level $1452$
Weight $3$
Character 1452.485
Analytic conductor $39.564$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,3,Mod(485,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.485"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,0,0,0,-28,0,0,0,-48,0,32,0,0,0,56,0,0,0,0,0,-108, 0,92,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5641343851\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 11x^{2} - 10x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 485.1
Root \(0.500000 + 0.244099i\) of defining polynomial
Character \(\chi\) \(=\) 1452.485
Dual form 1452.3.e.h.485.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 2.82843i) q^{3} -3.80482i q^{5} +9.38083 q^{7} +(-7.00000 + 5.65685i) q^{9} -2.61917 q^{13} +(-10.7617 + 3.80482i) q^{15} +24.5802i q^{17} +32.7617 q^{19} +(-9.38083 - 26.5330i) q^{21} -28.3850i q^{23} +10.5233 q^{25} +(23.0000 + 14.1421i) q^{27} +7.60964i q^{29} +24.7617 q^{31} -35.6924i q^{35} +48.7617 q^{37} +(2.61917 + 7.40813i) q^{39} +26.3315i q^{41} +11.2383 q^{43} +(21.5233 + 26.6338i) q^{45} -13.1657i q^{47} +39.0000 q^{49} +(69.5233 - 24.5802i) q^{51} +60.5749i q^{53} +(-32.7617 - 92.6640i) q^{57} -107.682i q^{59} +21.3808 q^{61} +(-65.6658 + 53.0660i) q^{63} +9.96547i q^{65} -41.0467 q^{67} +(-80.2850 + 28.3850i) q^{69} +92.7647i q^{71} -67.8083 q^{73} +(-10.5233 - 29.7645i) q^{75} +57.3808 q^{79} +(17.0000 - 79.1960i) q^{81} +143.374i q^{83} +93.5233 q^{85} +(21.5233 - 7.60964i) q^{87} -41.5508i q^{89} -24.5700 q^{91} +(-24.7617 - 70.0366i) q^{93} -124.652i q^{95} -127.523 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 28 q^{9} - 48 q^{13} + 32 q^{15} + 56 q^{19} - 108 q^{25} + 92 q^{27} + 24 q^{31} + 120 q^{37} + 48 q^{39} + 120 q^{43} - 64 q^{45} + 156 q^{49} + 128 q^{51} - 56 q^{57} + 48 q^{61} + 136 q^{67}+ \cdots - 360 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 2.82843i −0.333333 0.942809i
\(4\) 0 0
\(5\) 3.80482i 0.760964i −0.924788 0.380482i \(-0.875758\pi\)
0.924788 0.380482i \(-0.124242\pi\)
\(6\) 0 0
\(7\) 9.38083 1.34012 0.670059 0.742307i \(-0.266269\pi\)
0.670059 + 0.742307i \(0.266269\pi\)
\(8\) 0 0
\(9\) −7.00000 + 5.65685i −0.777778 + 0.628539i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −2.61917 −0.201474 −0.100737 0.994913i \(-0.532120\pi\)
−0.100737 + 0.994913i \(0.532120\pi\)
\(14\) 0 0
\(15\) −10.7617 + 3.80482i −0.717444 + 0.253655i
\(16\) 0 0
\(17\) 24.5802i 1.44589i 0.690903 + 0.722947i \(0.257213\pi\)
−0.690903 + 0.722947i \(0.742787\pi\)
\(18\) 0 0
\(19\) 32.7617 1.72430 0.862149 0.506655i \(-0.169118\pi\)
0.862149 + 0.506655i \(0.169118\pi\)
\(20\) 0 0
\(21\) −9.38083 26.5330i −0.446706 1.26348i
\(22\) 0 0
\(23\) 28.3850i 1.23413i −0.786912 0.617066i \(-0.788321\pi\)
0.786912 0.617066i \(-0.211679\pi\)
\(24\) 0 0
\(25\) 10.5233 0.420933
\(26\) 0 0
\(27\) 23.0000 + 14.1421i 0.851852 + 0.523783i
\(28\) 0 0
\(29\) 7.60964i 0.262402i 0.991356 + 0.131201i \(0.0418833\pi\)
−0.991356 + 0.131201i \(0.958117\pi\)
\(30\) 0 0
\(31\) 24.7617 0.798763 0.399382 0.916785i \(-0.369225\pi\)
0.399382 + 0.916785i \(0.369225\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 35.6924i 1.01978i
\(36\) 0 0
\(37\) 48.7617 1.31788 0.658941 0.752194i \(-0.271005\pi\)
0.658941 + 0.752194i \(0.271005\pi\)
\(38\) 0 0
\(39\) 2.61917 + 7.40813i 0.0671582 + 0.189952i
\(40\) 0 0
\(41\) 26.3315i 0.642231i 0.947040 + 0.321116i \(0.104058\pi\)
−0.947040 + 0.321116i \(0.895942\pi\)
\(42\) 0 0
\(43\) 11.2383 0.261357 0.130678 0.991425i \(-0.458284\pi\)
0.130678 + 0.991425i \(0.458284\pi\)
\(44\) 0 0
\(45\) 21.5233 + 26.6338i 0.478296 + 0.591861i
\(46\) 0 0
\(47\) 13.1657i 0.280122i −0.990143 0.140061i \(-0.955270\pi\)
0.990143 0.140061i \(-0.0447299\pi\)
\(48\) 0 0
\(49\) 39.0000 0.795918
\(50\) 0 0
\(51\) 69.5233 24.5802i 1.36320 0.481965i
\(52\) 0 0
\(53\) 60.5749i 1.14292i 0.820629 + 0.571461i \(0.193623\pi\)
−0.820629 + 0.571461i \(0.806377\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −32.7617 92.6640i −0.574766 1.62568i
\(58\) 0 0
\(59\) 107.682i 1.82511i −0.408949 0.912557i \(-0.634105\pi\)
0.408949 0.912557i \(-0.365895\pi\)
\(60\) 0 0
\(61\) 21.3808 0.350505 0.175253 0.984523i \(-0.443926\pi\)
0.175253 + 0.984523i \(0.443926\pi\)
\(62\) 0 0
\(63\) −65.6658 + 53.0660i −1.04231 + 0.842317i
\(64\) 0 0
\(65\) 9.96547i 0.153315i
\(66\) 0 0
\(67\) −41.0467 −0.612637 −0.306318 0.951929i \(-0.599097\pi\)
−0.306318 + 0.951929i \(0.599097\pi\)
\(68\) 0 0
\(69\) −80.2850 + 28.3850i −1.16355 + 0.411377i
\(70\) 0 0
\(71\) 92.7647i 1.30655i 0.757123 + 0.653273i \(0.226605\pi\)
−0.757123 + 0.653273i \(0.773395\pi\)
\(72\) 0 0
\(73\) −67.8083 −0.928881 −0.464441 0.885604i \(-0.653745\pi\)
−0.464441 + 0.885604i \(0.653745\pi\)
\(74\) 0 0
\(75\) −10.5233 29.7645i −0.140311 0.396859i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 57.3808 0.726340 0.363170 0.931723i \(-0.381694\pi\)
0.363170 + 0.931723i \(0.381694\pi\)
\(80\) 0 0
\(81\) 17.0000 79.1960i 0.209877 0.977728i
\(82\) 0 0
\(83\) 143.374i 1.72740i 0.504007 + 0.863700i \(0.331859\pi\)
−0.504007 + 0.863700i \(0.668141\pi\)
\(84\) 0 0
\(85\) 93.5233 1.10027
\(86\) 0 0
\(87\) 21.5233 7.60964i 0.247395 0.0874672i
\(88\) 0 0
\(89\) 41.5508i 0.466863i −0.972373 0.233431i \(-0.925005\pi\)
0.972373 0.233431i \(-0.0749954\pi\)
\(90\) 0 0
\(91\) −24.5700 −0.270000
\(92\) 0 0
\(93\) −24.7617 70.0366i −0.266254 0.753081i
\(94\) 0 0
\(95\) 124.652i 1.31213i
\(96\) 0 0
\(97\) −127.523 −1.31467 −0.657337 0.753597i \(-0.728317\pi\)
−0.657337 + 0.753597i \(0.728317\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 86.6041i 0.857466i −0.903431 0.428733i \(-0.858960\pi\)
0.903431 0.428733i \(-0.141040\pi\)
\(102\) 0 0
\(103\) 117.047 1.13638 0.568188 0.822899i \(-0.307645\pi\)
0.568188 + 0.822899i \(0.307645\pi\)
\(104\) 0 0
\(105\) −100.953 + 35.6924i −0.961460 + 0.339928i
\(106\) 0 0
\(107\) 119.398i 1.11587i −0.829883 0.557937i \(-0.811593\pi\)
0.829883 0.557937i \(-0.188407\pi\)
\(108\) 0 0
\(109\) 108.712 0.997362 0.498681 0.866786i \(-0.333818\pi\)
0.498681 + 0.866786i \(0.333818\pi\)
\(110\) 0 0
\(111\) −48.7617 137.919i −0.439294 1.24251i
\(112\) 0 0
\(113\) 45.0533i 0.398702i 0.979928 + 0.199351i \(0.0638834\pi\)
−0.979928 + 0.199351i \(0.936117\pi\)
\(114\) 0 0
\(115\) −108.000 −0.939130
\(116\) 0 0
\(117\) 18.3342 14.8163i 0.156702 0.126635i
\(118\) 0 0
\(119\) 230.583i 1.93767i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 74.4767 26.3315i 0.605501 0.214077i
\(124\) 0 0
\(125\) 135.160i 1.08128i
\(126\) 0 0
\(127\) −56.4275 −0.444311 −0.222155 0.975011i \(-0.571309\pi\)
−0.222155 + 0.975011i \(0.571309\pi\)
\(128\) 0 0
\(129\) −11.2383 31.7868i −0.0871189 0.246409i
\(130\) 0 0
\(131\) 170.310i 1.30008i −0.759901 0.650039i \(-0.774753\pi\)
0.759901 0.650039i \(-0.225247\pi\)
\(132\) 0 0
\(133\) 307.332 2.31076
\(134\) 0 0
\(135\) 53.8083 87.5109i 0.398580 0.648229i
\(136\) 0 0
\(137\) 268.026i 1.95640i −0.207671 0.978199i \(-0.566588\pi\)
0.207671 0.978199i \(-0.433412\pi\)
\(138\) 0 0
\(139\) −18.9533 −0.136355 −0.0681775 0.997673i \(-0.521718\pi\)
−0.0681775 + 0.997673i \(0.521718\pi\)
\(140\) 0 0
\(141\) −37.2383 + 13.1657i −0.264102 + 0.0933740i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 28.9533 0.199678
\(146\) 0 0
\(147\) −39.0000 110.309i −0.265306 0.750399i
\(148\) 0 0
\(149\) 71.9894i 0.483150i 0.970382 + 0.241575i \(0.0776640\pi\)
−0.970382 + 0.241575i \(0.922336\pi\)
\(150\) 0 0
\(151\) −292.712 −1.93849 −0.969247 0.246092i \(-0.920854\pi\)
−0.969247 + 0.246092i \(0.920854\pi\)
\(152\) 0 0
\(153\) −139.047 172.061i −0.908802 1.12458i
\(154\) 0 0
\(155\) 94.2137i 0.607831i
\(156\) 0 0
\(157\) 163.808 1.04337 0.521683 0.853140i \(-0.325305\pi\)
0.521683 + 0.853140i \(0.325305\pi\)
\(158\) 0 0
\(159\) 171.332 60.5749i 1.07756 0.380974i
\(160\) 0 0
\(161\) 266.275i 1.65388i
\(162\) 0 0
\(163\) 81.0467 0.497219 0.248609 0.968604i \(-0.420026\pi\)
0.248609 + 0.968604i \(0.420026\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 215.363i 1.28960i −0.764351 0.644801i \(-0.776940\pi\)
0.764351 0.644801i \(-0.223060\pi\)
\(168\) 0 0
\(169\) −162.140 −0.959408
\(170\) 0 0
\(171\) −229.332 + 185.328i −1.34112 + 1.08379i
\(172\) 0 0
\(173\) 78.9944i 0.456615i −0.973589 0.228308i \(-0.926681\pi\)
0.973589 0.228308i \(-0.0733192\pi\)
\(174\) 0 0
\(175\) 98.7175 0.564100
\(176\) 0 0
\(177\) −304.570 + 107.682i −1.72073 + 0.608371i
\(178\) 0 0
\(179\) 198.997i 1.11172i 0.831277 + 0.555859i \(0.187611\pi\)
−0.831277 + 0.555859i \(0.812389\pi\)
\(180\) 0 0
\(181\) −214.000 −1.18232 −0.591160 0.806554i \(-0.701330\pi\)
−0.591160 + 0.806554i \(0.701330\pi\)
\(182\) 0 0
\(183\) −21.3808 60.4741i −0.116835 0.330460i
\(184\) 0 0
\(185\) 185.529i 1.00286i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 215.759 + 132.665i 1.14158 + 0.701931i
\(190\) 0 0
\(191\) 137.818i 0.721560i −0.932651 0.360780i \(-0.882510\pi\)
0.932651 0.360780i \(-0.117490\pi\)
\(192\) 0 0
\(193\) 86.5700 0.448549 0.224275 0.974526i \(-0.427999\pi\)
0.224275 + 0.974526i \(0.427999\pi\)
\(194\) 0 0
\(195\) 28.1866 9.96547i 0.144547 0.0511050i
\(196\) 0 0
\(197\) 101.823i 0.516870i −0.966029 0.258435i \(-0.916793\pi\)
0.966029 0.258435i \(-0.0832068\pi\)
\(198\) 0 0
\(199\) 190.285 0.956206 0.478103 0.878304i \(-0.341325\pi\)
0.478103 + 0.878304i \(0.341325\pi\)
\(200\) 0 0
\(201\) 41.0467 + 116.097i 0.204212 + 0.577599i
\(202\) 0 0
\(203\) 71.3848i 0.351649i
\(204\) 0 0
\(205\) 100.187 0.488715
\(206\) 0 0
\(207\) 160.570 + 198.695i 0.775700 + 0.959880i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 221.047 1.04761 0.523807 0.851837i \(-0.324511\pi\)
0.523807 + 0.851837i \(0.324511\pi\)
\(212\) 0 0
\(213\) 262.378 92.7647i 1.23182 0.435515i
\(214\) 0 0
\(215\) 42.7599i 0.198883i
\(216\) 0 0
\(217\) 232.285 1.07044
\(218\) 0 0
\(219\) 67.8083 + 191.791i 0.309627 + 0.875757i
\(220\) 0 0
\(221\) 64.3797i 0.291311i
\(222\) 0 0
\(223\) 66.5700 0.298520 0.149260 0.988798i \(-0.452311\pi\)
0.149260 + 0.988798i \(0.452311\pi\)
\(224\) 0 0
\(225\) −73.6633 + 59.5289i −0.327392 + 0.264573i
\(226\) 0 0
\(227\) 392.137i 1.72747i 0.503943 + 0.863737i \(0.331882\pi\)
−0.503943 + 0.863737i \(0.668118\pi\)
\(228\) 0 0
\(229\) −135.808 −0.593049 −0.296525 0.955025i \(-0.595828\pi\)
−0.296525 + 0.955025i \(0.595828\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 45.0533i 0.193362i 0.995315 + 0.0966809i \(0.0308226\pi\)
−0.995315 + 0.0966809i \(0.969177\pi\)
\(234\) 0 0
\(235\) −50.0933 −0.213163
\(236\) 0 0
\(237\) −57.3808 162.298i −0.242113 0.684800i
\(238\) 0 0
\(239\) 382.776i 1.60157i 0.598951 + 0.800786i \(0.295585\pi\)
−0.598951 + 0.800786i \(0.704415\pi\)
\(240\) 0 0
\(241\) −71.5233 −0.296777 −0.148389 0.988929i \(-0.547409\pi\)
−0.148389 + 0.988929i \(0.547409\pi\)
\(242\) 0 0
\(243\) −241.000 + 31.1127i −0.991770 + 0.128036i
\(244\) 0 0
\(245\) 148.388i 0.605666i
\(246\) 0 0
\(247\) −85.8083 −0.347402
\(248\) 0 0
\(249\) 405.523 143.374i 1.62861 0.575800i
\(250\) 0 0
\(251\) 76.6386i 0.305333i 0.988278 + 0.152667i \(0.0487861\pi\)
−0.988278 + 0.152667i \(0.951214\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −93.5233 264.524i −0.366758 1.03735i
\(256\) 0 0
\(257\) 341.225i 1.32772i −0.747855 0.663862i \(-0.768916\pi\)
0.747855 0.663862i \(-0.231084\pi\)
\(258\) 0 0
\(259\) 457.425 1.76612
\(260\) 0 0
\(261\) −43.0467 53.2675i −0.164930 0.204090i
\(262\) 0 0
\(263\) 229.978i 0.874442i 0.899354 + 0.437221i \(0.144037\pi\)
−0.899354 + 0.437221i \(0.855963\pi\)
\(264\) 0 0
\(265\) 230.477 0.869723
\(266\) 0 0
\(267\) −117.523 + 41.5508i −0.440162 + 0.155621i
\(268\) 0 0
\(269\) 72.2916i 0.268742i 0.990931 + 0.134371i \(0.0429014\pi\)
−0.990931 + 0.134371i \(0.957099\pi\)
\(270\) 0 0
\(271\) −431.759 −1.59321 −0.796604 0.604502i \(-0.793372\pi\)
−0.796604 + 0.604502i \(0.793372\pi\)
\(272\) 0 0
\(273\) 24.5700 + 69.4944i 0.0899999 + 0.254558i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −432.142 −1.56008 −0.780041 0.625729i \(-0.784802\pi\)
−0.780041 + 0.625729i \(0.784802\pi\)
\(278\) 0 0
\(279\) −173.332 + 140.073i −0.621260 + 0.502054i
\(280\) 0 0
\(281\) 77.2432i 0.274887i −0.990510 0.137443i \(-0.956111\pi\)
0.990510 0.137443i \(-0.0438885\pi\)
\(282\) 0 0
\(283\) 94.3834 0.333510 0.166755 0.985998i \(-0.446671\pi\)
0.166755 + 0.985998i \(0.446671\pi\)
\(284\) 0 0
\(285\) −352.570 + 124.652i −1.23709 + 0.437377i
\(286\) 0 0
\(287\) 247.011i 0.860666i
\(288\) 0 0
\(289\) −315.187 −1.09061
\(290\) 0 0
\(291\) 127.523 + 360.690i 0.438224 + 1.23949i
\(292\) 0 0
\(293\) 167.412i 0.571373i −0.958323 0.285686i \(-0.907778\pi\)
0.958323 0.285686i \(-0.0922215\pi\)
\(294\) 0 0
\(295\) −409.710 −1.38885
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 74.3452i 0.248646i
\(300\) 0 0
\(301\) 105.425 0.350249
\(302\) 0 0
\(303\) −244.953 + 86.6041i −0.808427 + 0.285822i
\(304\) 0 0
\(305\) 81.3503i 0.266722i
\(306\) 0 0
\(307\) 163.140 0.531401 0.265700 0.964056i \(-0.414397\pi\)
0.265700 + 0.964056i \(0.414397\pi\)
\(308\) 0 0
\(309\) −117.047 331.058i −0.378792 1.07138i
\(310\) 0 0
\(311\) 394.128i 1.26729i −0.773623 0.633646i \(-0.781558\pi\)
0.773623 0.633646i \(-0.218442\pi\)
\(312\) 0 0
\(313\) 409.233 1.30745 0.653727 0.756730i \(-0.273204\pi\)
0.653727 + 0.756730i \(0.273204\pi\)
\(314\) 0 0
\(315\) 201.907 + 249.847i 0.640974 + 0.793164i
\(316\) 0 0
\(317\) 349.137i 1.10138i −0.834710 0.550689i \(-0.814365\pi\)
0.834710 0.550689i \(-0.185635\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −337.710 + 119.398i −1.05206 + 0.371958i
\(322\) 0 0
\(323\) 805.288i 2.49315i
\(324\) 0 0
\(325\) −27.5624 −0.0848073
\(326\) 0 0
\(327\) −108.712 307.485i −0.332454 0.940322i
\(328\) 0 0
\(329\) 123.506i 0.375397i
\(330\) 0 0
\(331\) 254.000 0.767372 0.383686 0.923464i \(-0.374655\pi\)
0.383686 + 0.923464i \(0.374655\pi\)
\(332\) 0 0
\(333\) −341.332 + 275.838i −1.02502 + 0.828341i
\(334\) 0 0
\(335\) 156.175i 0.466195i
\(336\) 0 0
\(337\) −367.425 −1.09028 −0.545141 0.838344i \(-0.683524\pi\)
−0.545141 + 0.838344i \(0.683524\pi\)
\(338\) 0 0
\(339\) 127.430 45.0533i 0.375900 0.132901i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −93.8083 −0.273494
\(344\) 0 0
\(345\) 108.000 + 305.470i 0.313043 + 0.885421i
\(346\) 0 0
\(347\) 386.883i 1.11494i 0.830198 + 0.557468i \(0.188227\pi\)
−0.830198 + 0.557468i \(0.811773\pi\)
\(348\) 0 0
\(349\) 412.811 1.18284 0.591420 0.806364i \(-0.298568\pi\)
0.591420 + 0.806364i \(0.298568\pi\)
\(350\) 0 0
\(351\) −60.2409 37.0406i −0.171626 0.105529i
\(352\) 0 0
\(353\) 259.812i 0.736012i 0.929823 + 0.368006i \(0.119959\pi\)
−0.929823 + 0.368006i \(0.880041\pi\)
\(354\) 0 0
\(355\) 352.953 0.994235
\(356\) 0 0
\(357\) 652.187 230.583i 1.82685 0.645890i
\(358\) 0 0
\(359\) 233.481i 0.650364i 0.945651 + 0.325182i \(0.105426\pi\)
−0.945651 + 0.325182i \(0.894574\pi\)
\(360\) 0 0
\(361\) 712.327 1.97320
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 257.999i 0.706845i
\(366\) 0 0
\(367\) 524.280 1.42856 0.714278 0.699862i \(-0.246755\pi\)
0.714278 + 0.699862i \(0.246755\pi\)
\(368\) 0 0
\(369\) −148.953 184.320i −0.403668 0.499513i
\(370\) 0 0
\(371\) 568.243i 1.53165i
\(372\) 0 0
\(373\) 534.521 1.43303 0.716516 0.697571i \(-0.245736\pi\)
0.716516 + 0.697571i \(0.245736\pi\)
\(374\) 0 0
\(375\) −382.290 + 135.160i −1.01944 + 0.360427i
\(376\) 0 0
\(377\) 19.9309i 0.0528672i
\(378\) 0 0
\(379\) −465.233 −1.22753 −0.613764 0.789489i \(-0.710345\pi\)
−0.613764 + 0.789489i \(0.710345\pi\)
\(380\) 0 0
\(381\) 56.4275 + 159.601i 0.148104 + 0.418900i
\(382\) 0 0
\(383\) 140.111i 0.365826i −0.983129 0.182913i \(-0.941447\pi\)
0.983129 0.182913i \(-0.0585527\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −78.6684 + 63.5736i −0.203277 + 0.164273i
\(388\) 0 0
\(389\) 651.104i 1.67379i 0.547363 + 0.836895i \(0.315632\pi\)
−0.547363 + 0.836895i \(0.684368\pi\)
\(390\) 0 0
\(391\) 697.710 1.78442
\(392\) 0 0
\(393\) −481.710 + 170.310i −1.22573 + 0.433359i
\(394\) 0 0
\(395\) 218.324i 0.552719i
\(396\) 0 0
\(397\) −129.617 −0.326490 −0.163245 0.986586i \(-0.552196\pi\)
−0.163245 + 0.986586i \(0.552196\pi\)
\(398\) 0 0
\(399\) −307.332 869.265i −0.770255 2.17861i
\(400\) 0 0
\(401\) 328.299i 0.818701i −0.912377 0.409350i \(-0.865755\pi\)
0.912377 0.409350i \(-0.134245\pi\)
\(402\) 0 0
\(403\) −64.8550 −0.160930
\(404\) 0 0
\(405\) −301.327 64.6820i −0.744016 0.159709i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −245.715 −0.600770 −0.300385 0.953818i \(-0.597115\pi\)
−0.300385 + 0.953818i \(0.597115\pi\)
\(410\) 0 0
\(411\) −758.093 + 268.026i −1.84451 + 0.652133i
\(412\) 0 0
\(413\) 1010.14i 2.44587i
\(414\) 0 0
\(415\) 545.513 1.31449
\(416\) 0 0
\(417\) 18.9533 + 53.6082i 0.0454517 + 0.128557i
\(418\) 0 0
\(419\) 324.859i 0.775320i −0.921803 0.387660i \(-0.873284\pi\)
0.921803 0.387660i \(-0.126716\pi\)
\(420\) 0 0
\(421\) 420.378 0.998523 0.499262 0.866451i \(-0.333605\pi\)
0.499262 + 0.866451i \(0.333605\pi\)
\(422\) 0 0
\(423\) 74.4767 + 92.1602i 0.176068 + 0.217873i
\(424\) 0 0
\(425\) 258.666i 0.608625i
\(426\) 0 0
\(427\) 200.570 0.469719
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 119.941i 0.278285i −0.990272 0.139142i \(-0.955565\pi\)
0.990272 0.139142i \(-0.0444345\pi\)
\(432\) 0 0
\(433\) −395.327 −0.912994 −0.456497 0.889725i \(-0.650896\pi\)
−0.456497 + 0.889725i \(0.650896\pi\)
\(434\) 0 0
\(435\) −28.9533 81.8924i −0.0665594 0.188258i
\(436\) 0 0
\(437\) 929.941i 2.12801i
\(438\) 0 0
\(439\) 73.9508 0.168453 0.0842264 0.996447i \(-0.473158\pi\)
0.0842264 + 0.996447i \(0.473158\pi\)
\(440\) 0 0
\(441\) −273.000 + 220.617i −0.619048 + 0.500266i
\(442\) 0 0
\(443\) 86.0619i 0.194271i 0.995271 + 0.0971354i \(0.0309680\pi\)
−0.995271 + 0.0971354i \(0.969032\pi\)
\(444\) 0 0
\(445\) −158.093 −0.355266
\(446\) 0 0
\(447\) 203.617 71.9894i 0.455518 0.161050i
\(448\) 0 0
\(449\) 202.438i 0.450863i −0.974259 0.225432i \(-0.927621\pi\)
0.974259 0.225432i \(-0.0723792\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 292.712 + 827.916i 0.646164 + 1.82763i
\(454\) 0 0
\(455\) 93.4844i 0.205460i
\(456\) 0 0
\(457\) 888.948 1.94518 0.972591 0.232522i \(-0.0746978\pi\)
0.972591 + 0.232522i \(0.0746978\pi\)
\(458\) 0 0
\(459\) −347.617 + 565.345i −0.757335 + 1.23169i
\(460\) 0 0
\(461\) 657.807i 1.42691i 0.700699 + 0.713457i \(0.252872\pi\)
−0.700699 + 0.713457i \(0.747128\pi\)
\(462\) 0 0
\(463\) 371.907 0.803254 0.401627 0.915803i \(-0.368445\pi\)
0.401627 + 0.915803i \(0.368445\pi\)
\(464\) 0 0
\(465\) −266.477 + 94.2137i −0.573068 + 0.202610i
\(466\) 0 0
\(467\) 588.778i 1.26077i 0.776284 + 0.630384i \(0.217102\pi\)
−0.776284 + 0.630384i \(0.782898\pi\)
\(468\) 0 0
\(469\) −385.052 −0.821006
\(470\) 0 0
\(471\) −163.808 463.320i −0.347788 0.983694i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 344.762 0.725814
\(476\) 0 0
\(477\) −342.663 424.024i −0.718372 0.888940i
\(478\) 0 0
\(479\) 547.165i 1.14231i −0.820843 0.571154i \(-0.806496\pi\)
0.820843 0.571154i \(-0.193504\pi\)
\(480\) 0 0
\(481\) −127.715 −0.265520
\(482\) 0 0
\(483\) −753.140 + 266.275i −1.55930 + 0.551294i
\(484\) 0 0
\(485\) 485.204i 1.00042i
\(486\) 0 0
\(487\) 33.9016 0.0696132 0.0348066 0.999394i \(-0.488918\pi\)
0.0348066 + 0.999394i \(0.488918\pi\)
\(488\) 0 0
\(489\) −81.0467 229.235i −0.165740 0.468782i
\(490\) 0 0
\(491\) 367.494i 0.748460i 0.927336 + 0.374230i \(0.122093\pi\)
−0.927336 + 0.374230i \(0.877907\pi\)
\(492\) 0 0
\(493\) −187.047 −0.379405
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 870.210i 1.75093i
\(498\) 0 0
\(499\) −182.953 −0.366640 −0.183320 0.983053i \(-0.558684\pi\)
−0.183320 + 0.983053i \(0.558684\pi\)
\(500\) 0 0
\(501\) −609.140 + 215.363i −1.21585 + 0.429867i
\(502\) 0 0
\(503\) 154.486i 0.307130i 0.988139 + 0.153565i \(0.0490754\pi\)
−0.988139 + 0.153565i \(0.950925\pi\)
\(504\) 0 0
\(505\) −329.513 −0.652501
\(506\) 0 0
\(507\) 162.140 + 458.601i 0.319803 + 0.904539i
\(508\) 0 0
\(509\) 843.639i 1.65744i 0.559660 + 0.828722i \(0.310932\pi\)
−0.559660 + 0.828722i \(0.689068\pi\)
\(510\) 0 0
\(511\) −636.098 −1.24481
\(512\) 0 0
\(513\) 753.518 + 463.320i 1.46885 + 0.903158i
\(514\) 0 0
\(515\) 445.342i 0.864741i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −223.430 + 78.9944i −0.430501 + 0.152205i
\(520\) 0 0
\(521\) 352.942i 0.677431i 0.940889 + 0.338716i \(0.109992\pi\)
−0.940889 + 0.338716i \(0.890008\pi\)
\(522\) 0 0
\(523\) −1029.13 −1.96775 −0.983877 0.178849i \(-0.942763\pi\)
−0.983877 + 0.178849i \(0.942763\pi\)
\(524\) 0 0
\(525\) −98.7175 279.215i −0.188033 0.531839i
\(526\) 0 0
\(527\) 608.647i 1.15493i
\(528\) 0 0
\(529\) −276.710 −0.523081
\(530\) 0 0
\(531\) 609.140 + 753.772i 1.14716 + 1.41953i
\(532\) 0 0
\(533\) 68.9666i 0.129393i
\(534\) 0 0
\(535\) −454.290 −0.849140
\(536\) 0 0
\(537\) 562.850 198.997i 1.04814 0.370573i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 81.4691 0.150590 0.0752949 0.997161i \(-0.476010\pi\)
0.0752949 + 0.997161i \(0.476010\pi\)
\(542\) 0 0
\(543\) 214.000 + 605.283i 0.394107 + 1.11470i
\(544\) 0 0
\(545\) 413.632i 0.758957i
\(546\) 0 0
\(547\) 378.668 0.692264 0.346132 0.938186i \(-0.387495\pi\)
0.346132 + 0.938186i \(0.387495\pi\)
\(548\) 0 0
\(549\) −149.666 + 120.948i −0.272615 + 0.220306i
\(550\) 0 0
\(551\) 249.305i 0.452458i
\(552\) 0 0
\(553\) 538.280 0.973381
\(554\) 0 0
\(555\) −524.757 + 185.529i −0.945507 + 0.334287i
\(556\) 0 0
\(557\) 5.79599i 0.0104057i −0.999986 0.00520286i \(-0.998344\pi\)
0.999986 0.00520286i \(-0.00165613\pi\)
\(558\) 0 0
\(559\) −29.4351 −0.0526567
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 276.178i 0.490548i 0.969454 + 0.245274i \(0.0788779\pi\)
−0.969454 + 0.245274i \(0.921122\pi\)
\(564\) 0 0
\(565\) 171.420 0.303398
\(566\) 0 0
\(567\) 159.474 742.924i 0.281259 1.31027i
\(568\) 0 0
\(569\) 533.697i 0.937956i −0.883210 0.468978i \(-0.844622\pi\)
0.883210 0.468978i \(-0.155378\pi\)
\(570\) 0 0
\(571\) −407.140 −0.713030 −0.356515 0.934290i \(-0.616035\pi\)
−0.356515 + 0.934290i \(0.616035\pi\)
\(572\) 0 0
\(573\) −389.808 + 137.818i −0.680294 + 0.240520i
\(574\) 0 0
\(575\) 298.705i 0.519487i
\(576\) 0 0
\(577\) −384.093 −0.665673 −0.332836 0.942985i \(-0.608006\pi\)
−0.332836 + 0.942985i \(0.608006\pi\)
\(578\) 0 0
\(579\) −86.5700 244.857i −0.149516 0.422896i
\(580\) 0 0
\(581\) 1344.97i 2.31492i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −56.3732 69.7583i −0.0963645 0.119245i
\(586\) 0 0
\(587\) 259.875i 0.442717i −0.975193 0.221358i \(-0.928951\pi\)
0.975193 0.221358i \(-0.0710490\pi\)
\(588\) 0 0
\(589\) 811.233 1.37731
\(590\) 0 0
\(591\) −288.000 + 101.823i −0.487310 + 0.172290i
\(592\) 0 0
\(593\) 532.613i 0.898167i 0.893490 + 0.449083i \(0.148249\pi\)
−0.893490 + 0.449083i \(0.851751\pi\)
\(594\) 0 0
\(595\) 877.327 1.47450
\(596\) 0 0
\(597\) −190.285 538.207i −0.318735 0.901520i
\(598\) 0 0
\(599\) 243.144i 0.405916i 0.979187 + 0.202958i \(0.0650556\pi\)
−0.979187 + 0.202958i \(0.934944\pi\)
\(600\) 0 0
\(601\) −892.948 −1.48577 −0.742885 0.669419i \(-0.766543\pi\)
−0.742885 + 0.669419i \(0.766543\pi\)
\(602\) 0 0
\(603\) 287.327 232.195i 0.476495 0.385066i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 159.573 0.262887 0.131444 0.991324i \(-0.458039\pi\)
0.131444 + 0.991324i \(0.458039\pi\)
\(608\) 0 0
\(609\) 201.907 71.3848i 0.331538 0.117216i
\(610\) 0 0
\(611\) 34.4833i 0.0564375i
\(612\) 0 0
\(613\) −400.712 −0.653691 −0.326845 0.945078i \(-0.605986\pi\)
−0.326845 + 0.945078i \(0.605986\pi\)
\(614\) 0 0
\(615\) −100.187 283.371i −0.162905 0.460765i
\(616\) 0 0
\(617\) 40.4664i 0.0655858i −0.999462 0.0327929i \(-0.989560\pi\)
0.999462 0.0327929i \(-0.0104402\pi\)
\(618\) 0 0
\(619\) 726.187 1.17316 0.586580 0.809891i \(-0.300474\pi\)
0.586580 + 0.809891i \(0.300474\pi\)
\(620\) 0 0
\(621\) 401.425 652.856i 0.646417 1.05130i
\(622\) 0 0
\(623\) 389.781i 0.625651i
\(624\) 0 0
\(625\) −251.176 −0.401882
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1198.57i 1.90552i
\(630\) 0 0
\(631\) −864.182 −1.36954 −0.684771 0.728758i \(-0.740098\pi\)
−0.684771 + 0.728758i \(0.740098\pi\)
\(632\) 0 0
\(633\) −221.047 625.214i −0.349205 0.987700i
\(634\) 0 0
\(635\) 214.697i 0.338105i
\(636\) 0 0
\(637\) −102.148 −0.160357
\(638\) 0 0
\(639\) −524.757 649.353i −0.821215 1.01620i
\(640\) 0 0
\(641\) 217.177i 0.338810i −0.985547 0.169405i \(-0.945815\pi\)
0.985547 0.169405i \(-0.0541846\pi\)
\(642\) 0 0
\(643\) 269.420 0.419004 0.209502 0.977808i \(-0.432816\pi\)
0.209502 + 0.977808i \(0.432816\pi\)
\(644\) 0 0
\(645\) −120.943 + 42.7599i −0.187509 + 0.0662944i
\(646\) 0 0
\(647\) 747.069i 1.15467i −0.816509 0.577333i \(-0.804093\pi\)
0.816509 0.577333i \(-0.195907\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −232.285 657.001i −0.356813 1.00922i
\(652\) 0 0
\(653\) 100.312i 0.153617i 0.997046 + 0.0768086i \(0.0244730\pi\)
−0.997046 + 0.0768086i \(0.975527\pi\)
\(654\) 0 0
\(655\) −648.000 −0.989313
\(656\) 0 0
\(657\) 474.658 383.582i 0.722463 0.583838i
\(658\) 0 0
\(659\) 959.712i 1.45632i −0.685409 0.728158i \(-0.740377\pi\)
0.685409 0.728158i \(-0.259623\pi\)
\(660\) 0 0
\(661\) 198.658 0.300542 0.150271 0.988645i \(-0.451985\pi\)
0.150271 + 0.988645i \(0.451985\pi\)
\(662\) 0 0
\(663\) −182.093 + 64.3797i −0.274651 + 0.0971036i
\(664\) 0 0
\(665\) 1169.34i 1.75841i
\(666\) 0 0
\(667\) 216.000 0.323838
\(668\) 0 0
\(669\) −66.5700 188.288i −0.0995067 0.281447i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 81.1450 0.120572 0.0602861 0.998181i \(-0.480799\pi\)
0.0602861 + 0.998181i \(0.480799\pi\)
\(674\) 0 0
\(675\) 242.036 + 148.822i 0.358573 + 0.220477i
\(676\) 0 0
\(677\) 740.909i 1.09440i 0.837002 + 0.547200i \(0.184306\pi\)
−0.837002 + 0.547200i \(0.815694\pi\)
\(678\) 0 0
\(679\) −1196.27 −1.76182
\(680\) 0 0
\(681\) 1109.13 392.137i 1.62868 0.575825i
\(682\) 0 0
\(683\) 169.039i 0.247494i 0.992314 + 0.123747i \(0.0394912\pi\)
−0.992314 + 0.123747i \(0.960509\pi\)
\(684\) 0 0
\(685\) −1019.79 −1.48875
\(686\) 0 0
\(687\) 135.808 + 384.124i 0.197683 + 0.559132i
\(688\) 0 0
\(689\) 158.656i 0.230270i
\(690\) 0 0
\(691\) −573.233 −0.829571 −0.414785 0.909919i \(-0.636143\pi\)
−0.414785 + 0.909919i \(0.636143\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 72.1141i 0.103761i
\(696\) 0 0
\(697\) −647.233 −0.928599
\(698\) 0 0
\(699\) 127.430 45.0533i 0.182303 0.0644540i
\(700\) 0 0
\(701\) 373.352i 0.532600i −0.963890 0.266300i \(-0.914199\pi\)
0.963890 0.266300i \(-0.0858011\pi\)
\(702\) 0 0
\(703\) 1597.51 2.27242
\(704\) 0 0
\(705\) 50.0933 + 141.685i 0.0710543 + 0.200972i
\(706\) 0 0
\(707\) 812.418i 1.14911i
\(708\) 0 0
\(709\) −161.518 −0.227811 −0.113906 0.993492i \(-0.536336\pi\)
−0.113906 + 0.993492i \(0.536336\pi\)
\(710\) 0 0
\(711\) −401.666 + 324.595i −0.564931 + 0.456533i
\(712\) 0 0
\(713\) 702.861i 0.985779i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1082.65 382.776i 1.50998 0.533857i
\(718\) 0 0
\(719\) 591.499i 0.822669i 0.911485 + 0.411334i \(0.134937\pi\)
−0.911485 + 0.411334i \(0.865063\pi\)
\(720\) 0 0
\(721\) 1097.99 1.52288
\(722\) 0 0
\(723\) 71.5233 + 202.299i 0.0989258 + 0.279804i
\(724\) 0 0
\(725\) 80.0788i 0.110453i
\(726\) 0 0
\(727\) 198.482 0.273015 0.136507 0.990639i \(-0.456412\pi\)
0.136507 + 0.990639i \(0.456412\pi\)
\(728\) 0 0
\(729\) 329.000 + 650.538i 0.451303 + 0.892371i
\(730\) 0 0
\(731\) 276.241i 0.377894i
\(732\) 0 0
\(733\) 1210.24 1.65107 0.825536 0.564349i \(-0.190873\pi\)
0.825536 + 0.564349i \(0.190873\pi\)
\(734\) 0 0
\(735\) −419.705 + 148.388i −0.571027 + 0.201889i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −602.560 −0.815372 −0.407686 0.913122i \(-0.633664\pi\)
−0.407686 + 0.913122i \(0.633664\pi\)
\(740\) 0 0
\(741\) 85.8083 + 242.703i 0.115801 + 0.327534i
\(742\) 0 0
\(743\) 1311.63i 1.76532i 0.470013 + 0.882660i \(0.344249\pi\)
−0.470013 + 0.882660i \(0.655751\pi\)
\(744\) 0 0
\(745\) 273.907 0.367660
\(746\) 0 0
\(747\) −811.047 1003.62i −1.08574 1.34353i
\(748\) 0 0
\(749\) 1120.06i 1.49540i
\(750\) 0 0
\(751\) −1444.37 −1.92326 −0.961630 0.274350i \(-0.911537\pi\)
−0.961630 + 0.274350i \(0.911537\pi\)
\(752\) 0 0
\(753\) 216.767 76.6386i 0.287871 0.101778i
\(754\) 0 0
\(755\) 1113.72i 1.47512i
\(756\) 0 0
\(757\) 1053.52 1.39170 0.695851 0.718186i \(-0.255027\pi\)
0.695851 + 0.718186i \(0.255027\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1246.59i 1.63809i −0.573730 0.819044i \(-0.694504\pi\)
0.573730 0.819044i \(-0.305496\pi\)
\(762\) 0 0
\(763\) 1019.81 1.33658
\(764\) 0 0
\(765\) −654.663 + 529.048i −0.855769 + 0.691566i
\(766\) 0 0
\(767\) 282.037i 0.367714i
\(768\) 0 0
\(769\) 381.233 0.495752 0.247876 0.968792i \(-0.420267\pi\)
0.247876 + 0.968792i \(0.420267\pi\)
\(770\) 0 0
\(771\) −965.130 + 341.225i −1.25179 + 0.442574i
\(772\) 0 0
\(773\) 150.682i 0.194931i 0.995239 + 0.0974654i \(0.0310735\pi\)
−0.995239 + 0.0974654i \(0.968926\pi\)
\(774\) 0 0
\(775\) 260.575 0.336226
\(776\) 0 0
\(777\) −457.425 1293.79i −0.588706 1.66511i
\(778\) 0 0
\(779\) 862.663i 1.10740i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −107.617 + 175.022i −0.137441 + 0.223527i
\(784\) 0 0
\(785\) 623.262i 0.793964i
\(786\) 0 0
\(787\) −172.565 −0.219269 −0.109635 0.993972i \(-0.534968\pi\)
−0.109635 + 0.993972i \(0.534968\pi\)
\(788\) 0 0
\(789\) 650.477 229.978i 0.824432 0.291481i
\(790\) 0 0
\(791\) 422.638i 0.534308i
\(792\) 0 0
\(793\) −56.0000 −0.0706179
\(794\) 0 0
\(795\) −230.477 651.886i −0.289908 0.819983i
\(796\) 0 0
\(797\) 81.5902i 0.102372i 0.998689 + 0.0511858i \(0.0163001\pi\)
−0.998689 + 0.0511858i \(0.983700\pi\)
\(798\) 0 0
\(799\) 323.617 0.405027
\(800\) 0 0
\(801\) 235.047 + 290.855i 0.293442 + 0.363115i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −1013.13 −1.25855
\(806\) 0 0
\(807\) 204.472 72.2916i 0.253372 0.0895807i
\(808\) 0 0
\(809\) 175.022i 0.216343i −0.994132 0.108172i \(-0.965500\pi\)
0.994132 0.108172i \(-0.0344996\pi\)
\(810\) 0 0
\(811\) 415.052 0.511778 0.255889 0.966706i \(-0.417632\pi\)
0.255889 + 0.966706i \(0.417632\pi\)
\(812\) 0 0
\(813\) 431.759 + 1221.20i 0.531069 + 1.50209i
\(814\) 0 0
\(815\) 308.368i 0.378366i
\(816\) 0 0
\(817\) 368.187 0.450657
\(818\) 0 0
\(819\) 171.990 138.989i 0.210000 0.169705i
\(820\) 0 0
\(821\) 1180.93i 1.43841i −0.694798 0.719205i \(-0.744506\pi\)
0.694798 0.719205i \(-0.255494\pi\)
\(822\) 0 0
\(823\) −639.337 −0.776837 −0.388418 0.921483i \(-0.626978\pi\)
−0.388418 + 0.921483i \(0.626978\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1278.65i 1.54613i −0.634326 0.773066i \(-0.718722\pi\)
0.634326 0.773066i \(-0.281278\pi\)
\(828\) 0 0
\(829\) 530.943 0.640462 0.320231 0.947339i \(-0.396239\pi\)
0.320231 + 0.947339i \(0.396239\pi\)
\(830\) 0 0
\(831\) 432.142 + 1222.28i 0.520027 + 1.47086i
\(832\) 0 0
\(833\) 958.628i 1.15081i
\(834\) 0 0
\(835\) −819.420 −0.981341
\(836\) 0 0
\(837\) 569.518 + 350.183i 0.680428 + 0.418378i
\(838\) 0 0
\(839\) 37.0790i 0.0441943i −0.999756 0.0220971i \(-0.992966\pi\)
0.999756 0.0220971i \(-0.00703431\pi\)
\(840\) 0 0
\(841\) 783.093 0.931145
\(842\) 0 0
\(843\) −218.477 + 77.2432i −0.259166 + 0.0916289i
\(844\) 0 0
\(845\) 616.914i 0.730075i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −94.3834 266.956i −0.111170 0.314436i
\(850\) 0 0
\(851\) 1384.10i 1.62644i
\(852\) 0 0
\(853\) −86.5309 −0.101443 −0.0507215 0.998713i \(-0.516152\pi\)
−0.0507215 + 0.998713i \(0.516152\pi\)
\(854\) 0 0
\(855\) 705.140 + 872.566i 0.824725 + 1.02055i
\(856\) 0 0
\(857\) 754.314i 0.880180i −0.897954 0.440090i \(-0.854947\pi\)
0.897954 0.440090i \(-0.145053\pi\)
\(858\) 0 0
\(859\) 18.1866 0.0211718 0.0105859 0.999944i \(-0.496630\pi\)
0.0105859 + 0.999944i \(0.496630\pi\)
\(860\) 0 0
\(861\) 698.653 247.011i 0.811444 0.286889i
\(862\) 0 0
\(863\) 549.823i 0.637107i 0.947905 + 0.318553i \(0.103197\pi\)
−0.947905 + 0.318553i \(0.896803\pi\)
\(864\) 0 0
\(865\) −300.560 −0.347468
\(866\) 0 0
\(867\) 315.187 + 891.482i 0.363537 + 1.02824i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 107.508 0.123431
\(872\) 0 0
\(873\) 892.663 721.381i 1.02252 0.826324i
\(874\) 0 0
\(875\) 1267.91i 1.44904i
\(876\) 0 0
\(877\) −222.334 −0.253517 −0.126758 0.991934i \(-0.540457\pi\)
−0.126758 + 0.991934i \(0.540457\pi\)
\(878\) 0 0
\(879\) −473.513 + 167.412i −0.538695 + 0.190458i
\(880\) 0 0
\(881\) 266.817i 0.302857i −0.988468 0.151429i \(-0.951613\pi\)
0.988468 0.151429i \(-0.0483874\pi\)
\(882\) 0 0
\(883\) 105.430 0.119400 0.0596999 0.998216i \(-0.480986\pi\)
0.0596999 + 0.998216i \(0.480986\pi\)
\(884\) 0 0
\(885\) 409.710 + 1158.83i 0.462949 + 1.30942i
\(886\) 0 0
\(887\) 182.027i 0.205216i −0.994722 0.102608i \(-0.967281\pi\)
0.994722 0.102608i \(-0.0327188\pi\)
\(888\) 0 0
\(889\) −529.337 −0.595429
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 431.332i 0.483014i
\(894\) 0 0
\(895\) 757.150 0.845978
\(896\) 0 0
\(897\) 210.280 74.3452i 0.234426 0.0828820i
\(898\) 0 0
\(899\) 188.427i 0.209597i
\(900\) 0 0
\(901\) −1488.94 −1.65255
\(902\) 0 0
\(903\) −105.425 298.187i −0.116750 0.330218i
\(904\) 0 0
\(905\) 814.232i 0.899704i
\(906\) 0 0
\(907\) 544.093 0.599882 0.299941 0.953958i \(-0.403033\pi\)
0.299941 + 0.953958i \(0.403033\pi\)
\(908\) 0 0
\(909\) 489.907 + 606.229i 0.538951 + 0.666918i
\(910\) 0 0
\(911\) 362.480i 0.397893i 0.980010 + 0.198946i \(0.0637519\pi\)
−0.980010 + 0.198946i \(0.936248\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −230.093 + 81.3503i −0.251468 + 0.0889074i
\(916\) 0 0
\(917\) 1597.65i 1.74226i
\(918\) 0 0
\(919\) −1139.85 −1.24031 −0.620156 0.784478i \(-0.712931\pi\)
−0.620156 + 0.784478i \(0.712931\pi\)
\(920\) 0 0
\(921\) −163.140 461.429i −0.177134 0.501009i
\(922\) 0 0
\(923\) 242.966i 0.263236i
\(924\) 0 0
\(925\) 513.135 0.554740
\(926\) 0 0
\(927\) −819.327 + 662.116i −0.883847 + 0.714257i
\(928\) 0 0
\(929\) 1385.91i 1.49184i 0.666038 + 0.745918i \(0.267989\pi\)
−0.666038 + 0.745918i \(0.732011\pi\)
\(930\) 0 0
\(931\) 1277.70 1.37240
\(932\) 0 0
\(933\) −1114.76 + 394.128i −1.19481 + 0.422431i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 213.233 0.227570 0.113785 0.993505i \(-0.463702\pi\)
0.113785 + 0.993505i \(0.463702\pi\)
\(938\) 0 0
\(939\) −409.233 1157.49i −0.435818 1.23268i
\(940\) 0 0
\(941\) 1039.25i 1.10441i 0.833709 + 0.552205i \(0.186213\pi\)
−0.833709 + 0.552205i \(0.813787\pi\)
\(942\) 0 0
\(943\) 747.420 0.792598
\(944\) 0 0
\(945\) 504.767 820.925i 0.534145 0.868704i
\(946\) 0 0
\(947\) 68.5492i 0.0723856i 0.999345 + 0.0361928i \(0.0115230\pi\)
−0.999345 + 0.0361928i \(0.988477\pi\)
\(948\) 0 0
\(949\) 177.601 0.187146
\(950\) 0 0
\(951\) −987.508 + 349.137i −1.03839 + 0.367126i
\(952\) 0 0
\(953\) 139.996i 0.146901i 0.997299 + 0.0734504i \(0.0234010\pi\)
−0.997299 + 0.0734504i \(0.976599\pi\)
\(954\) 0 0
\(955\) −524.373 −0.549082
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2514.31i 2.62181i
\(960\) 0 0
\(961\) −347.860 −0.361977
\(962\) 0 0
\(963\) 675.420 + 835.789i 0.701371 + 0.867902i
\(964\) 0 0
\(965\) 329.383i 0.341330i
\(966\) 0 0
\(967\) 279.573 0.289113 0.144557 0.989497i \(-0.453824\pi\)
0.144557 + 0.989497i \(0.453824\pi\)
\(968\) 0 0
\(969\) 2277.70 805.288i 2.35057 0.831051i
\(970\) 0 0
\(971\) 462.792i 0.476614i 0.971190 + 0.238307i \(0.0765924\pi\)
−0.971190 + 0.238307i \(0.923408\pi\)
\(972\) 0 0
\(973\) −177.798 −0.182732
\(974\) 0 0
\(975\) 27.5624 + 77.9581i 0.0282691 + 0.0799571i
\(976\) 0 0
\(977\) 615.047i 0.629526i −0.949170 0.314763i \(-0.898075\pi\)
0.949170 0.314763i \(-0.101925\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −760.987 + 614.971i −0.775726 + 0.626881i
\(982\) 0 0
\(983\) 1060.88i 1.07923i 0.841913 + 0.539613i \(0.181429\pi\)
−0.841913 + 0.539613i \(0.818571\pi\)
\(984\) 0 0
\(985\) −387.420 −0.393320
\(986\) 0 0
\(987\) −349.327 + 123.506i −0.353928 + 0.125132i
\(988\) 0 0
\(989\) 319.001i 0.322549i
\(990\) 0 0
\(991\) −1001.52 −1.01061 −0.505307 0.862940i \(-0.668621\pi\)
−0.505307 + 0.862940i \(0.668621\pi\)
\(992\) 0 0
\(993\) −254.000 718.420i −0.255791 0.723485i
\(994\) 0 0
\(995\) 724.001i 0.727639i
\(996\) 0 0
\(997\) 324.417 0.325394 0.162697 0.986676i \(-0.447981\pi\)
0.162697 + 0.986676i \(0.447981\pi\)
\(998\) 0 0
\(999\) 1121.52 + 689.594i 1.12264 + 0.690284i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.3.e.h.485.1 4
3.2 odd 2 inner 1452.3.e.h.485.4 4
11.10 odd 2 132.3.e.b.89.1 4
33.32 even 2 132.3.e.b.89.4 yes 4
44.43 even 2 528.3.i.c.353.3 4
132.131 odd 2 528.3.i.c.353.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.3.e.b.89.1 4 11.10 odd 2
132.3.e.b.89.4 yes 4 33.32 even 2
528.3.i.c.353.2 4 132.131 odd 2
528.3.i.c.353.3 4 44.43 even 2
1452.3.e.h.485.1 4 1.1 even 1 trivial
1452.3.e.h.485.4 4 3.2 odd 2 inner