Properties

Label 1452.3.e.h
Level $1452$
Weight $3$
Character orbit 1452.e
Analytic conductor $39.564$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,3,Mod(485,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.485"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,0,0,0,-28,0,0,0,-48,0,32,0,0,0,56,0,0,0,0,0,-108, 0,92,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5641343851\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 11x^{2} - 10x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 1) q^{3} + ( - \beta_{3} + \beta_1) q^{5} + \beta_{2} q^{7} + (2 \beta_1 - 7) q^{9} + (\beta_{2} - 12) q^{13} + (\beta_{3} - 2 \beta_{2} - \beta_1 + 8) q^{15} + (2 \beta_{3} + 4 \beta_1) q^{17}+ \cdots + ( - 4 \beta_{2} - 90) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 28 q^{9} - 48 q^{13} + 32 q^{15} + 56 q^{19} - 108 q^{25} + 92 q^{27} + 24 q^{31} + 120 q^{37} + 48 q^{39} + 120 q^{43} - 64 q^{45} + 156 q^{49} + 128 q^{51} - 56 q^{57} + 48 q^{61} + 136 q^{67}+ \cdots - 360 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} + 11x^{2} - 10x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 4\nu^{3} - 6\nu^{2} + 38\nu - 18 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} - 2\nu + 10 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 8\nu^{3} - 12\nu^{2} + 88\nu - 42 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 2\beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 2\beta_{2} - 2\beta _1 - 18 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -8\beta_{3} + 3\beta_{2} + 19\beta _1 - 28 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
485.1
0.500000 + 0.244099i
0.500000 3.07253i
0.500000 + 3.07253i
0.500000 0.244099i
0 −1.00000 2.82843i 0 3.80482i 0 9.38083 0 −7.00000 + 5.65685i 0
485.2 0 −1.00000 2.82843i 0 9.46168i 0 −9.38083 0 −7.00000 + 5.65685i 0
485.3 0 −1.00000 + 2.82843i 0 9.46168i 0 −9.38083 0 −7.00000 5.65685i 0
485.4 0 −1.00000 + 2.82843i 0 3.80482i 0 9.38083 0 −7.00000 5.65685i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1452.3.e.h 4
3.b odd 2 1 inner 1452.3.e.h 4
11.b odd 2 1 132.3.e.b 4
33.d even 2 1 132.3.e.b 4
44.c even 2 1 528.3.i.c 4
132.d odd 2 1 528.3.i.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.3.e.b 4 11.b odd 2 1
132.3.e.b 4 33.d even 2 1
528.3.i.c 4 44.c even 2 1
528.3.i.c 4 132.d odd 2 1
1452.3.e.h 4 1.a even 1 1 trivial
1452.3.e.h 4 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1452, [\chi])\):

\( T_{5}^{4} + 104T_{5}^{2} + 1296 \) Copy content Toggle raw display
\( T_{7}^{2} - 88 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 2 T + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 104T^{2} + 1296 \) Copy content Toggle raw display
$7$ \( (T^{2} - 88)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 24 T + 56)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 608T^{2} + 2304 \) Copy content Toggle raw display
$19$ \( (T^{2} - 28 T - 156)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 936 T^{2} + 104976 \) Copy content Toggle raw display
$29$ \( T^{4} + 416 T^{2} + 20736 \) Copy content Toggle raw display
$31$ \( (T^{2} - 12 T - 316)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 60 T + 548)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 3488 T^{2} + 1937664 \) Copy content Toggle raw display
$43$ \( (T^{2} - 60 T + 548)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 872 T^{2} + 121104 \) Copy content Toggle raw display
$53$ \( T^{4} + 4712 T^{2} + 3825936 \) Copy content Toggle raw display
$59$ \( T^{4} + 12384 T^{2} + 9144576 \) Copy content Toggle raw display
$61$ \( (T^{2} - 24 T + 56)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 68 T - 4476)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 11432 T^{2} + 24324624 \) Copy content Toggle raw display
$73$ \( (T^{2} - 52 T - 8124)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 96 T + 2216)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 34208 T^{2} + 280629504 \) Copy content Toggle raw display
$89$ \( T^{4} + 1952 T^{2} + 389376 \) Copy content Toggle raw display
$97$ \( (T^{2} + 180 T + 6692)^{2} \) Copy content Toggle raw display
show more
show less