Properties

Label 1452.3.e.d.485.1
Level $1452$
Weight $3$
Character 1452.485
Analytic conductor $39.564$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,3,Mod(485,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.485"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,5,0,0,0,-4,0,7,0,0,0,0,0,-11,0,0,0,-8,0,-10,0,0,0,28,0,-10, 0,0,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5641343851\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-11}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 485.1
Root \(0.500000 + 1.65831i\) of defining polynomial
Character \(\chi\) \(=\) 1452.485
Dual form 1452.3.e.d.485.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.50000 - 1.65831i) q^{3} -3.31662i q^{5} -2.00000 q^{7} +(3.50000 - 8.29156i) q^{9} +(-5.50000 - 8.29156i) q^{15} -6.63325i q^{17} -4.00000 q^{19} +(-5.00000 + 3.31662i) q^{21} +3.31662i q^{23} +14.0000 q^{25} +(-5.00000 - 26.5330i) q^{27} -39.7995i q^{29} +9.00000 q^{31} +6.63325i q^{35} -51.0000 q^{37} -79.5990i q^{41} -22.0000 q^{43} +(-27.5000 - 11.6082i) q^{45} +39.7995i q^{47} -45.0000 q^{49} +(-11.0000 - 16.5831i) q^{51} +66.3325i q^{53} +(-10.0000 + 6.63325i) q^{57} -69.6491i q^{59} +80.0000 q^{61} +(-7.00000 + 16.5831i) q^{63} +1.00000 q^{67} +(5.50000 + 8.29156i) q^{69} -49.7494i q^{71} -108.000 q^{73} +(35.0000 - 23.2164i) q^{75} -122.000 q^{79} +(-56.5000 - 58.0409i) q^{81} +86.2322i q^{83} -22.0000 q^{85} +(-66.0000 - 99.4987i) q^{87} -96.1821i q^{89} +(22.5000 - 14.9248i) q^{93} +13.2665i q^{95} +79.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{3} - 4 q^{7} + 7 q^{9} - 11 q^{15} - 8 q^{19} - 10 q^{21} + 28 q^{25} - 10 q^{27} + 18 q^{31} - 102 q^{37} - 44 q^{43} - 55 q^{45} - 90 q^{49} - 22 q^{51} - 20 q^{57} + 160 q^{61} - 14 q^{63}+ \cdots + 158 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.50000 1.65831i 0.833333 0.552771i
\(4\) 0 0
\(5\) 3.31662i 0.663325i −0.943398 0.331662i \(-0.892390\pi\)
0.943398 0.331662i \(-0.107610\pi\)
\(6\) 0 0
\(7\) −2.00000 −0.285714 −0.142857 0.989743i \(-0.545629\pi\)
−0.142857 + 0.989743i \(0.545629\pi\)
\(8\) 0 0
\(9\) 3.50000 8.29156i 0.388889 0.921285i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −5.50000 8.29156i −0.366667 0.552771i
\(16\) 0 0
\(17\) 6.63325i 0.390191i −0.980784 0.195096i \(-0.937498\pi\)
0.980784 0.195096i \(-0.0625017\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.210526 −0.105263 0.994444i \(-0.533568\pi\)
−0.105263 + 0.994444i \(0.533568\pi\)
\(20\) 0 0
\(21\) −5.00000 + 3.31662i −0.238095 + 0.157935i
\(22\) 0 0
\(23\) 3.31662i 0.144201i 0.997397 + 0.0721005i \(0.0229702\pi\)
−0.997397 + 0.0721005i \(0.977030\pi\)
\(24\) 0 0
\(25\) 14.0000 0.560000
\(26\) 0 0
\(27\) −5.00000 26.5330i −0.185185 0.982704i
\(28\) 0 0
\(29\) 39.7995i 1.37240i −0.727415 0.686198i \(-0.759278\pi\)
0.727415 0.686198i \(-0.240722\pi\)
\(30\) 0 0
\(31\) 9.00000 0.290323 0.145161 0.989408i \(-0.453630\pi\)
0.145161 + 0.989408i \(0.453630\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.63325i 0.189521i
\(36\) 0 0
\(37\) −51.0000 −1.37838 −0.689189 0.724581i \(-0.742033\pi\)
−0.689189 + 0.724581i \(0.742033\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 79.5990i 1.94144i −0.240216 0.970719i \(-0.577218\pi\)
0.240216 0.970719i \(-0.422782\pi\)
\(42\) 0 0
\(43\) −22.0000 −0.511628 −0.255814 0.966726i \(-0.582343\pi\)
−0.255814 + 0.966726i \(0.582343\pi\)
\(44\) 0 0
\(45\) −27.5000 11.6082i −0.611111 0.257960i
\(46\) 0 0
\(47\) 39.7995i 0.846798i 0.905943 + 0.423399i \(0.139163\pi\)
−0.905943 + 0.423399i \(0.860837\pi\)
\(48\) 0 0
\(49\) −45.0000 −0.918367
\(50\) 0 0
\(51\) −11.0000 16.5831i −0.215686 0.325159i
\(52\) 0 0
\(53\) 66.3325i 1.25156i 0.780001 + 0.625778i \(0.215219\pi\)
−0.780001 + 0.625778i \(0.784781\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −10.0000 + 6.63325i −0.175439 + 0.116373i
\(58\) 0 0
\(59\) 69.6491i 1.18049i −0.807223 0.590247i \(-0.799030\pi\)
0.807223 0.590247i \(-0.200970\pi\)
\(60\) 0 0
\(61\) 80.0000 1.31148 0.655738 0.754989i \(-0.272358\pi\)
0.655738 + 0.754989i \(0.272358\pi\)
\(62\) 0 0
\(63\) −7.00000 + 16.5831i −0.111111 + 0.263224i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.00000 0.0149254 0.00746269 0.999972i \(-0.497625\pi\)
0.00746269 + 0.999972i \(0.497625\pi\)
\(68\) 0 0
\(69\) 5.50000 + 8.29156i 0.0797101 + 0.120168i
\(70\) 0 0
\(71\) 49.7494i 0.700695i −0.936620 0.350348i \(-0.886063\pi\)
0.936620 0.350348i \(-0.113937\pi\)
\(72\) 0 0
\(73\) −108.000 −1.47945 −0.739726 0.672908i \(-0.765045\pi\)
−0.739726 + 0.672908i \(0.765045\pi\)
\(74\) 0 0
\(75\) 35.0000 23.2164i 0.466667 0.309552i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −122.000 −1.54430 −0.772152 0.635438i \(-0.780820\pi\)
−0.772152 + 0.635438i \(0.780820\pi\)
\(80\) 0 0
\(81\) −56.5000 58.0409i −0.697531 0.716555i
\(82\) 0 0
\(83\) 86.2322i 1.03894i 0.854488 + 0.519471i \(0.173871\pi\)
−0.854488 + 0.519471i \(0.826129\pi\)
\(84\) 0 0
\(85\) −22.0000 −0.258824
\(86\) 0 0
\(87\) −66.0000 99.4987i −0.758621 1.14366i
\(88\) 0 0
\(89\) 96.1821i 1.08070i −0.841441 0.540349i \(-0.818292\pi\)
0.841441 0.540349i \(-0.181708\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 22.5000 14.9248i 0.241935 0.160482i
\(94\) 0 0
\(95\) 13.2665i 0.139647i
\(96\) 0 0
\(97\) 79.0000 0.814433 0.407216 0.913332i \(-0.366499\pi\)
0.407216 + 0.913332i \(0.366499\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 46.4327i 0.459730i −0.973223 0.229865i \(-0.926172\pi\)
0.973223 0.229865i \(-0.0738285\pi\)
\(102\) 0 0
\(103\) −114.000 −1.10680 −0.553398 0.832917i \(-0.686669\pi\)
−0.553398 + 0.832917i \(0.686669\pi\)
\(104\) 0 0
\(105\) 11.0000 + 16.5831i 0.104762 + 0.157935i
\(106\) 0 0
\(107\) 165.831i 1.54982i 0.632069 + 0.774912i \(0.282206\pi\)
−0.632069 + 0.774912i \(0.717794\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.0550459 −0.0275229 0.999621i \(-0.508762\pi\)
−0.0275229 + 0.999621i \(0.508762\pi\)
\(110\) 0 0
\(111\) −127.500 + 84.5739i −1.14865 + 0.761927i
\(112\) 0 0
\(113\) 3.31662i 0.0293507i −0.999892 0.0146753i \(-0.995329\pi\)
0.999892 0.0146753i \(-0.00467147\pi\)
\(114\) 0 0
\(115\) 11.0000 0.0956522
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 13.2665i 0.111483i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −132.000 198.997i −1.07317 1.61787i
\(124\) 0 0
\(125\) 129.348i 1.03479i
\(126\) 0 0
\(127\) 228.000 1.79528 0.897638 0.440734i \(-0.145282\pi\)
0.897638 + 0.440734i \(0.145282\pi\)
\(128\) 0 0
\(129\) −55.0000 + 36.4829i −0.426357 + 0.282813i
\(130\) 0 0
\(131\) 72.9657i 0.556990i −0.960438 0.278495i \(-0.910164\pi\)
0.960438 0.278495i \(-0.0898356\pi\)
\(132\) 0 0
\(133\) 8.00000 0.0601504
\(134\) 0 0
\(135\) −88.0000 + 16.5831i −0.651852 + 0.122838i
\(136\) 0 0
\(137\) 135.982i 0.992567i 0.868161 + 0.496283i \(0.165302\pi\)
−0.868161 + 0.496283i \(0.834698\pi\)
\(138\) 0 0
\(139\) −110.000 −0.791367 −0.395683 0.918387i \(-0.629492\pi\)
−0.395683 + 0.918387i \(0.629492\pi\)
\(140\) 0 0
\(141\) 66.0000 + 99.4987i 0.468085 + 0.705665i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −132.000 −0.910345
\(146\) 0 0
\(147\) −112.500 + 74.6241i −0.765306 + 0.507647i
\(148\) 0 0
\(149\) 192.364i 1.29104i 0.763745 + 0.645518i \(0.223358\pi\)
−0.763745 + 0.645518i \(0.776642\pi\)
\(150\) 0 0
\(151\) 242.000 1.60265 0.801325 0.598230i \(-0.204129\pi\)
0.801325 + 0.598230i \(0.204129\pi\)
\(152\) 0 0
\(153\) −55.0000 23.2164i −0.359477 0.151741i
\(154\) 0 0
\(155\) 29.8496i 0.192578i
\(156\) 0 0
\(157\) 113.000 0.719745 0.359873 0.933001i \(-0.382820\pi\)
0.359873 + 0.933001i \(0.382820\pi\)
\(158\) 0 0
\(159\) 110.000 + 165.831i 0.691824 + 1.04296i
\(160\) 0 0
\(161\) 6.63325i 0.0412003i
\(162\) 0 0
\(163\) 46.0000 0.282209 0.141104 0.989995i \(-0.454935\pi\)
0.141104 + 0.989995i \(0.454935\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 278.596i 1.66824i −0.551581 0.834121i \(-0.685975\pi\)
0.551581 0.834121i \(-0.314025\pi\)
\(168\) 0 0
\(169\) −169.000 −1.00000
\(170\) 0 0
\(171\) −14.0000 + 33.1662i −0.0818713 + 0.193955i
\(172\) 0 0
\(173\) 86.2322i 0.498452i −0.968445 0.249226i \(-0.919824\pi\)
0.968445 0.249226i \(-0.0801762\pi\)
\(174\) 0 0
\(175\) −28.0000 −0.160000
\(176\) 0 0
\(177\) −115.500 174.123i −0.652542 0.983745i
\(178\) 0 0
\(179\) 222.214i 1.24142i −0.784041 0.620709i \(-0.786845\pi\)
0.784041 0.620709i \(-0.213155\pi\)
\(180\) 0 0
\(181\) −137.000 −0.756906 −0.378453 0.925620i \(-0.623544\pi\)
−0.378453 + 0.925620i \(0.623544\pi\)
\(182\) 0 0
\(183\) 200.000 132.665i 1.09290 0.724945i
\(184\) 0 0
\(185\) 169.148i 0.914313i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 10.0000 + 53.0660i 0.0529101 + 0.280772i
\(190\) 0 0
\(191\) 29.8496i 0.156281i 0.996942 + 0.0781404i \(0.0248982\pi\)
−0.996942 + 0.0781404i \(0.975102\pi\)
\(192\) 0 0
\(193\) 272.000 1.40933 0.704663 0.709542i \(-0.251098\pi\)
0.704663 + 0.709542i \(0.251098\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 126.032i 0.639755i 0.947459 + 0.319878i \(0.103642\pi\)
−0.947459 + 0.319878i \(0.896358\pi\)
\(198\) 0 0
\(199\) 122.000 0.613065 0.306533 0.951860i \(-0.400831\pi\)
0.306533 + 0.951860i \(0.400831\pi\)
\(200\) 0 0
\(201\) 2.50000 1.65831i 0.0124378 0.00825031i
\(202\) 0 0
\(203\) 79.5990i 0.392113i
\(204\) 0 0
\(205\) −264.000 −1.28780
\(206\) 0 0
\(207\) 27.5000 + 11.6082i 0.132850 + 0.0560782i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −164.000 −0.777251 −0.388626 0.921396i \(-0.627050\pi\)
−0.388626 + 0.921396i \(0.627050\pi\)
\(212\) 0 0
\(213\) −82.5000 124.373i −0.387324 0.583913i
\(214\) 0 0
\(215\) 72.9657i 0.339376i
\(216\) 0 0
\(217\) −18.0000 −0.0829493
\(218\) 0 0
\(219\) −270.000 + 179.098i −1.23288 + 0.817798i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 63.0000 0.282511 0.141256 0.989973i \(-0.454886\pi\)
0.141256 + 0.989973i \(0.454886\pi\)
\(224\) 0 0
\(225\) 49.0000 116.082i 0.217778 0.515919i
\(226\) 0 0
\(227\) 59.6992i 0.262992i −0.991317 0.131496i \(-0.958022\pi\)
0.991317 0.131496i \(-0.0419781\pi\)
\(228\) 0 0
\(229\) 125.000 0.545852 0.272926 0.962035i \(-0.412009\pi\)
0.272926 + 0.962035i \(0.412009\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 66.3325i 0.284689i 0.989817 + 0.142344i \(0.0454641\pi\)
−0.989817 + 0.142344i \(0.954536\pi\)
\(234\) 0 0
\(235\) 132.000 0.561702
\(236\) 0 0
\(237\) −305.000 + 202.314i −1.28692 + 0.853646i
\(238\) 0 0
\(239\) 192.364i 0.804871i 0.915448 + 0.402436i \(0.131836\pi\)
−0.915448 + 0.402436i \(0.868164\pi\)
\(240\) 0 0
\(241\) 44.0000 0.182573 0.0912863 0.995825i \(-0.470902\pi\)
0.0912863 + 0.995825i \(0.470902\pi\)
\(242\) 0 0
\(243\) −237.500 51.4077i −0.977366 0.211554i
\(244\) 0 0
\(245\) 149.248i 0.609176i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 143.000 + 215.581i 0.574297 + 0.865786i
\(250\) 0 0
\(251\) 301.813i 1.20244i −0.799083 0.601221i \(-0.794681\pi\)
0.799083 0.601221i \(-0.205319\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −55.0000 + 36.4829i −0.215686 + 0.143070i
\(256\) 0 0
\(257\) 66.3325i 0.258103i 0.991638 + 0.129052i \(0.0411933\pi\)
−0.991638 + 0.129052i \(0.958807\pi\)
\(258\) 0 0
\(259\) 102.000 0.393822
\(260\) 0 0
\(261\) −330.000 139.298i −1.26437 0.533710i
\(262\) 0 0
\(263\) 378.095i 1.43762i −0.695204 0.718812i \(-0.744686\pi\)
0.695204 0.718812i \(-0.255314\pi\)
\(264\) 0 0
\(265\) 220.000 0.830189
\(266\) 0 0
\(267\) −159.500 240.455i −0.597378 0.900582i
\(268\) 0 0
\(269\) 331.662i 1.23295i −0.787376 0.616473i \(-0.788561\pi\)
0.787376 0.616473i \(-0.211439\pi\)
\(270\) 0 0
\(271\) −44.0000 −0.162362 −0.0811808 0.996699i \(-0.525869\pi\)
−0.0811808 + 0.996699i \(0.525869\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 274.000 0.989170 0.494585 0.869129i \(-0.335320\pi\)
0.494585 + 0.869129i \(0.335320\pi\)
\(278\) 0 0
\(279\) 31.5000 74.6241i 0.112903 0.267470i
\(280\) 0 0
\(281\) 484.227i 1.72323i −0.507564 0.861614i \(-0.669454\pi\)
0.507564 0.861614i \(-0.330546\pi\)
\(282\) 0 0
\(283\) 224.000 0.791519 0.395760 0.918354i \(-0.370481\pi\)
0.395760 + 0.918354i \(0.370481\pi\)
\(284\) 0 0
\(285\) 22.0000 + 33.1662i 0.0771930 + 0.116373i
\(286\) 0 0
\(287\) 159.198i 0.554697i
\(288\) 0 0
\(289\) 245.000 0.847751
\(290\) 0 0
\(291\) 197.500 131.007i 0.678694 0.450195i
\(292\) 0 0
\(293\) 331.662i 1.13195i −0.824421 0.565977i \(-0.808499\pi\)
0.824421 0.565977i \(-0.191501\pi\)
\(294\) 0 0
\(295\) −231.000 −0.783051
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 44.0000 0.146179
\(302\) 0 0
\(303\) −77.0000 116.082i −0.254125 0.383108i
\(304\) 0 0
\(305\) 265.330i 0.869934i
\(306\) 0 0
\(307\) 380.000 1.23779 0.618893 0.785476i \(-0.287582\pi\)
0.618893 + 0.785476i \(0.287582\pi\)
\(308\) 0 0
\(309\) −285.000 + 189.048i −0.922330 + 0.611805i
\(310\) 0 0
\(311\) 371.462i 1.19441i 0.802088 + 0.597206i \(0.203722\pi\)
−0.802088 + 0.597206i \(0.796278\pi\)
\(312\) 0 0
\(313\) −571.000 −1.82428 −0.912141 0.409878i \(-0.865571\pi\)
−0.912141 + 0.409878i \(0.865571\pi\)
\(314\) 0 0
\(315\) 55.0000 + 23.2164i 0.174603 + 0.0737028i
\(316\) 0 0
\(317\) 89.5489i 0.282489i −0.989975 0.141244i \(-0.954890\pi\)
0.989975 0.141244i \(-0.0451103\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 275.000 + 414.578i 0.856698 + 1.29152i
\(322\) 0 0
\(323\) 26.5330i 0.0821455i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −15.0000 + 9.94987i −0.0458716 + 0.0304278i
\(328\) 0 0
\(329\) 79.5990i 0.241942i
\(330\) 0 0
\(331\) 527.000 1.59215 0.796073 0.605201i \(-0.206907\pi\)
0.796073 + 0.605201i \(0.206907\pi\)
\(332\) 0 0
\(333\) −178.500 + 422.870i −0.536036 + 1.26988i
\(334\) 0 0
\(335\) 3.31662i 0.00990037i
\(336\) 0 0
\(337\) −306.000 −0.908012 −0.454006 0.890999i \(-0.650006\pi\)
−0.454006 + 0.890999i \(0.650006\pi\)
\(338\) 0 0
\(339\) −5.50000 8.29156i −0.0162242 0.0244589i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 188.000 0.548105
\(344\) 0 0
\(345\) 27.5000 18.2414i 0.0797101 0.0528737i
\(346\) 0 0
\(347\) 305.129i 0.879336i −0.898160 0.439668i \(-0.855096\pi\)
0.898160 0.439668i \(-0.144904\pi\)
\(348\) 0 0
\(349\) −246.000 −0.704871 −0.352436 0.935836i \(-0.614646\pi\)
−0.352436 + 0.935836i \(0.614646\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 348.246i 0.986531i 0.869879 + 0.493266i \(0.164197\pi\)
−0.869879 + 0.493266i \(0.835803\pi\)
\(354\) 0 0
\(355\) −165.000 −0.464789
\(356\) 0 0
\(357\) 22.0000 + 33.1662i 0.0616246 + 0.0929027i
\(358\) 0 0
\(359\) 636.792i 1.77379i 0.461967 + 0.886897i \(0.347144\pi\)
−0.461967 + 0.886897i \(0.652856\pi\)
\(360\) 0 0
\(361\) −345.000 −0.955679
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 358.195i 0.981357i
\(366\) 0 0
\(367\) 503.000 1.37057 0.685286 0.728274i \(-0.259677\pi\)
0.685286 + 0.728274i \(0.259677\pi\)
\(368\) 0 0
\(369\) −660.000 278.596i −1.78862 0.755004i
\(370\) 0 0
\(371\) 132.665i 0.357588i
\(372\) 0 0
\(373\) 446.000 1.19571 0.597855 0.801604i \(-0.296020\pi\)
0.597855 + 0.801604i \(0.296020\pi\)
\(374\) 0 0
\(375\) −214.500 323.371i −0.572000 0.862322i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 263.000 0.693931 0.346966 0.937878i \(-0.387212\pi\)
0.346966 + 0.937878i \(0.387212\pi\)
\(380\) 0 0
\(381\) 570.000 378.095i 1.49606 0.992376i
\(382\) 0 0
\(383\) 215.581i 0.562874i 0.959580 + 0.281437i \(0.0908110\pi\)
−0.959580 + 0.281437i \(0.909189\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −77.0000 + 182.414i −0.198966 + 0.471355i
\(388\) 0 0
\(389\) 89.5489i 0.230203i 0.993354 + 0.115101i \(0.0367193\pi\)
−0.993354 + 0.115101i \(0.963281\pi\)
\(390\) 0 0
\(391\) 22.0000 0.0562660
\(392\) 0 0
\(393\) −121.000 182.414i −0.307888 0.464159i
\(394\) 0 0
\(395\) 404.628i 1.02438i
\(396\) 0 0
\(397\) 406.000 1.02267 0.511335 0.859381i \(-0.329151\pi\)
0.511335 + 0.859381i \(0.329151\pi\)
\(398\) 0 0
\(399\) 20.0000 13.2665i 0.0501253 0.0332494i
\(400\) 0 0
\(401\) 384.728i 0.959423i −0.877426 0.479711i \(-0.840741\pi\)
0.877426 0.479711i \(-0.159259\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −192.500 + 187.389i −0.475309 + 0.462690i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 386.000 0.943765 0.471883 0.881661i \(-0.343575\pi\)
0.471883 + 0.881661i \(0.343575\pi\)
\(410\) 0 0
\(411\) 225.500 + 339.954i 0.548662 + 0.827139i
\(412\) 0 0
\(413\) 139.298i 0.337284i
\(414\) 0 0
\(415\) 286.000 0.689157
\(416\) 0 0
\(417\) −275.000 + 182.414i −0.659472 + 0.437445i
\(418\) 0 0
\(419\) 198.997i 0.474934i −0.971396 0.237467i \(-0.923683\pi\)
0.971396 0.237467i \(-0.0763172\pi\)
\(420\) 0 0
\(421\) 170.000 0.403800 0.201900 0.979406i \(-0.435288\pi\)
0.201900 + 0.979406i \(0.435288\pi\)
\(422\) 0 0
\(423\) 330.000 + 139.298i 0.780142 + 0.329310i
\(424\) 0 0
\(425\) 92.8655i 0.218507i
\(426\) 0 0
\(427\) −160.000 −0.374707
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 696.491i 1.61599i 0.589190 + 0.807994i \(0.299447\pi\)
−0.589190 + 0.807994i \(0.700553\pi\)
\(432\) 0 0
\(433\) 95.0000 0.219400 0.109700 0.993965i \(-0.465011\pi\)
0.109700 + 0.993965i \(0.465011\pi\)
\(434\) 0 0
\(435\) −330.000 + 218.897i −0.758621 + 0.503212i
\(436\) 0 0
\(437\) 13.2665i 0.0303581i
\(438\) 0 0
\(439\) 248.000 0.564920 0.282460 0.959279i \(-0.408850\pi\)
0.282460 + 0.959279i \(0.408850\pi\)
\(440\) 0 0
\(441\) −157.500 + 373.120i −0.357143 + 0.846078i
\(442\) 0 0
\(443\) 374.779i 0.846001i −0.906129 0.423001i \(-0.860977\pi\)
0.906129 0.423001i \(-0.139023\pi\)
\(444\) 0 0
\(445\) −319.000 −0.716854
\(446\) 0 0
\(447\) 319.000 + 480.911i 0.713647 + 1.07586i
\(448\) 0 0
\(449\) 799.307i 1.78019i −0.455772 0.890096i \(-0.650637\pi\)
0.455772 0.890096i \(-0.349363\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 605.000 401.312i 1.33554 0.885898i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −352.000 −0.770241 −0.385120 0.922866i \(-0.625840\pi\)
−0.385120 + 0.922866i \(0.625840\pi\)
\(458\) 0 0
\(459\) −176.000 + 33.1662i −0.383442 + 0.0722576i
\(460\) 0 0
\(461\) 530.660i 1.15111i 0.817764 + 0.575553i \(0.195213\pi\)
−0.817764 + 0.575553i \(0.804787\pi\)
\(462\) 0 0
\(463\) 519.000 1.12095 0.560475 0.828171i \(-0.310619\pi\)
0.560475 + 0.828171i \(0.310619\pi\)
\(464\) 0 0
\(465\) −49.5000 74.6241i −0.106452 0.160482i
\(466\) 0 0
\(467\) 606.942i 1.29966i 0.760079 + 0.649831i \(0.225160\pi\)
−0.760079 + 0.649831i \(0.774840\pi\)
\(468\) 0 0
\(469\) −2.00000 −0.00426439
\(470\) 0 0
\(471\) 282.500 187.389i 0.599788 0.397854i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −56.0000 −0.117895
\(476\) 0 0
\(477\) 550.000 + 232.164i 1.15304 + 0.486716i
\(478\) 0 0
\(479\) 39.7995i 0.0830887i 0.999137 + 0.0415444i \(0.0132278\pi\)
−0.999137 + 0.0415444i \(0.986772\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −11.0000 16.5831i −0.0227743 0.0343336i
\(484\) 0 0
\(485\) 262.013i 0.540234i
\(486\) 0 0
\(487\) 137.000 0.281314 0.140657 0.990058i \(-0.455078\pi\)
0.140657 + 0.990058i \(0.455078\pi\)
\(488\) 0 0
\(489\) 115.000 76.2824i 0.235174 0.155997i
\(490\) 0 0
\(491\) 92.8655i 0.189135i 0.995518 + 0.0945677i \(0.0301469\pi\)
−0.995518 + 0.0945677i \(0.969853\pi\)
\(492\) 0 0
\(493\) −264.000 −0.535497
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 99.4987i 0.200199i
\(498\) 0 0
\(499\) 818.000 1.63928 0.819639 0.572880i \(-0.194174\pi\)
0.819639 + 0.572880i \(0.194174\pi\)
\(500\) 0 0
\(501\) −462.000 696.491i −0.922156 1.39020i
\(502\) 0 0
\(503\) 550.560i 1.09455i 0.836952 + 0.547276i \(0.184335\pi\)
−0.836952 + 0.547276i \(0.815665\pi\)
\(504\) 0 0
\(505\) −154.000 −0.304950
\(506\) 0 0
\(507\) −422.500 + 280.255i −0.833333 + 0.552771i
\(508\) 0 0
\(509\) 580.409i 1.14029i −0.821543 0.570147i \(-0.806886\pi\)
0.821543 0.570147i \(-0.193114\pi\)
\(510\) 0 0
\(511\) 216.000 0.422701
\(512\) 0 0
\(513\) 20.0000 + 106.132i 0.0389864 + 0.206885i
\(514\) 0 0
\(515\) 378.095i 0.734165i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −143.000 215.581i −0.275530 0.415377i
\(520\) 0 0
\(521\) 766.140i 1.47052i 0.677786 + 0.735259i \(0.262940\pi\)
−0.677786 + 0.735259i \(0.737060\pi\)
\(522\) 0 0
\(523\) 520.000 0.994264 0.497132 0.867675i \(-0.334386\pi\)
0.497132 + 0.867675i \(0.334386\pi\)
\(524\) 0 0
\(525\) −70.0000 + 46.4327i −0.133333 + 0.0884433i
\(526\) 0 0
\(527\) 59.6992i 0.113281i
\(528\) 0 0
\(529\) 518.000 0.979206
\(530\) 0 0
\(531\) −577.500 243.772i −1.08757 0.459081i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 550.000 1.02804
\(536\) 0 0
\(537\) −368.500 555.535i −0.686220 1.03452i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 572.000 1.05730 0.528651 0.848839i \(-0.322698\pi\)
0.528651 + 0.848839i \(0.322698\pi\)
\(542\) 0 0
\(543\) −342.500 + 227.189i −0.630755 + 0.418396i
\(544\) 0 0
\(545\) 19.8997i 0.0365133i
\(546\) 0 0
\(547\) 748.000 1.36746 0.683729 0.729736i \(-0.260357\pi\)
0.683729 + 0.729736i \(0.260357\pi\)
\(548\) 0 0
\(549\) 280.000 663.325i 0.510018 1.20824i
\(550\) 0 0
\(551\) 159.198i 0.288926i
\(552\) 0 0
\(553\) 244.000 0.441230
\(554\) 0 0
\(555\) 280.500 + 422.870i 0.505405 + 0.761927i
\(556\) 0 0
\(557\) 378.095i 0.678807i 0.940641 + 0.339403i \(0.110225\pi\)
−0.940641 + 0.339403i \(0.889775\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1008.25i 1.79086i −0.445203 0.895430i \(-0.646868\pi\)
0.445203 0.895430i \(-0.353132\pi\)
\(564\) 0 0
\(565\) −11.0000 −0.0194690
\(566\) 0 0
\(567\) 113.000 + 116.082i 0.199295 + 0.204730i
\(568\) 0 0
\(569\) 265.330i 0.466309i 0.972440 + 0.233155i \(0.0749048\pi\)
−0.972440 + 0.233155i \(0.925095\pi\)
\(570\) 0 0
\(571\) 776.000 1.35902 0.679510 0.733667i \(-0.262193\pi\)
0.679510 + 0.733667i \(0.262193\pi\)
\(572\) 0 0
\(573\) 49.5000 + 74.6241i 0.0863874 + 0.130234i
\(574\) 0 0
\(575\) 46.4327i 0.0807526i
\(576\) 0 0
\(577\) −391.000 −0.677643 −0.338821 0.940851i \(-0.610028\pi\)
−0.338821 + 0.940851i \(0.610028\pi\)
\(578\) 0 0
\(579\) 680.000 451.061i 1.17444 0.779034i
\(580\) 0 0
\(581\) 172.464i 0.296841i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1074.59i 1.83064i 0.402726 + 0.915321i \(0.368063\pi\)
−0.402726 + 0.915321i \(0.631937\pi\)
\(588\) 0 0
\(589\) −36.0000 −0.0611205
\(590\) 0 0
\(591\) 209.000 + 315.079i 0.353638 + 0.533129i
\(592\) 0 0
\(593\) 39.7995i 0.0671155i −0.999437 0.0335578i \(-0.989316\pi\)
0.999437 0.0335578i \(-0.0106838\pi\)
\(594\) 0 0
\(595\) 44.0000 0.0739496
\(596\) 0 0
\(597\) 305.000 202.314i 0.510888 0.338885i
\(598\) 0 0
\(599\) 835.789i 1.39531i 0.716435 + 0.697654i \(0.245773\pi\)
−0.716435 + 0.697654i \(0.754227\pi\)
\(600\) 0 0
\(601\) −310.000 −0.515807 −0.257903 0.966171i \(-0.583032\pi\)
−0.257903 + 0.966171i \(0.583032\pi\)
\(602\) 0 0
\(603\) 3.50000 8.29156i 0.00580431 0.0137505i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 374.000 0.616145 0.308072 0.951363i \(-0.400316\pi\)
0.308072 + 0.951363i \(0.400316\pi\)
\(608\) 0 0
\(609\) 132.000 + 198.997i 0.216749 + 0.326761i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −216.000 −0.352365 −0.176183 0.984357i \(-0.556375\pi\)
−0.176183 + 0.984357i \(0.556375\pi\)
\(614\) 0 0
\(615\) −660.000 + 437.794i −1.07317 + 0.711861i
\(616\) 0 0
\(617\) 305.129i 0.494537i 0.968947 + 0.247269i \(0.0795330\pi\)
−0.968947 + 0.247269i \(0.920467\pi\)
\(618\) 0 0
\(619\) −709.000 −1.14540 −0.572698 0.819767i \(-0.694103\pi\)
−0.572698 + 0.819767i \(0.694103\pi\)
\(620\) 0 0
\(621\) 88.0000 16.5831i 0.141707 0.0267039i
\(622\) 0 0
\(623\) 192.364i 0.308771i
\(624\) 0 0
\(625\) −79.0000 −0.126400
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 338.296i 0.537831i
\(630\) 0 0
\(631\) 685.000 1.08558 0.542789 0.839869i \(-0.317368\pi\)
0.542789 + 0.839869i \(0.317368\pi\)
\(632\) 0 0
\(633\) −410.000 + 271.963i −0.647709 + 0.429642i
\(634\) 0 0
\(635\) 756.190i 1.19085i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −412.500 174.123i −0.645540 0.272493i
\(640\) 0 0
\(641\) 288.546i 0.450150i 0.974341 + 0.225075i \(0.0722628\pi\)
−0.974341 + 0.225075i \(0.927737\pi\)
\(642\) 0 0
\(643\) 479.000 0.744946 0.372473 0.928043i \(-0.378510\pi\)
0.372473 + 0.928043i \(0.378510\pi\)
\(644\) 0 0
\(645\) 121.000 + 182.414i 0.187597 + 0.282813i
\(646\) 0 0
\(647\) 673.275i 1.04061i 0.853980 + 0.520305i \(0.174182\pi\)
−0.853980 + 0.520305i \(0.825818\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −45.0000 + 29.8496i −0.0691244 + 0.0458520i
\(652\) 0 0
\(653\) 1243.73i 1.90465i −0.305091 0.952323i \(-0.598687\pi\)
0.305091 0.952323i \(-0.401313\pi\)
\(654\) 0 0
\(655\) −242.000 −0.369466
\(656\) 0 0
\(657\) −378.000 + 895.489i −0.575342 + 1.36300i
\(658\) 0 0
\(659\) 577.093i 0.875710i 0.899046 + 0.437855i \(0.144262\pi\)
−0.899046 + 0.437855i \(0.855738\pi\)
\(660\) 0 0
\(661\) −87.0000 −0.131619 −0.0658094 0.997832i \(-0.520963\pi\)
−0.0658094 + 0.997832i \(0.520963\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 26.5330i 0.0398992i
\(666\) 0 0
\(667\) 132.000 0.197901
\(668\) 0 0
\(669\) 157.500 104.474i 0.235426 0.156164i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −890.000 −1.32244 −0.661218 0.750193i \(-0.729960\pi\)
−0.661218 + 0.750193i \(0.729960\pi\)
\(674\) 0 0
\(675\) −70.0000 371.462i −0.103704 0.550314i
\(676\) 0 0
\(677\) 391.362i 0.578082i −0.957317 0.289041i \(-0.906664\pi\)
0.957317 0.289041i \(-0.0933364\pi\)
\(678\) 0 0
\(679\) −158.000 −0.232695
\(680\) 0 0
\(681\) −99.0000 149.248i −0.145374 0.219160i
\(682\) 0 0
\(683\) 238.797i 0.349630i −0.984601 0.174815i \(-0.944067\pi\)
0.984601 0.174815i \(-0.0559327\pi\)
\(684\) 0 0
\(685\) 451.000 0.658394
\(686\) 0 0
\(687\) 312.500 207.289i 0.454876 0.301731i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −405.000 −0.586107 −0.293054 0.956096i \(-0.594671\pi\)
−0.293054 + 0.956096i \(0.594671\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 364.829i 0.524933i
\(696\) 0 0
\(697\) −528.000 −0.757532
\(698\) 0 0
\(699\) 110.000 + 165.831i 0.157368 + 0.237241i
\(700\) 0 0
\(701\) 218.897i 0.312264i −0.987736 0.156132i \(-0.950097\pi\)
0.987736 0.156132i \(-0.0499026\pi\)
\(702\) 0 0
\(703\) 204.000 0.290185
\(704\) 0 0
\(705\) 330.000 218.897i 0.468085 0.310493i
\(706\) 0 0
\(707\) 92.8655i 0.131351i
\(708\) 0 0
\(709\) −219.000 −0.308886 −0.154443 0.988002i \(-0.549358\pi\)
−0.154443 + 0.988002i \(0.549358\pi\)
\(710\) 0 0
\(711\) −427.000 + 1011.57i −0.600563 + 1.42274i
\(712\) 0 0
\(713\) 29.8496i 0.0418648i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 319.000 + 480.911i 0.444909 + 0.670726i
\(718\) 0 0
\(719\) 69.6491i 0.0968694i −0.998826 0.0484347i \(-0.984577\pi\)
0.998826 0.0484347i \(-0.0154233\pi\)
\(720\) 0 0
\(721\) 228.000 0.316227
\(722\) 0 0
\(723\) 110.000 72.9657i 0.152144 0.100921i
\(724\) 0 0
\(725\) 557.193i 0.768542i
\(726\) 0 0
\(727\) 141.000 0.193948 0.0969739 0.995287i \(-0.469084\pi\)
0.0969739 + 0.995287i \(0.469084\pi\)
\(728\) 0 0
\(729\) −679.000 + 265.330i −0.931413 + 0.363964i
\(730\) 0 0
\(731\) 145.931i 0.199633i
\(732\) 0 0
\(733\) −1232.00 −1.68076 −0.840382 0.541995i \(-0.817669\pi\)
−0.840382 + 0.541995i \(0.817669\pi\)
\(734\) 0 0
\(735\) 247.500 + 373.120i 0.336735 + 0.507647i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −98.0000 −0.132612 −0.0663058 0.997799i \(-0.521121\pi\)
−0.0663058 + 0.997799i \(0.521121\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1220.52i 1.64269i 0.570432 + 0.821344i \(0.306776\pi\)
−0.570432 + 0.821344i \(0.693224\pi\)
\(744\) 0 0
\(745\) 638.000 0.856376
\(746\) 0 0
\(747\) 715.000 + 301.813i 0.957162 + 0.404033i
\(748\) 0 0
\(749\) 331.662i 0.442807i
\(750\) 0 0
\(751\) 245.000 0.326232 0.163116 0.986607i \(-0.447846\pi\)
0.163116 + 0.986607i \(0.447846\pi\)
\(752\) 0 0
\(753\) −500.500 754.532i −0.664675 1.00203i
\(754\) 0 0
\(755\) 802.623i 1.06308i
\(756\) 0 0
\(757\) 614.000 0.811096 0.405548 0.914074i \(-0.367081\pi\)
0.405548 + 0.914074i \(0.367081\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 12.0000 0.0157274
\(764\) 0 0
\(765\) −77.0000 + 182.414i −0.100654 + 0.238450i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −424.000 −0.551365 −0.275683 0.961249i \(-0.588904\pi\)
−0.275683 + 0.961249i \(0.588904\pi\)
\(770\) 0 0
\(771\) 110.000 + 165.831i 0.142672 + 0.215086i
\(772\) 0 0
\(773\) 756.190i 0.978254i 0.872213 + 0.489127i \(0.162685\pi\)
−0.872213 + 0.489127i \(0.837315\pi\)
\(774\) 0 0
\(775\) 126.000 0.162581
\(776\) 0 0
\(777\) 255.000 169.148i 0.328185 0.217694i
\(778\) 0 0
\(779\) 318.396i 0.408724i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −1056.00 + 198.997i −1.34866 + 0.254147i
\(784\) 0 0
\(785\) 374.779i 0.477425i
\(786\) 0 0
\(787\) 176.000 0.223634 0.111817 0.993729i \(-0.464333\pi\)
0.111817 + 0.993729i \(0.464333\pi\)
\(788\) 0 0
\(789\) −627.000 945.238i −0.794677 1.19802i
\(790\) 0 0
\(791\) 6.63325i 0.00838590i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 550.000 364.829i 0.691824 0.458904i
\(796\) 0 0
\(797\) 646.742i 0.811470i −0.913991 0.405735i \(-0.867016\pi\)
0.913991 0.405735i \(-0.132984\pi\)
\(798\) 0 0
\(799\) 264.000 0.330413
\(800\) 0 0
\(801\) −797.500 336.637i −0.995630 0.420271i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −22.0000 −0.0273292
\(806\) 0 0
\(807\) −550.000 829.156i −0.681537 1.02746i
\(808\) 0 0
\(809\) 1406.25i 1.73826i −0.494587 0.869128i \(-0.664681\pi\)
0.494587 0.869128i \(-0.335319\pi\)
\(810\) 0 0
\(811\) −458.000 −0.564735 −0.282367 0.959306i \(-0.591120\pi\)
−0.282367 + 0.959306i \(0.591120\pi\)
\(812\) 0 0
\(813\) −110.000 + 72.9657i −0.135301 + 0.0897488i
\(814\) 0 0
\(815\) 152.565i 0.187196i
\(816\) 0 0
\(817\) 88.0000 0.107711
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 404.628i 0.492848i 0.969162 + 0.246424i \(0.0792556\pi\)
−0.969162 + 0.246424i \(0.920744\pi\)
\(822\) 0 0
\(823\) 827.000 1.00486 0.502430 0.864618i \(-0.332439\pi\)
0.502430 + 0.864618i \(0.332439\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 106.132i 0.128334i −0.997939 0.0641669i \(-0.979561\pi\)
0.997939 0.0641669i \(-0.0204390\pi\)
\(828\) 0 0
\(829\) −1181.00 −1.42461 −0.712304 0.701871i \(-0.752348\pi\)
−0.712304 + 0.701871i \(0.752348\pi\)
\(830\) 0 0
\(831\) 685.000 454.378i 0.824308 0.546784i
\(832\) 0 0
\(833\) 298.496i 0.358339i
\(834\) 0 0
\(835\) −924.000 −1.10659
\(836\) 0 0
\(837\) −45.0000 238.797i −0.0537634 0.285301i
\(838\) 0 0
\(839\) 268.647i 0.320199i 0.987101 + 0.160099i \(0.0511814\pi\)
−0.987101 + 0.160099i \(0.948819\pi\)
\(840\) 0 0
\(841\) −743.000 −0.883472
\(842\) 0 0
\(843\) −803.000 1210.57i −0.952550 1.43602i
\(844\) 0 0
\(845\) 560.510i 0.663325i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 560.000 371.462i 0.659600 0.437529i
\(850\) 0 0
\(851\) 169.148i 0.198764i
\(852\) 0 0
\(853\) 894.000 1.04807 0.524033 0.851698i \(-0.324427\pi\)
0.524033 + 0.851698i \(0.324427\pi\)
\(854\) 0 0
\(855\) 110.000 + 46.4327i 0.128655 + 0.0543073i
\(856\) 0 0
\(857\) 1140.92i 1.33129i −0.746267 0.665647i \(-0.768156\pi\)
0.746267 0.665647i \(-0.231844\pi\)
\(858\) 0 0
\(859\) −1277.00 −1.48661 −0.743306 0.668951i \(-0.766743\pi\)
−0.743306 + 0.668951i \(0.766743\pi\)
\(860\) 0 0
\(861\) 264.000 + 397.995i 0.306620 + 0.462247i
\(862\) 0 0
\(863\) 1127.65i 1.30667i −0.757071 0.653333i \(-0.773370\pi\)
0.757071 0.653333i \(-0.226630\pi\)
\(864\) 0 0
\(865\) −286.000 −0.330636
\(866\) 0 0
\(867\) 612.500 406.287i 0.706459 0.468612i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 276.500 655.033i 0.316724 0.750325i
\(874\) 0 0
\(875\) 258.697i 0.295653i
\(876\) 0 0
\(877\) −876.000 −0.998860 −0.499430 0.866354i \(-0.666457\pi\)
−0.499430 + 0.866354i \(0.666457\pi\)
\(878\) 0 0
\(879\) −550.000 829.156i −0.625711 0.943295i
\(880\) 0 0
\(881\) 1197.30i 1.35903i 0.733664 + 0.679513i \(0.237809\pi\)
−0.733664 + 0.679513i \(0.762191\pi\)
\(882\) 0 0
\(883\) −206.000 −0.233296 −0.116648 0.993173i \(-0.537215\pi\)
−0.116648 + 0.993173i \(0.537215\pi\)
\(884\) 0 0
\(885\) −577.500 + 383.070i −0.652542 + 0.432848i
\(886\) 0 0
\(887\) 975.088i 1.09931i −0.835392 0.549655i \(-0.814759\pi\)
0.835392 0.549655i \(-0.185241\pi\)
\(888\) 0 0
\(889\) −456.000 −0.512936
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 159.198i 0.178273i
\(894\) 0 0
\(895\) −737.000 −0.823464
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 358.195i 0.398438i
\(900\) 0 0
\(901\) 440.000 0.488346
\(902\) 0 0
\(903\) 110.000 72.9657i 0.121816 0.0808037i
\(904\) 0 0
\(905\) 454.378i 0.502075i
\(906\) 0 0
\(907\) −170.000 −0.187431 −0.0937155 0.995599i \(-0.529874\pi\)
−0.0937155 + 0.995599i \(0.529874\pi\)
\(908\) 0 0
\(909\) −385.000 162.515i −0.423542 0.178784i
\(910\) 0 0
\(911\) 1273.58i 1.39801i −0.715118 0.699003i \(-0.753627\pi\)
0.715118 0.699003i \(-0.246373\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −440.000 663.325i −0.480874 0.724945i
\(916\) 0 0
\(917\) 145.931i 0.159140i
\(918\) 0 0
\(919\) −470.000 −0.511425 −0.255713 0.966753i \(-0.582310\pi\)
−0.255713 + 0.966753i \(0.582310\pi\)
\(920\) 0 0
\(921\) 950.000 630.159i 1.03149 0.684211i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −714.000 −0.771892
\(926\) 0 0
\(927\) −399.000 + 945.238i −0.430421 + 1.01967i
\(928\) 0 0
\(929\) 676.591i 0.728301i −0.931340 0.364150i \(-0.881359\pi\)
0.931340 0.364150i \(-0.118641\pi\)
\(930\) 0 0
\(931\) 180.000 0.193340
\(932\) 0 0
\(933\) 616.000 + 928.655i 0.660236 + 0.995343i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −760.000 −0.811099 −0.405550 0.914073i \(-0.632920\pi\)
−0.405550 + 0.914073i \(0.632920\pi\)
\(938\) 0 0
\(939\) −1427.50 + 946.896i −1.52023 + 1.00841i
\(940\) 0 0
\(941\) 696.491i 0.740161i 0.929000 + 0.370080i \(0.120670\pi\)
−0.929000 + 0.370080i \(0.879330\pi\)
\(942\) 0 0
\(943\) 264.000 0.279958
\(944\) 0 0
\(945\) 176.000 33.1662i 0.186243 0.0350966i
\(946\) 0 0
\(947\) 248.747i 0.262668i −0.991338 0.131334i \(-0.958074\pi\)
0.991338 0.131334i \(-0.0419261\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −148.500 223.872i −0.156151 0.235407i
\(952\) 0 0
\(953\) 1174.09i 1.23199i −0.787751 0.615994i \(-0.788754\pi\)
0.787751 0.615994i \(-0.211246\pi\)
\(954\) 0 0
\(955\) 99.0000 0.103665
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 271.963i 0.283590i
\(960\) 0 0
\(961\) −880.000 −0.915713
\(962\) 0 0
\(963\) 1375.00 + 580.409i 1.42783 + 0.602710i
\(964\) 0 0
\(965\) 902.122i 0.934841i
\(966\) 0 0
\(967\) −556.000 −0.574974 −0.287487 0.957785i \(-0.592820\pi\)
−0.287487 + 0.957785i \(0.592820\pi\)
\(968\) 0 0
\(969\) 44.0000 + 66.3325i 0.0454076 + 0.0684546i
\(970\) 0 0
\(971\) 1681.53i 1.73175i −0.500261 0.865875i \(-0.666763\pi\)
0.500261 0.865875i \(-0.333237\pi\)
\(972\) 0 0
\(973\) 220.000 0.226105
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 301.813i 0.308918i −0.987999 0.154459i \(-0.950637\pi\)
0.987999 0.154459i \(-0.0493634\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −21.0000 + 49.7494i −0.0214067 + 0.0507129i
\(982\) 0 0
\(983\) 1920.33i 1.95354i −0.214300 0.976768i \(-0.568747\pi\)
0.214300 0.976768i \(-0.431253\pi\)
\(984\) 0 0
\(985\) 418.000 0.424365
\(986\) 0 0
\(987\) −132.000 198.997i −0.133739 0.201619i
\(988\) 0 0
\(989\) 72.9657i 0.0737773i
\(990\) 0 0
\(991\) −310.000 −0.312815 −0.156408 0.987693i \(-0.549991\pi\)
−0.156408 + 0.987693i \(0.549991\pi\)
\(992\) 0 0
\(993\) 1317.50 873.931i 1.32679 0.880091i
\(994\) 0 0
\(995\) 404.628i 0.406662i
\(996\) 0 0
\(997\) 134.000 0.134403 0.0672016 0.997739i \(-0.478593\pi\)
0.0672016 + 0.997739i \(0.478593\pi\)
\(998\) 0 0
\(999\) 255.000 + 1353.18i 0.255255 + 1.35454i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.3.e.d.485.1 2
3.2 odd 2 inner 1452.3.e.d.485.2 2
11.10 odd 2 132.3.e.a.89.1 2
33.32 even 2 132.3.e.a.89.2 yes 2
44.43 even 2 528.3.i.b.353.2 2
132.131 odd 2 528.3.i.b.353.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.3.e.a.89.1 2 11.10 odd 2
132.3.e.a.89.2 yes 2 33.32 even 2
528.3.i.b.353.1 2 132.131 odd 2
528.3.i.b.353.2 2 44.43 even 2
1452.3.e.d.485.1 2 1.1 even 1 trivial
1452.3.e.d.485.2 2 3.2 odd 2 inner