Properties

Label 1452.3.e.d
Level $1452$
Weight $3$
Character orbit 1452.e
Analytic conductor $39.564$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,3,Mod(485,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.485"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,5,0,0,0,-4,0,7,0,0,0,0,0,-11,0,0,0,-8,0,-10,0,0,0,28,0,-10, 0,0,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5641343851\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-11}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{-11})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 3) q^{3} + ( - 2 \beta + 1) q^{5} - 2 q^{7} + ( - 5 \beta + 6) q^{9} + ( - 5 \beta - 3) q^{15} + ( - 4 \beta + 2) q^{17} - 4 q^{19} + (2 \beta - 6) q^{21} + (2 \beta - 1) q^{23} + 14 q^{25}+ \cdots + 79 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{3} - 4 q^{7} + 7 q^{9} - 11 q^{15} - 8 q^{19} - 10 q^{21} + 28 q^{25} - 10 q^{27} + 18 q^{31} - 102 q^{37} - 44 q^{43} - 55 q^{45} - 90 q^{49} - 22 q^{51} - 20 q^{57} + 160 q^{61} - 14 q^{63}+ \cdots + 158 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
485.1
0.500000 + 1.65831i
0.500000 1.65831i
0 2.50000 1.65831i 0 3.31662i 0 −2.00000 0 3.50000 8.29156i 0
485.2 0 2.50000 + 1.65831i 0 3.31662i 0 −2.00000 0 3.50000 + 8.29156i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1452.3.e.d 2
3.b odd 2 1 inner 1452.3.e.d 2
11.b odd 2 1 132.3.e.a 2
33.d even 2 1 132.3.e.a 2
44.c even 2 1 528.3.i.b 2
132.d odd 2 1 528.3.i.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.3.e.a 2 11.b odd 2 1
132.3.e.a 2 33.d even 2 1
528.3.i.b 2 44.c even 2 1
528.3.i.b 2 132.d odd 2 1
1452.3.e.d 2 1.a even 1 1 trivial
1452.3.e.d 2 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1452, [\chi])\):

\( T_{5}^{2} + 11 \) Copy content Toggle raw display
\( T_{7} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 5T + 9 \) Copy content Toggle raw display
$5$ \( T^{2} + 11 \) Copy content Toggle raw display
$7$ \( (T + 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 44 \) Copy content Toggle raw display
$19$ \( (T + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 11 \) Copy content Toggle raw display
$29$ \( T^{2} + 1584 \) Copy content Toggle raw display
$31$ \( (T - 9)^{2} \) Copy content Toggle raw display
$37$ \( (T + 51)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 6336 \) Copy content Toggle raw display
$43$ \( (T + 22)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 1584 \) Copy content Toggle raw display
$53$ \( T^{2} + 4400 \) Copy content Toggle raw display
$59$ \( T^{2} + 4851 \) Copy content Toggle raw display
$61$ \( (T - 80)^{2} \) Copy content Toggle raw display
$67$ \( (T - 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 2475 \) Copy content Toggle raw display
$73$ \( (T + 108)^{2} \) Copy content Toggle raw display
$79$ \( (T + 122)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 7436 \) Copy content Toggle raw display
$89$ \( T^{2} + 9251 \) Copy content Toggle raw display
$97$ \( (T - 79)^{2} \) Copy content Toggle raw display
show more
show less