Properties

Label 1452.2.i.l.565.1
Level $1452$
Weight $2$
Character 1452.565
Analytic conductor $11.594$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,2,Mod(493,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.493"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.i (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,0,-2,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5942783735\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 565.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 1452.565
Dual form 1452.2.i.l.1213.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.951057i) q^{3} +(-1.61803 + 1.17557i) q^{5} +(-0.618034 - 1.90211i) q^{7} +(-0.809017 - 0.587785i) q^{9} +(4.85410 + 3.52671i) q^{13} +(-0.618034 - 1.90211i) q^{15} +(-3.23607 + 2.35114i) q^{17} +(0.618034 - 1.90211i) q^{19} +2.00000 q^{21} -8.00000 q^{23} +(-0.309017 + 0.951057i) q^{25} +(0.809017 - 0.587785i) q^{27} +(3.23607 + 2.35114i) q^{35} +(-1.85410 - 5.70634i) q^{37} +(-4.85410 + 3.52671i) q^{39} -10.0000 q^{43} +2.00000 q^{45} +(2.42705 - 1.76336i) q^{49} +(-1.23607 - 3.80423i) q^{51} +(-11.3262 - 8.22899i) q^{53} +(1.61803 + 1.17557i) q^{57} +(-3.70820 - 11.4127i) q^{59} +(-11.3262 + 8.22899i) q^{61} +(-0.618034 + 1.90211i) q^{63} -12.0000 q^{65} +4.00000 q^{67} +(2.47214 - 7.60845i) q^{69} +(-1.85410 - 5.70634i) q^{73} +(-0.809017 - 0.587785i) q^{75} +(1.61803 + 1.17557i) q^{79} +(0.309017 + 0.951057i) q^{81} +(12.9443 - 9.40456i) q^{83} +(2.47214 - 7.60845i) q^{85} -14.0000 q^{89} +(3.70820 - 11.4127i) q^{91} +(1.23607 + 3.80423i) q^{95} +(1.61803 + 1.17557i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} - 2 q^{5} + 2 q^{7} - q^{9} + 6 q^{13} + 2 q^{15} - 4 q^{17} - 2 q^{19} + 8 q^{21} - 32 q^{23} + q^{25} + q^{27} + 4 q^{35} + 6 q^{37} - 6 q^{39} - 40 q^{43} + 8 q^{45} + 3 q^{49} + 4 q^{51}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i
\(4\) 0 0
\(5\) −1.61803 + 1.17557i −0.723607 + 0.525731i −0.887535 0.460741i \(-0.847584\pi\)
0.163928 + 0.986472i \(0.447584\pi\)
\(6\) 0 0
\(7\) −0.618034 1.90211i −0.233595 0.718931i −0.997305 0.0733714i \(-0.976624\pi\)
0.763710 0.645560i \(-0.223376\pi\)
\(8\) 0 0
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 4.85410 + 3.52671i 1.34629 + 0.978134i 0.999187 + 0.0403050i \(0.0128330\pi\)
0.347098 + 0.937829i \(0.387167\pi\)
\(14\) 0 0
\(15\) −0.618034 1.90211i −0.159576 0.491123i
\(16\) 0 0
\(17\) −3.23607 + 2.35114i −0.784862 + 0.570235i −0.906434 0.422347i \(-0.861206\pi\)
0.121572 + 0.992583i \(0.461206\pi\)
\(18\) 0 0
\(19\) 0.618034 1.90211i 0.141787 0.436375i −0.854797 0.518962i \(-0.826318\pi\)
0.996584 + 0.0825877i \(0.0263185\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) −0.309017 + 0.951057i −0.0618034 + 0.190211i
\(26\) 0 0
\(27\) 0.809017 0.587785i 0.155695 0.113119i
\(28\) 0 0
\(29\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(30\) 0 0
\(31\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.23607 + 2.35114i 0.546995 + 0.397415i
\(36\) 0 0
\(37\) −1.85410 5.70634i −0.304812 0.938116i −0.979747 0.200239i \(-0.935828\pi\)
0.674935 0.737878i \(-0.264172\pi\)
\(38\) 0 0
\(39\) −4.85410 + 3.52671i −0.777278 + 0.564726i
\(40\) 0 0
\(41\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(48\) 0 0
\(49\) 2.42705 1.76336i 0.346722 0.251908i
\(50\) 0 0
\(51\) −1.23607 3.80423i −0.173084 0.532698i
\(52\) 0 0
\(53\) −11.3262 8.22899i −1.55578 1.13034i −0.939366 0.342916i \(-0.888586\pi\)
−0.616412 0.787424i \(-0.711414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.61803 + 1.17557i 0.214314 + 0.155708i
\(58\) 0 0
\(59\) −3.70820 11.4127i −0.482767 1.48580i −0.835189 0.549963i \(-0.814642\pi\)
0.352422 0.935841i \(-0.385358\pi\)
\(60\) 0 0
\(61\) −11.3262 + 8.22899i −1.45018 + 1.05361i −0.464386 + 0.885633i \(0.653725\pi\)
−0.985790 + 0.167982i \(0.946275\pi\)
\(62\) 0 0
\(63\) −0.618034 + 1.90211i −0.0778650 + 0.239644i
\(64\) 0 0
\(65\) −12.0000 −1.48842
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 2.47214 7.60845i 0.297610 0.915950i
\(70\) 0 0
\(71\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(72\) 0 0
\(73\) −1.85410 5.70634i −0.217006 0.667876i −0.999005 0.0445966i \(-0.985800\pi\)
0.781999 0.623280i \(-0.214200\pi\)
\(74\) 0 0
\(75\) −0.809017 0.587785i −0.0934172 0.0678716i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.61803 + 1.17557i 0.182043 + 0.132262i 0.675075 0.737749i \(-0.264111\pi\)
−0.493032 + 0.870011i \(0.664111\pi\)
\(80\) 0 0
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 0 0
\(83\) 12.9443 9.40456i 1.42082 1.03229i 0.429183 0.903218i \(-0.358802\pi\)
0.991636 0.129067i \(-0.0411983\pi\)
\(84\) 0 0
\(85\) 2.47214 7.60845i 0.268141 0.825253i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) 3.70820 11.4127i 0.388725 1.19637i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.23607 + 3.80423i 0.126818 + 0.390305i
\(96\) 0 0
\(97\) 1.61803 + 1.17557i 0.164286 + 0.119361i 0.666891 0.745155i \(-0.267625\pi\)
−0.502604 + 0.864517i \(0.667625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.47214 + 4.70228i 0.644002 + 0.467895i 0.861223 0.508228i \(-0.169699\pi\)
−0.217221 + 0.976122i \(0.569699\pi\)
\(102\) 0 0
\(103\) −3.70820 11.4127i −0.365380 1.12452i −0.949743 0.313032i \(-0.898655\pi\)
0.584362 0.811493i \(-0.301345\pi\)
\(104\) 0 0
\(105\) −3.23607 + 2.35114i −0.315808 + 0.229448i
\(106\) 0 0
\(107\) −4.94427 + 15.2169i −0.477981 + 1.47107i 0.363914 + 0.931432i \(0.381440\pi\)
−0.841895 + 0.539641i \(0.818560\pi\)
\(108\) 0 0
\(109\) 18.0000 1.72409 0.862044 0.506834i \(-0.169184\pi\)
0.862044 + 0.506834i \(0.169184\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) −3.09017 + 9.51057i −0.290699 + 0.894679i 0.693934 + 0.720039i \(0.255876\pi\)
−0.984632 + 0.174640i \(0.944124\pi\)
\(114\) 0 0
\(115\) 12.9443 9.40456i 1.20706 0.876980i
\(116\) 0 0
\(117\) −1.85410 5.70634i −0.171412 0.527551i
\(118\) 0 0
\(119\) 6.47214 + 4.70228i 0.593300 + 0.431057i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.70820 11.4127i −0.331672 1.02078i
\(126\) 0 0
\(127\) −4.85410 + 3.52671i −0.430732 + 0.312945i −0.781941 0.623352i \(-0.785770\pi\)
0.351210 + 0.936297i \(0.385770\pi\)
\(128\) 0 0
\(129\) 3.09017 9.51057i 0.272074 0.837359i
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) −4.00000 −0.346844
\(134\) 0 0
\(135\) −0.618034 + 1.90211i −0.0531919 + 0.163708i
\(136\) 0 0
\(137\) −11.3262 + 8.22899i −0.967666 + 0.703050i −0.954918 0.296868i \(-0.904058\pi\)
−0.0127474 + 0.999919i \(0.504058\pi\)
\(138\) 0 0
\(139\) −4.32624 13.3148i −0.366947 1.12935i −0.948753 0.316018i \(-0.897654\pi\)
0.581806 0.813327i \(-0.302346\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0.927051 + 2.85317i 0.0764619 + 0.235325i
\(148\) 0 0
\(149\) −3.23607 + 2.35114i −0.265109 + 0.192613i −0.712396 0.701777i \(-0.752390\pi\)
0.447287 + 0.894390i \(0.352390\pi\)
\(150\) 0 0
\(151\) −3.09017 + 9.51057i −0.251474 + 0.773959i 0.743029 + 0.669259i \(0.233388\pi\)
−0.994504 + 0.104700i \(0.966612\pi\)
\(152\) 0 0
\(153\) 4.00000 0.323381
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3.09017 + 9.51057i −0.246622 + 0.759026i 0.748743 + 0.662860i \(0.230658\pi\)
−0.995365 + 0.0961653i \(0.969342\pi\)
\(158\) 0 0
\(159\) 11.3262 8.22899i 0.898229 0.652602i
\(160\) 0 0
\(161\) 4.94427 + 15.2169i 0.389663 + 1.19926i
\(162\) 0 0
\(163\) −12.9443 9.40456i −1.01387 0.736622i −0.0488556 0.998806i \(-0.515557\pi\)
−0.965018 + 0.262184i \(0.915557\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.70820 7.05342i −0.751243 0.545810i 0.144969 0.989436i \(-0.453692\pi\)
−0.896212 + 0.443626i \(0.853692\pi\)
\(168\) 0 0
\(169\) 7.10739 + 21.8743i 0.546722 + 1.68264i
\(170\) 0 0
\(171\) −1.61803 + 1.17557i −0.123734 + 0.0898981i
\(172\) 0 0
\(173\) −2.47214 + 7.60845i −0.187953 + 0.578460i −0.999987 0.00515062i \(-0.998361\pi\)
0.812034 + 0.583611i \(0.198361\pi\)
\(174\) 0 0
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) 12.0000 0.901975
\(178\) 0 0
\(179\) −1.23607 + 3.80423i −0.0923881 + 0.284341i −0.986564 0.163374i \(-0.947762\pi\)
0.894176 + 0.447715i \(0.147762\pi\)
\(180\) 0 0
\(181\) −17.7984 + 12.9313i −1.32294 + 0.961174i −0.323052 + 0.946381i \(0.604709\pi\)
−0.999891 + 0.0147930i \(0.995291\pi\)
\(182\) 0 0
\(183\) −4.32624 13.3148i −0.319805 0.984258i
\(184\) 0 0
\(185\) 9.70820 + 7.05342i 0.713761 + 0.518578i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1.61803 1.17557i −0.117695 0.0855102i
\(190\) 0 0
\(191\) 7.41641 + 22.8254i 0.536632 + 1.65158i 0.740095 + 0.672502i \(0.234780\pi\)
−0.203463 + 0.979083i \(0.565220\pi\)
\(192\) 0 0
\(193\) 8.09017 5.87785i 0.582343 0.423097i −0.257225 0.966352i \(-0.582808\pi\)
0.839568 + 0.543254i \(0.182808\pi\)
\(194\) 0 0
\(195\) 3.70820 11.4127i 0.265550 0.817279i
\(196\) 0 0
\(197\) −16.0000 −1.13995 −0.569976 0.821661i \(-0.693048\pi\)
−0.569976 + 0.821661i \(0.693048\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) −1.23607 + 3.80423i −0.0871855 + 0.268329i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.47214 + 4.70228i 0.449845 + 0.326831i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −8.09017 5.87785i −0.556950 0.404648i 0.273391 0.961903i \(-0.411855\pi\)
−0.830342 + 0.557255i \(0.811855\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 16.1803 11.7557i 1.10349 0.801732i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) −24.0000 −1.61441
\(222\) 0 0
\(223\) 3.70820 11.4127i 0.248320 0.764249i −0.746753 0.665101i \(-0.768388\pi\)
0.995073 0.0991480i \(-0.0316117\pi\)
\(224\) 0 0
\(225\) 0.809017 0.587785i 0.0539345 0.0391857i
\(226\) 0 0
\(227\) 7.41641 + 22.8254i 0.492244 + 1.51497i 0.821208 + 0.570629i \(0.193301\pi\)
−0.328963 + 0.944343i \(0.606699\pi\)
\(228\) 0 0
\(229\) −1.61803 1.17557i −0.106923 0.0776839i 0.533039 0.846091i \(-0.321050\pi\)
−0.639962 + 0.768407i \(0.721050\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.9443 + 9.40456i 0.848007 + 0.616113i 0.924596 0.380949i \(-0.124403\pi\)
−0.0765885 + 0.997063i \(0.524403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1.61803 + 1.17557i −0.105103 + 0.0763615i
\(238\) 0 0
\(239\) 1.23607 3.80423i 0.0799546 0.246075i −0.903087 0.429458i \(-0.858705\pi\)
0.983042 + 0.183383i \(0.0587048\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −1.85410 + 5.70634i −0.118454 + 0.364565i
\(246\) 0 0
\(247\) 9.70820 7.05342i 0.617718 0.448799i
\(248\) 0 0
\(249\) 4.94427 + 15.2169i 0.313331 + 0.964332i
\(250\) 0 0
\(251\) 3.23607 + 2.35114i 0.204259 + 0.148403i 0.685212 0.728343i \(-0.259709\pi\)
−0.480953 + 0.876746i \(0.659709\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 6.47214 + 4.70228i 0.405301 + 0.294468i
\(256\) 0 0
\(257\) 0.618034 + 1.90211i 0.0385519 + 0.118651i 0.968480 0.249090i \(-0.0801315\pi\)
−0.929928 + 0.367740i \(0.880131\pi\)
\(258\) 0 0
\(259\) −9.70820 + 7.05342i −0.603238 + 0.438278i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) 28.0000 1.72003
\(266\) 0 0
\(267\) 4.32624 13.3148i 0.264761 0.814852i
\(268\) 0 0
\(269\) −11.3262 + 8.22899i −0.690573 + 0.501731i −0.876848 0.480767i \(-0.840358\pi\)
0.186275 + 0.982498i \(0.440358\pi\)
\(270\) 0 0
\(271\) 3.09017 + 9.51057i 0.187714 + 0.577726i 0.999985 0.00555577i \(-0.00176847\pi\)
−0.812270 + 0.583281i \(0.801768\pi\)
\(272\) 0 0
\(273\) 9.70820 + 7.05342i 0.587567 + 0.426893i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −8.09017 5.87785i −0.486091 0.353166i 0.317588 0.948229i \(-0.397127\pi\)
−0.803679 + 0.595063i \(0.797127\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 25.8885 18.8091i 1.54438 1.12206i 0.596869 0.802339i \(-0.296411\pi\)
0.947512 0.319720i \(-0.103589\pi\)
\(282\) 0 0
\(283\) 4.32624 13.3148i 0.257168 0.791482i −0.736227 0.676735i \(-0.763394\pi\)
0.993395 0.114747i \(-0.0366058\pi\)
\(284\) 0 0
\(285\) −4.00000 −0.236940
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.309017 + 0.951057i −0.0181775 + 0.0559445i
\(290\) 0 0
\(291\) −1.61803 + 1.17557i −0.0948508 + 0.0689132i
\(292\) 0 0
\(293\) 6.18034 + 19.0211i 0.361059 + 1.11123i 0.952412 + 0.304813i \(0.0985941\pi\)
−0.591353 + 0.806413i \(0.701406\pi\)
\(294\) 0 0
\(295\) 19.4164 + 14.1068i 1.13047 + 0.821332i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −38.8328 28.2137i −2.24576 1.63164i
\(300\) 0 0
\(301\) 6.18034 + 19.0211i 0.356229 + 1.09636i
\(302\) 0 0
\(303\) −6.47214 + 4.70228i −0.371814 + 0.270139i
\(304\) 0 0
\(305\) 8.65248 26.6296i 0.495439 1.52481i
\(306\) 0 0
\(307\) 26.0000 1.48390 0.741949 0.670456i \(-0.233902\pi\)
0.741949 + 0.670456i \(0.233902\pi\)
\(308\) 0 0
\(309\) 12.0000 0.682656
\(310\) 0 0
\(311\) −2.47214 + 7.60845i −0.140182 + 0.431436i −0.996360 0.0852452i \(-0.972833\pi\)
0.856178 + 0.516681i \(0.172833\pi\)
\(312\) 0 0
\(313\) −11.3262 + 8.22899i −0.640197 + 0.465130i −0.859918 0.510433i \(-0.829485\pi\)
0.219721 + 0.975563i \(0.429485\pi\)
\(314\) 0 0
\(315\) −1.23607 3.80423i −0.0696445 0.214344i
\(316\) 0 0
\(317\) −14.5623 10.5801i −0.817901 0.594240i 0.0982098 0.995166i \(-0.468688\pi\)
−0.916110 + 0.400926i \(0.868688\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12.9443 9.40456i −0.722479 0.524912i
\(322\) 0 0
\(323\) 2.47214 + 7.60845i 0.137553 + 0.423346i
\(324\) 0 0
\(325\) −4.85410 + 3.52671i −0.269257 + 0.195627i
\(326\) 0 0
\(327\) −5.56231 + 17.1190i −0.307596 + 0.946684i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 0 0
\(333\) −1.85410 + 5.70634i −0.101604 + 0.312705i
\(334\) 0 0
\(335\) −6.47214 + 4.70228i −0.353611 + 0.256913i
\(336\) 0 0
\(337\) 5.56231 + 17.1190i 0.302998 + 0.932532i 0.980417 + 0.196934i \(0.0630986\pi\)
−0.677419 + 0.735598i \(0.736901\pi\)
\(338\) 0 0
\(339\) −8.09017 5.87785i −0.439398 0.319241i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −16.1803 11.7557i −0.873656 0.634748i
\(344\) 0 0
\(345\) 4.94427 + 15.2169i 0.266191 + 0.819251i
\(346\) 0 0
\(347\) 25.8885 18.8091i 1.38977 1.00973i 0.393879 0.919162i \(-0.371133\pi\)
0.995891 0.0905647i \(-0.0288672\pi\)
\(348\) 0 0
\(349\) 1.85410 5.70634i 0.0992478 0.305453i −0.889090 0.457733i \(-0.848662\pi\)
0.988337 + 0.152280i \(0.0486615\pi\)
\(350\) 0 0
\(351\) 6.00000 0.320256
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −6.47214 + 4.70228i −0.342542 + 0.248871i
\(358\) 0 0
\(359\) −7.41641 22.8254i −0.391423 1.20468i −0.931712 0.363197i \(-0.881685\pi\)
0.540289 0.841479i \(-0.318315\pi\)
\(360\) 0 0
\(361\) 12.1353 + 8.81678i 0.638698 + 0.464041i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.70820 + 7.05342i 0.508151 + 0.369193i
\(366\) 0 0
\(367\) −1.23607 3.80423i −0.0645222 0.198579i 0.913598 0.406618i \(-0.133292\pi\)
−0.978121 + 0.208039i \(0.933292\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.65248 + 26.6296i −0.449214 + 1.38254i
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 12.0000 0.619677
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 12.9443 9.40456i 0.664903 0.483080i −0.203412 0.979093i \(-0.565203\pi\)
0.868315 + 0.496013i \(0.165203\pi\)
\(380\) 0 0
\(381\) −1.85410 5.70634i −0.0949885 0.292345i
\(382\) 0 0
\(383\) −6.47214 4.70228i −0.330711 0.240275i 0.410021 0.912076i \(-0.365521\pi\)
−0.740732 + 0.671801i \(0.765521\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.09017 + 5.87785i 0.411246 + 0.298788i
\(388\) 0 0
\(389\) 5.56231 + 17.1190i 0.282020 + 0.867969i 0.987276 + 0.159016i \(0.0508321\pi\)
−0.705256 + 0.708953i \(0.749168\pi\)
\(390\) 0 0
\(391\) 25.8885 18.8091i 1.30924 0.951218i
\(392\) 0 0
\(393\) 1.23607 3.80423i 0.0623514 0.191898i
\(394\) 0 0
\(395\) −4.00000 −0.201262
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 0 0
\(399\) 1.23607 3.80423i 0.0618808 0.190450i
\(400\) 0 0
\(401\) 1.61803 1.17557i 0.0808008 0.0587052i −0.546652 0.837360i \(-0.684098\pi\)
0.627452 + 0.778655i \(0.284098\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −1.61803 1.17557i −0.0804008 0.0584146i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 17.7984 + 12.9313i 0.880073 + 0.639410i 0.933271 0.359174i \(-0.116941\pi\)
−0.0531978 + 0.998584i \(0.516941\pi\)
\(410\) 0 0
\(411\) −4.32624 13.3148i −0.213398 0.656770i
\(412\) 0 0
\(413\) −19.4164 + 14.1068i −0.955419 + 0.694153i
\(414\) 0 0
\(415\) −9.88854 + 30.4338i −0.485410 + 1.49394i
\(416\) 0 0
\(417\) 14.0000 0.685583
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −3.09017 + 9.51057i −0.150606 + 0.463517i −0.997689 0.0679432i \(-0.978356\pi\)
0.847084 + 0.531460i \(0.178356\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.23607 3.80423i −0.0599581 0.184532i
\(426\) 0 0
\(427\) 22.6525 + 16.4580i 1.09623 + 0.796458i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9.70820 7.05342i −0.467628 0.339751i 0.328888 0.944369i \(-0.393326\pi\)
−0.796516 + 0.604617i \(0.793326\pi\)
\(432\) 0 0
\(433\) 4.32624 + 13.3148i 0.207906 + 0.639868i 0.999582 + 0.0289266i \(0.00920891\pi\)
−0.791676 + 0.610941i \(0.790791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.94427 + 15.2169i −0.236517 + 0.727923i
\(438\) 0 0
\(439\) 2.00000 0.0954548 0.0477274 0.998860i \(-0.484802\pi\)
0.0477274 + 0.998860i \(0.484802\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 1.23607 3.80423i 0.0587274 0.180744i −0.917389 0.397991i \(-0.869708\pi\)
0.976117 + 0.217247i \(0.0697076\pi\)
\(444\) 0 0
\(445\) 22.6525 16.4580i 1.07383 0.780183i
\(446\) 0 0
\(447\) −1.23607 3.80423i −0.0584640 0.179934i
\(448\) 0 0
\(449\) 17.7984 + 12.9313i 0.839957 + 0.610265i 0.922359 0.386335i \(-0.126259\pi\)
−0.0824015 + 0.996599i \(0.526259\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −8.09017 5.87785i −0.380109 0.276166i
\(454\) 0 0
\(455\) 7.41641 + 22.8254i 0.347687 + 1.07007i
\(456\) 0 0
\(457\) 17.7984 12.9313i 0.832573 0.604900i −0.0877132 0.996146i \(-0.527956\pi\)
0.920286 + 0.391246i \(0.127956\pi\)
\(458\) 0 0
\(459\) −1.23607 + 3.80423i −0.0576947 + 0.177566i
\(460\) 0 0
\(461\) 28.0000 1.30409 0.652045 0.758180i \(-0.273911\pi\)
0.652045 + 0.758180i \(0.273911\pi\)
\(462\) 0 0
\(463\) −12.0000 −0.557687 −0.278844 0.960337i \(-0.589951\pi\)
−0.278844 + 0.960337i \(0.589951\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9.70820 7.05342i 0.449242 0.326393i −0.340054 0.940406i \(-0.610445\pi\)
0.789296 + 0.614012i \(0.210445\pi\)
\(468\) 0 0
\(469\) −2.47214 7.60845i −0.114153 0.351326i
\(470\) 0 0
\(471\) −8.09017 5.87785i −0.372775 0.270837i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1.61803 + 1.17557i 0.0742405 + 0.0539389i
\(476\) 0 0
\(477\) 4.32624 + 13.3148i 0.198085 + 0.609642i
\(478\) 0 0
\(479\) −9.70820 + 7.05342i −0.443579 + 0.322279i −0.787055 0.616882i \(-0.788395\pi\)
0.343476 + 0.939161i \(0.388395\pi\)
\(480\) 0 0
\(481\) 11.1246 34.2380i 0.507239 1.56112i
\(482\) 0 0
\(483\) −16.0000 −0.728025
\(484\) 0 0
\(485\) −4.00000 −0.181631
\(486\) 0 0
\(487\) −4.94427 + 15.2169i −0.224046 + 0.689544i 0.774341 + 0.632769i \(0.218082\pi\)
−0.998387 + 0.0567748i \(0.981918\pi\)
\(488\) 0 0
\(489\) 12.9443 9.40456i 0.585360 0.425289i
\(490\) 0 0
\(491\) 4.94427 + 15.2169i 0.223132 + 0.686729i 0.998476 + 0.0551901i \(0.0175765\pi\)
−0.775344 + 0.631539i \(0.782424\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.23607 3.80423i −0.0553340 0.170301i 0.919570 0.392926i \(-0.128537\pi\)
−0.974904 + 0.222626i \(0.928537\pi\)
\(500\) 0 0
\(501\) 9.70820 7.05342i 0.433731 0.315124i
\(502\) 0 0
\(503\) −6.18034 + 19.0211i −0.275568 + 0.848110i 0.713501 + 0.700654i \(0.247108\pi\)
−0.989069 + 0.147456i \(0.952892\pi\)
\(504\) 0 0
\(505\) −16.0000 −0.711991
\(506\) 0 0
\(507\) −23.0000 −1.02147
\(508\) 0 0
\(509\) 4.32624 13.3148i 0.191757 0.590168i −0.808242 0.588850i \(-0.799581\pi\)
0.999999 0.00131729i \(-0.000419307\pi\)
\(510\) 0 0
\(511\) −9.70820 + 7.05342i −0.429466 + 0.312025i
\(512\) 0 0
\(513\) −0.618034 1.90211i −0.0272869 0.0839803i
\(514\) 0 0
\(515\) 19.4164 + 14.1068i 0.855589 + 0.621622i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −6.47214 4.70228i −0.284095 0.206407i
\(520\) 0 0
\(521\) −12.9787 39.9444i −0.568608 1.74999i −0.656981 0.753907i \(-0.728167\pi\)
0.0883730 0.996087i \(-0.471833\pi\)
\(522\) 0 0
\(523\) −17.7984 + 12.9313i −0.778269 + 0.565445i −0.904459 0.426561i \(-0.859725\pi\)
0.126190 + 0.992006i \(0.459725\pi\)
\(524\) 0 0
\(525\) −0.618034 + 1.90211i −0.0269732 + 0.0830150i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) −3.70820 + 11.4127i −0.160922 + 0.495268i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −9.88854 30.4338i −0.427519 1.31577i
\(536\) 0 0
\(537\) −3.23607 2.35114i −0.139647 0.101459i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −21.0344 15.2824i −0.904341 0.657042i 0.0352361 0.999379i \(-0.488782\pi\)
−0.939577 + 0.342337i \(0.888782\pi\)
\(542\) 0 0
\(543\) −6.79837 20.9232i −0.291746 0.897902i
\(544\) 0 0
\(545\) −29.1246 + 21.1603i −1.24756 + 0.906406i
\(546\) 0 0
\(547\) 6.79837 20.9232i 0.290677 0.894613i −0.693962 0.720012i \(-0.744136\pi\)
0.984639 0.174601i \(-0.0558637\pi\)
\(548\) 0 0
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 1.23607 3.80423i 0.0525630 0.161772i
\(554\) 0 0
\(555\) −9.70820 + 7.05342i −0.412090 + 0.299401i
\(556\) 0 0
\(557\) −3.70820 11.4127i −0.157122 0.483571i 0.841248 0.540649i \(-0.181821\pi\)
−0.998370 + 0.0570787i \(0.981821\pi\)
\(558\) 0 0
\(559\) −48.5410 35.2671i −2.05307 1.49164i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.23607 + 2.35114i 0.136384 + 0.0990888i 0.653885 0.756594i \(-0.273138\pi\)
−0.517501 + 0.855682i \(0.673138\pi\)
\(564\) 0 0
\(565\) −6.18034 19.0211i −0.260009 0.800225i
\(566\) 0 0
\(567\) 1.61803 1.17557i 0.0679510 0.0493693i
\(568\) 0 0
\(569\) 6.18034 19.0211i 0.259093 0.797407i −0.733902 0.679255i \(-0.762303\pi\)
0.992996 0.118152i \(-0.0376970\pi\)
\(570\) 0 0
\(571\) −34.0000 −1.42286 −0.711428 0.702759i \(-0.751951\pi\)
−0.711428 + 0.702759i \(0.751951\pi\)
\(572\) 0 0
\(573\) −24.0000 −1.00261
\(574\) 0 0
\(575\) 2.47214 7.60845i 0.103095 0.317294i
\(576\) 0 0
\(577\) −1.61803 + 1.17557i −0.0673596 + 0.0489396i −0.620956 0.783846i \(-0.713255\pi\)
0.553596 + 0.832785i \(0.313255\pi\)
\(578\) 0 0
\(579\) 3.09017 + 9.51057i 0.128423 + 0.395246i
\(580\) 0 0
\(581\) −25.8885 18.8091i −1.07404 0.780334i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 9.70820 + 7.05342i 0.401385 + 0.291623i
\(586\) 0 0
\(587\) −3.70820 11.4127i −0.153054 0.471052i 0.844905 0.534917i \(-0.179657\pi\)
−0.997959 + 0.0638654i \(0.979657\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 4.94427 15.2169i 0.203380 0.625940i
\(592\) 0 0
\(593\) −24.0000 −0.985562 −0.492781 0.870153i \(-0.664020\pi\)
−0.492781 + 0.870153i \(0.664020\pi\)
\(594\) 0 0
\(595\) −16.0000 −0.655936
\(596\) 0 0
\(597\) −2.47214 + 7.60845i −0.101178 + 0.311393i
\(598\) 0 0
\(599\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(600\) 0 0
\(601\) 4.32624 + 13.3148i 0.176471 + 0.543122i 0.999698 0.0245912i \(-0.00782840\pi\)
−0.823227 + 0.567713i \(0.807828\pi\)
\(602\) 0 0
\(603\) −3.23607 2.35114i −0.131783 0.0957459i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 27.5066 + 19.9847i 1.11646 + 0.811154i 0.983668 0.179990i \(-0.0576067\pi\)
0.132789 + 0.991144i \(0.457607\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −12.9787 + 39.9444i −0.524205 + 1.61334i 0.241677 + 0.970357i \(0.422303\pi\)
−0.765882 + 0.642981i \(0.777697\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.0000 1.52982 0.764911 0.644136i \(-0.222783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) 0 0
\(619\) 9.88854 30.4338i 0.397454 1.22324i −0.529580 0.848260i \(-0.677650\pi\)
0.927034 0.374978i \(-0.122350\pi\)
\(620\) 0 0
\(621\) −6.47214 + 4.70228i −0.259718 + 0.188696i
\(622\) 0 0
\(623\) 8.65248 + 26.6296i 0.346654 + 1.06689i
\(624\) 0 0
\(625\) 15.3713 + 11.1679i 0.614853 + 0.446717i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 19.4164 + 14.1068i 0.774183 + 0.562477i
\(630\) 0 0
\(631\) −2.47214 7.60845i −0.0984142 0.302888i 0.889714 0.456518i \(-0.150904\pi\)
−0.988128 + 0.153630i \(0.950904\pi\)
\(632\) 0 0
\(633\) 8.09017 5.87785i 0.321555 0.233624i
\(634\) 0 0
\(635\) 3.70820 11.4127i 0.147156 0.452898i
\(636\) 0 0
\(637\) 18.0000 0.713186
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.85410 + 5.70634i −0.0732326 + 0.225387i −0.980973 0.194147i \(-0.937806\pi\)
0.907740 + 0.419533i \(0.137806\pi\)
\(642\) 0 0
\(643\) −25.8885 + 18.8091i −1.02094 + 0.741760i −0.966476 0.256756i \(-0.917346\pi\)
−0.0544682 + 0.998516i \(0.517346\pi\)
\(644\) 0 0
\(645\) 6.18034 + 19.0211i 0.243351 + 0.748956i
\(646\) 0 0
\(647\) −6.47214 4.70228i −0.254446 0.184866i 0.453249 0.891384i \(-0.350265\pi\)
−0.707695 + 0.706518i \(0.750265\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.9787 39.9444i −0.507896 1.56314i −0.795846 0.605499i \(-0.792974\pi\)
0.287950 0.957645i \(-0.407026\pi\)
\(654\) 0 0
\(655\) 6.47214 4.70228i 0.252887 0.183733i
\(656\) 0 0
\(657\) −1.85410 + 5.70634i −0.0723354 + 0.222625i
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −18.0000 −0.700119 −0.350059 0.936727i \(-0.613839\pi\)
−0.350059 + 0.936727i \(0.613839\pi\)
\(662\) 0 0
\(663\) 7.41641 22.8254i 0.288029 0.886463i
\(664\) 0 0
\(665\) 6.47214 4.70228i 0.250979 0.182347i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 9.70820 + 7.05342i 0.375341 + 0.272701i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 21.0344 + 15.2824i 0.810818 + 0.589094i 0.914068 0.405562i \(-0.132924\pi\)
−0.103250 + 0.994655i \(0.532924\pi\)
\(674\) 0 0
\(675\) 0.309017 + 0.951057i 0.0118941 + 0.0366062i
\(676\) 0 0
\(677\) −25.8885 + 18.8091i −0.994978 + 0.722894i −0.961005 0.276529i \(-0.910816\pi\)
−0.0339721 + 0.999423i \(0.510816\pi\)
\(678\) 0 0
\(679\) 1.23607 3.80423i 0.0474359 0.145993i
\(680\) 0 0
\(681\) −24.0000 −0.919682
\(682\) 0 0
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 8.65248 26.6296i 0.330594 1.01746i
\(686\) 0 0
\(687\) 1.61803 1.17557i 0.0617318 0.0448508i
\(688\) 0 0
\(689\) −25.9574 79.8887i −0.988899 3.04352i
\(690\) 0 0
\(691\) −19.4164 14.1068i −0.738635 0.536650i 0.153648 0.988126i \(-0.450898\pi\)
−0.892283 + 0.451476i \(0.850898\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 22.6525 + 16.4580i 0.859257 + 0.624287i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −12.9443 + 9.40456i −0.489597 + 0.355713i
\(700\) 0 0
\(701\) 3.70820 11.4127i 0.140057 0.431051i −0.856285 0.516503i \(-0.827233\pi\)
0.996342 + 0.0854521i \(0.0272335\pi\)
\(702\) 0 0
\(703\) −12.0000 −0.452589
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.94427 15.2169i 0.185948 0.572291i
\(708\) 0 0
\(709\) −14.5623 + 10.5801i −0.546899 + 0.397345i −0.826641 0.562730i \(-0.809751\pi\)
0.279742 + 0.960075i \(0.409751\pi\)
\(710\) 0 0
\(711\) −0.618034 1.90211i −0.0231781 0.0713348i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3.23607 + 2.35114i 0.120853 + 0.0878050i
\(718\) 0 0
\(719\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(720\) 0 0
\(721\) −19.4164 + 14.1068i −0.723105 + 0.525366i
\(722\) 0 0
\(723\) −0.618034 + 1.90211i −0.0229849 + 0.0707403i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −48.0000 −1.78022 −0.890111 0.455744i \(-0.849373\pi\)
−0.890111 + 0.455744i \(0.849373\pi\)
\(728\) 0 0
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) 0 0
\(731\) 32.3607 23.5114i 1.19690 0.869601i
\(732\) 0 0
\(733\) 10.5066 + 32.3359i 0.388069 + 1.19435i 0.934229 + 0.356674i \(0.116089\pi\)
−0.546160 + 0.837681i \(0.683911\pi\)
\(734\) 0 0
\(735\) −4.85410 3.52671i −0.179046 0.130085i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 21.0344 + 15.2824i 0.773764 + 0.562173i 0.903101 0.429428i \(-0.141285\pi\)
−0.129337 + 0.991601i \(0.541285\pi\)
\(740\) 0 0
\(741\) 3.70820 + 11.4127i 0.136224 + 0.419255i
\(742\) 0 0
\(743\) −6.47214 + 4.70228i −0.237440 + 0.172510i −0.700142 0.714004i \(-0.746880\pi\)
0.462702 + 0.886514i \(0.346880\pi\)
\(744\) 0 0
\(745\) 2.47214 7.60845i 0.0905721 0.278752i
\(746\) 0 0
\(747\) −16.0000 −0.585409
\(748\) 0 0
\(749\) 32.0000 1.16925
\(750\) 0 0
\(751\) −12.3607 + 38.0423i −0.451048 + 1.38818i 0.424666 + 0.905350i \(0.360392\pi\)
−0.875713 + 0.482832i \(0.839608\pi\)
\(752\) 0 0
\(753\) −3.23607 + 2.35114i −0.117929 + 0.0856803i
\(754\) 0 0
\(755\) −6.18034 19.0211i −0.224926 0.692250i
\(756\) 0 0
\(757\) −30.7426 22.3358i −1.11736 0.811810i −0.133554 0.991042i \(-0.542639\pi\)
−0.983807 + 0.179232i \(0.942639\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 29.1246 + 21.1603i 1.05577 + 0.767059i 0.973300 0.229535i \(-0.0737205\pi\)
0.0824659 + 0.996594i \(0.473720\pi\)
\(762\) 0 0
\(763\) −11.1246 34.2380i −0.402738 1.23950i
\(764\) 0 0
\(765\) −6.47214 + 4.70228i −0.234001 + 0.170011i
\(766\) 0 0
\(767\) 22.2492 68.4761i 0.803373 2.47253i
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) −2.00000 −0.0720282
\(772\) 0 0
\(773\) −5.56231 + 17.1190i −0.200062 + 0.615728i 0.799818 + 0.600243i \(0.204929\pi\)
−0.999880 + 0.0154855i \(0.995071\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −3.70820 11.4127i −0.133031 0.409428i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.18034 19.0211i −0.220586 0.678893i
\(786\) 0 0
\(787\) −30.7426 + 22.3358i −1.09586 + 0.796187i −0.980379 0.197123i \(-0.936840\pi\)
−0.115478 + 0.993310i \(0.536840\pi\)
\(788\) 0 0
\(789\) −3.70820 + 11.4127i −0.132016 + 0.406302i
\(790\) 0 0
\(791\) 20.0000 0.711118
\(792\) 0 0
\(793\) −84.0000 −2.98293
\(794\) 0 0
\(795\) −8.65248 + 26.6296i −0.306872 + 0.944454i
\(796\) 0 0
\(797\) 4.85410 3.52671i 0.171941 0.124923i −0.498487 0.866897i \(-0.666111\pi\)
0.670428 + 0.741975i \(0.266111\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 11.3262 + 8.22899i 0.400193 + 0.290757i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −25.8885 18.8091i −0.912451 0.662935i
\(806\) 0 0
\(807\) −4.32624 13.3148i −0.152291 0.468703i
\(808\) 0 0
\(809\) −35.5967 + 25.8626i −1.25152 + 0.909279i −0.998309 0.0581335i \(-0.981485\pi\)
−0.253206 + 0.967412i \(0.581485\pi\)
\(810\) 0 0
\(811\) −11.7426 + 36.1401i −0.412340 + 1.26905i 0.502268 + 0.864712i \(0.332499\pi\)
−0.914609 + 0.404340i \(0.867501\pi\)
\(812\) 0 0
\(813\) −10.0000 −0.350715
\(814\) 0 0
\(815\) 32.0000 1.12091
\(816\) 0 0
\(817\) −6.18034 + 19.0211i −0.216223 + 0.665465i
\(818\) 0 0
\(819\) −9.70820 + 7.05342i −0.339232 + 0.246467i
\(820\) 0 0
\(821\) −12.3607 38.0423i −0.431391 1.32768i −0.896740 0.442557i \(-0.854071\pi\)
0.465350 0.885127i \(-0.345929\pi\)
\(822\) 0 0
\(823\) 22.6525 + 16.4580i 0.789616 + 0.573689i 0.907849 0.419296i \(-0.137723\pi\)
−0.118234 + 0.992986i \(0.537723\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −12.9443 9.40456i −0.450116 0.327029i 0.339525 0.940597i \(-0.389734\pi\)
−0.789642 + 0.613568i \(0.789734\pi\)
\(828\) 0 0
\(829\) −4.32624 13.3148i −0.150256 0.462442i 0.847393 0.530966i \(-0.178171\pi\)
−0.997649 + 0.0685244i \(0.978171\pi\)
\(830\) 0 0
\(831\) 8.09017 5.87785i 0.280645 0.203900i
\(832\) 0 0
\(833\) −3.70820 + 11.4127i −0.128482 + 0.395426i
\(834\) 0 0
\(835\) 24.0000 0.830554
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −7.41641 + 22.8254i −0.256043 + 0.788019i 0.737580 + 0.675260i \(0.235969\pi\)
−0.993622 + 0.112759i \(0.964031\pi\)
\(840\) 0 0
\(841\) 23.4615 17.0458i 0.809017 0.587785i
\(842\) 0 0
\(843\) 9.88854 + 30.4338i 0.340580 + 1.04820i
\(844\) 0 0
\(845\) −37.2148 27.0381i −1.28023 0.930140i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 11.3262 + 8.22899i 0.388715 + 0.282418i
\(850\) 0 0
\(851\) 14.8328 + 45.6507i 0.508462 + 1.56489i
\(852\) 0 0
\(853\) 14.5623 10.5801i 0.498604 0.362257i −0.309880 0.950776i \(-0.600289\pi\)
0.808483 + 0.588519i \(0.200289\pi\)
\(854\) 0 0
\(855\) 1.23607 3.80423i 0.0422726 0.130102i
\(856\) 0 0
\(857\) −44.0000 −1.50301 −0.751506 0.659727i \(-0.770672\pi\)
−0.751506 + 0.659727i \(0.770672\pi\)
\(858\) 0 0
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6.47214 + 4.70228i −0.220314 + 0.160068i −0.692468 0.721449i \(-0.743477\pi\)
0.472154 + 0.881516i \(0.343477\pi\)
\(864\) 0 0
\(865\) −4.94427 15.2169i −0.168110 0.517390i
\(866\) 0 0
\(867\) −0.809017 0.587785i −0.0274757 0.0199622i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 19.4164 + 14.1068i 0.657900 + 0.477992i
\(872\) 0 0
\(873\) −0.618034 1.90211i −0.0209173 0.0643768i
\(874\) 0 0
\(875\) −19.4164 + 14.1068i −0.656394 + 0.476898i
\(876\) 0 0
\(877\) −5.56231 + 17.1190i −0.187826 + 0.578068i −0.999986 0.00536681i \(-0.998292\pi\)
0.812160 + 0.583435i \(0.198292\pi\)
\(878\) 0 0
\(879\) −20.0000 −0.674583
\(880\) 0 0
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) −13.5967 + 41.8465i −0.457567 + 1.40825i 0.410528 + 0.911848i \(0.365344\pi\)
−0.868095 + 0.496398i \(0.834656\pi\)
\(884\) 0 0
\(885\) −19.4164 + 14.1068i −0.652675 + 0.474196i
\(886\) 0 0
\(887\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(888\) 0 0
\(889\) 9.70820 + 7.05342i 0.325603 + 0.236564i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −2.47214 7.60845i −0.0826344 0.254323i
\(896\) 0 0
\(897\) 38.8328 28.2137i 1.29659 0.942028i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 56.0000 1.86563
\(902\) 0 0
\(903\) −20.0000 −0.665558
\(904\) 0 0
\(905\) 13.5967 41.8465i 0.451971 1.39102i
\(906\) 0 0
\(907\) −12.9443 + 9.40456i −0.429807 + 0.312273i −0.781572 0.623815i \(-0.785582\pi\)
0.351764 + 0.936089i \(0.385582\pi\)
\(908\) 0 0
\(909\) −2.47214 7.60845i −0.0819956 0.252356i
\(910\) 0 0
\(911\) 38.8328 + 28.2137i 1.28659 + 0.934761i 0.999731 0.0232118i \(-0.00738921\pi\)
0.286858 + 0.957973i \(0.407389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 22.6525 + 16.4580i 0.748868 + 0.544084i
\(916\) 0 0
\(917\) 2.47214 + 7.60845i 0.0816371 + 0.251253i
\(918\) 0 0
\(919\) −27.5066 + 19.9847i −0.907358 + 0.659234i −0.940345 0.340221i \(-0.889498\pi\)
0.0329871 + 0.999456i \(0.489498\pi\)
\(920\) 0 0
\(921\) −8.03444 + 24.7275i −0.264744 + 0.814798i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) 0 0
\(927\) −3.70820 + 11.4127i −0.121793 + 0.374842i
\(928\) 0 0
\(929\) 33.9787 24.6870i 1.11481 0.809954i 0.131392 0.991331i \(-0.458055\pi\)
0.983414 + 0.181377i \(0.0580554\pi\)
\(930\) 0 0
\(931\) −1.85410 5.70634i −0.0607657 0.187018i
\(932\) 0 0
\(933\) −6.47214 4.70228i −0.211888 0.153946i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −30.7426 22.3358i −1.00432 0.729680i −0.0413087 0.999146i \(-0.513153\pi\)
−0.963010 + 0.269466i \(0.913153\pi\)
\(938\) 0 0
\(939\) −4.32624 13.3148i −0.141181 0.434512i
\(940\) 0 0
\(941\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 4.00000 0.130120
\(946\) 0 0
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) 11.1246 34.2380i 0.361120 1.11141i
\(950\) 0 0
\(951\) 14.5623 10.5801i 0.472215 0.343084i
\(952\) 0 0
\(953\) −3.70820 11.4127i −0.120121 0.369693i 0.872860 0.487971i \(-0.162263\pi\)
−0.992981 + 0.118278i \(0.962263\pi\)
\(954\) 0 0
\(955\) −38.8328 28.2137i −1.25660 0.912974i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22.6525 + 16.4580i 0.731487 + 0.531456i
\(960\) 0 0
\(961\) −9.57953 29.4828i −0.309017 0.951057i
\(962\) 0 0
\(963\) 12.9443 9.40456i 0.417123 0.303058i
\(964\) 0 0
\(965\) −6.18034 + 19.0211i −0.198952 + 0.612312i
\(966\) 0 0
\(967\) −34.0000 −1.09337 −0.546683 0.837340i \(-0.684110\pi\)
−0.546683 + 0.837340i \(0.684110\pi\)
\(968\) 0 0
\(969\) −8.00000 −0.256997
\(970\) 0 0
\(971\) 18.5410 57.0634i 0.595010 1.83125i 0.0403315 0.999186i \(-0.487159\pi\)
0.554678 0.832065i \(-0.312841\pi\)
\(972\) 0 0
\(973\) −22.6525 + 16.4580i −0.726205 + 0.527619i
\(974\) 0 0
\(975\) −1.85410 5.70634i −0.0593788 0.182749i
\(976\) 0 0
\(977\) 8.09017 + 5.87785i 0.258827 + 0.188049i 0.709630 0.704575i \(-0.248862\pi\)
−0.450803 + 0.892624i \(0.648862\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −14.5623 10.5801i −0.464939 0.337798i
\(982\) 0 0
\(983\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(984\) 0 0
\(985\) 25.8885 18.8091i 0.824878 0.599309i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 80.0000 2.54385
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) −2.47214 + 7.60845i −0.0784509 + 0.241447i
\(994\) 0 0
\(995\) −12.9443 + 9.40456i −0.410361 + 0.298145i
\(996\) 0 0
\(997\) −3.09017 9.51057i −0.0978667 0.301203i 0.890124 0.455719i \(-0.150618\pi\)
−0.987990 + 0.154517i \(0.950618\pi\)
\(998\) 0 0
\(999\) −4.85410 3.52671i −0.153577 0.111580i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.2.i.l.565.1 4
11.2 odd 10 1452.2.i.k.1237.1 4
11.3 even 5 inner 1452.2.i.l.1213.1 4
11.4 even 5 inner 1452.2.i.l.493.1 4
11.5 even 5 1452.2.a.c.1.1 1
11.6 odd 10 132.2.a.a.1.1 1
11.7 odd 10 1452.2.i.k.493.1 4
11.8 odd 10 1452.2.i.k.1213.1 4
11.9 even 5 inner 1452.2.i.l.1237.1 4
11.10 odd 2 1452.2.i.k.565.1 4
33.5 odd 10 4356.2.a.c.1.1 1
33.17 even 10 396.2.a.b.1.1 1
44.27 odd 10 5808.2.a.bf.1.1 1
44.39 even 10 528.2.a.h.1.1 1
55.17 even 20 3300.2.c.c.1849.2 2
55.28 even 20 3300.2.c.c.1849.1 2
55.39 odd 10 3300.2.a.k.1.1 1
77.6 even 10 6468.2.a.l.1.1 1
88.61 odd 10 2112.2.a.t.1.1 1
88.83 even 10 2112.2.a.b.1.1 1
99.50 even 30 3564.2.i.g.1189.1 2
99.61 odd 30 3564.2.i.b.2377.1 2
99.83 even 30 3564.2.i.g.2377.1 2
99.94 odd 30 3564.2.i.b.1189.1 2
132.83 odd 10 1584.2.a.c.1.1 1
165.17 odd 20 9900.2.c.k.5149.2 2
165.83 odd 20 9900.2.c.k.5149.1 2
165.149 even 10 9900.2.a.g.1.1 1
264.83 odd 10 6336.2.a.bz.1.1 1
264.149 even 10 6336.2.a.cf.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.a.a.1.1 1 11.6 odd 10
396.2.a.b.1.1 1 33.17 even 10
528.2.a.h.1.1 1 44.39 even 10
1452.2.a.c.1.1 1 11.5 even 5
1452.2.i.k.493.1 4 11.7 odd 10
1452.2.i.k.565.1 4 11.10 odd 2
1452.2.i.k.1213.1 4 11.8 odd 10
1452.2.i.k.1237.1 4 11.2 odd 10
1452.2.i.l.493.1 4 11.4 even 5 inner
1452.2.i.l.565.1 4 1.1 even 1 trivial
1452.2.i.l.1213.1 4 11.3 even 5 inner
1452.2.i.l.1237.1 4 11.9 even 5 inner
1584.2.a.c.1.1 1 132.83 odd 10
2112.2.a.b.1.1 1 88.83 even 10
2112.2.a.t.1.1 1 88.61 odd 10
3300.2.a.k.1.1 1 55.39 odd 10
3300.2.c.c.1849.1 2 55.28 even 20
3300.2.c.c.1849.2 2 55.17 even 20
3564.2.i.b.1189.1 2 99.94 odd 30
3564.2.i.b.2377.1 2 99.61 odd 30
3564.2.i.g.1189.1 2 99.50 even 30
3564.2.i.g.2377.1 2 99.83 even 30
4356.2.a.c.1.1 1 33.5 odd 10
5808.2.a.bf.1.1 1 44.27 odd 10
6336.2.a.bz.1.1 1 264.83 odd 10
6336.2.a.cf.1.1 1 264.149 even 10
6468.2.a.l.1.1 1 77.6 even 10
9900.2.a.g.1.1 1 165.149 even 10
9900.2.c.k.5149.1 2 165.83 odd 20
9900.2.c.k.5149.2 2 165.17 odd 20