Properties

Label 1452.2.i.c
Level $1452$
Weight $2$
Character orbit 1452.i
Analytic conductor $11.594$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,2,Mod(493,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.493"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.i (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,-2,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5942783735\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{10}^{2} q^{3} + ( - \zeta_{10}^{2} + \zeta_{10} - 1) q^{5} + (3 \zeta_{10}^{3} + 2 \zeta_{10} - 2) q^{7} + (\zeta_{10}^{3} - \zeta_{10}^{2} + \cdots - 1) q^{9} + ( - \zeta_{10}^{3} + 3 \zeta_{10}^{2} + \cdots + 1) q^{13}+ \cdots + ( - 6 \zeta_{10}^{3} - 7 \zeta_{10}^{2} + \cdots + 6) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} - 2 q^{5} - 3 q^{7} - q^{9} - 3 q^{13} + 3 q^{15} + 11 q^{17} + 11 q^{19} - 8 q^{21} - 20 q^{23} + q^{25} - q^{27} - 2 q^{29} - 7 q^{31} + 4 q^{35} - 5 q^{37} - 3 q^{39} + 17 q^{41} - 28 q^{43}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
493.1
−0.309017 0.951057i
0.809017 0.587785i
0.809017 + 0.587785i
−0.309017 + 0.951057i
0 −0.809017 + 0.587785i 0 −0.500000 1.53884i 0 −0.190983 0.138757i 0 0.309017 0.951057i 0
565.1 0 0.309017 0.951057i 0 −0.500000 + 0.363271i 0 −1.30902 4.02874i 0 −0.809017 0.587785i 0
1213.1 0 0.309017 + 0.951057i 0 −0.500000 0.363271i 0 −1.30902 + 4.02874i 0 −0.809017 + 0.587785i 0
1237.1 0 −0.809017 0.587785i 0 −0.500000 + 1.53884i 0 −0.190983 + 0.138757i 0 0.309017 + 0.951057i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1452.2.i.c 4
11.b odd 2 1 1452.2.i.f 4
11.c even 5 2 132.2.i.a 4
11.c even 5 1 1452.2.a.l 2
11.c even 5 1 inner 1452.2.i.c 4
11.d odd 10 1 1452.2.a.m 2
11.d odd 10 1 1452.2.i.f 4
11.d odd 10 2 1452.2.i.g 4
33.f even 10 1 4356.2.a.w 2
33.h odd 10 2 396.2.j.b 4
33.h odd 10 1 4356.2.a.r 2
44.g even 10 1 5808.2.a.bn 2
44.h odd 10 2 528.2.y.i 4
44.h odd 10 1 5808.2.a.bq 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.2.i.a 4 11.c even 5 2
396.2.j.b 4 33.h odd 10 2
528.2.y.i 4 44.h odd 10 2
1452.2.a.l 2 11.c even 5 1
1452.2.a.m 2 11.d odd 10 1
1452.2.i.c 4 1.a even 1 1 trivial
1452.2.i.c 4 11.c even 5 1 inner
1452.2.i.f 4 11.b odd 2 1
1452.2.i.f 4 11.d odd 10 1
1452.2.i.g 4 11.d odd 10 2
4356.2.a.r 2 33.h odd 10 1
4356.2.a.w 2 33.f even 10 1
5808.2.a.bn 2 44.g even 10 1
5808.2.a.bq 2 44.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1452, [\chi])\):

\( T_{5}^{4} + 2T_{5}^{3} + 4T_{5}^{2} + 3T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{4} + 3T_{7}^{3} + 19T_{7}^{2} + 7T_{7} + 1 \) Copy content Toggle raw display
\( T_{13}^{4} + 3T_{13}^{3} + 19T_{13}^{2} + 7T_{13} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{4} - 11 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} - 11 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( (T + 5)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{4} + 7 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$37$ \( T^{4} + 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$41$ \( T^{4} - 17 T^{3} + \cdots + 1681 \) Copy content Toggle raw display
$43$ \( (T^{2} + 14 T + 29)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 22 T^{3} + \cdots + 10201 \) Copy content Toggle raw display
$53$ \( T^{4} + 3 T^{3} + \cdots + 841 \) Copy content Toggle raw display
$59$ \( T^{4} + 27 T^{3} + \cdots + 22801 \) Copy content Toggle raw display
$61$ \( T^{4} + 90 T^{2} + \cdots + 2025 \) Copy content Toggle raw display
$67$ \( (T^{2} + 11 T + 29)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 18 T^{3} + \cdots + 6561 \) Copy content Toggle raw display
$73$ \( T^{4} - 24 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$79$ \( T^{4} + 13 T^{3} + \cdots + 1681 \) Copy content Toggle raw display
$83$ \( T^{4} - 9 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$89$ \( (T^{2} - 12 T - 89)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 32 T^{3} + \cdots + 44521 \) Copy content Toggle raw display
show more
show less