Properties

Label 1452.1.m.b
Level $1452$
Weight $1$
Character orbit 1452.m
Analytic conductor $0.725$
Analytic rank $0$
Dimension $4$
Projective image $D_{3}$
CM discriminant -3
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,1,Mod(245,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 8])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.245"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1452.m (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.724642398343\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.1452.1
Artin image: $C_5\times S_3$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{15} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{10}^{2} q^{3} + \zeta_{10}^{3} q^{7} + \zeta_{10}^{4} q^{9} + 2 \zeta_{10}^{4} q^{13} - \zeta_{10}^{2} q^{19} - q^{21} + \zeta_{10}^{2} q^{25} - \zeta_{10} q^{27} - \zeta_{10}^{4} q^{31} + \zeta_{10}^{3} q^{37} + \cdots - \zeta_{10}^{4} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + q^{7} - q^{9} - 2 q^{13} + q^{19} - 4 q^{21} - q^{25} - q^{27} + q^{31} + q^{37} - 2 q^{39} + 8 q^{43} + q^{57} + q^{61} + q^{63} - 4 q^{67} + q^{73} - q^{75} + q^{79} - q^{81}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
245.1
0.809017 + 0.587785i
−0.309017 + 0.951057i
−0.309017 0.951057i
0.809017 0.587785i
0 0.309017 + 0.951057i 0 0 0 −0.309017 + 0.951057i 0 −0.809017 + 0.587785i 0
269.1 0 −0.809017 0.587785i 0 0 0 0.809017 0.587785i 0 0.309017 + 0.951057i 0
977.1 0 −0.809017 + 0.587785i 0 0 0 0.809017 + 0.587785i 0 0.309017 0.951057i 0
1049.1 0 0.309017 0.951057i 0 0 0 −0.309017 0.951057i 0 −0.809017 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
11.c even 5 3 inner
33.h odd 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1452.1.m.b 4
3.b odd 2 1 CM 1452.1.m.b 4
11.b odd 2 1 1452.1.m.a 4
11.c even 5 1 1452.1.e.a 1
11.c even 5 3 inner 1452.1.m.b 4
11.d odd 10 1 1452.1.e.b yes 1
11.d odd 10 3 1452.1.m.a 4
33.d even 2 1 1452.1.m.a 4
33.f even 10 1 1452.1.e.b yes 1
33.f even 10 3 1452.1.m.a 4
33.h odd 10 1 1452.1.e.a 1
33.h odd 10 3 inner 1452.1.m.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1452.1.e.a 1 11.c even 5 1
1452.1.e.a 1 33.h odd 10 1
1452.1.e.b yes 1 11.d odd 10 1
1452.1.e.b yes 1 33.f even 10 1
1452.1.m.a 4 11.b odd 2 1
1452.1.m.a 4 11.d odd 10 3
1452.1.m.a 4 33.d even 2 1
1452.1.m.a 4 33.f even 10 3
1452.1.m.b 4 1.a even 1 1 trivial
1452.1.m.b 4 3.b odd 2 1 CM
1452.1.m.b 4 11.c even 5 3 inner
1452.1.m.b 4 33.h odd 10 3 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1452, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7}^{4} - T_{7}^{3} + T_{7}^{2} - T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T - 2)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( (T + 1)^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
show more
show less