Properties

Label 8-1452e4-1.1-c0e4-0-1
Degree $8$
Conductor $4.445\times 10^{12}$
Sign $1$
Analytic cond. $0.275736$
Root an. cond. $0.851259$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s − 2·13-s + 19-s − 21-s − 25-s + 31-s + 37-s + 2·39-s + 8·43-s + 49-s − 57-s + 61-s − 4·67-s + 73-s + 75-s + 79-s − 2·91-s − 93-s + 97-s + 103-s − 4·109-s − 111-s + 127-s − 8·129-s + 131-s + 133-s + ⋯
L(s)  = 1  − 3-s + 7-s − 2·13-s + 19-s − 21-s − 25-s + 31-s + 37-s + 2·39-s + 8·43-s + 49-s − 57-s + 61-s − 4·67-s + 73-s + 75-s + 79-s − 2·91-s − 93-s + 97-s + 103-s − 4·109-s − 111-s + 127-s − 8·129-s + 131-s + 133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(0.275736\)
Root analytic conductor: \(0.851259\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 11^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7913505820\)
\(L(\frac12)\) \(\approx\) \(0.7913505820\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
11 \( 1 \)
good5$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
7$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
13$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
17$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
19$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
29$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
31$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
37$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
41$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
43$C_1$ \( ( 1 - T )^{8} \)
47$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
53$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
59$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
61$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
67$C_2$ \( ( 1 + T + T^{2} )^{4} \)
71$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
73$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
79$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
83$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.19170022028651717731064058856, −6.77091505978560696282802040059, −6.32386884006124960386493964478, −6.30716183709795566926610724160, −6.20357058340496989670000213472, −5.74941391031333380635649507206, −5.72239156696724876445176673654, −5.46592999778632449372970400742, −5.40072237263758534397085337937, −5.02224790027657226262992655050, −4.87766048960526334035773386020, −4.53281179351557271959370987158, −4.24481931812450309555751200454, −4.22582064560975869019590040608, −4.03137384695765897315210433337, −3.82336048142633007949087665322, −3.14207717079243753562847926677, −2.88948847286368683400304257951, −2.83614822057332204978132633076, −2.28336631182037581080680644671, −2.24444897088159940053616511441, −2.18344515155380079915664516763, −1.25928467382704474861453913136, −1.13345157799083553098973270012, −0.69952496655136278319894867673, 0.69952496655136278319894867673, 1.13345157799083553098973270012, 1.25928467382704474861453913136, 2.18344515155380079915664516763, 2.24444897088159940053616511441, 2.28336631182037581080680644671, 2.83614822057332204978132633076, 2.88948847286368683400304257951, 3.14207717079243753562847926677, 3.82336048142633007949087665322, 4.03137384695765897315210433337, 4.22582064560975869019590040608, 4.24481931812450309555751200454, 4.53281179351557271959370987158, 4.87766048960526334035773386020, 5.02224790027657226262992655050, 5.40072237263758534397085337937, 5.46592999778632449372970400742, 5.72239156696724876445176673654, 5.74941391031333380635649507206, 6.20357058340496989670000213472, 6.30716183709795566926610724160, 6.32386884006124960386493964478, 6.77091505978560696282802040059, 7.19170022028651717731064058856

Graph of the $Z$-function along the critical line