L(s) = 1 | + (0.309 − 0.951i)3-s + (−0.309 − 0.951i)7-s + (−0.809 − 0.587i)9-s + (−1.61 − 1.17i)13-s + (−0.309 + 0.951i)19-s − 0.999·21-s + (0.309 − 0.951i)25-s + (−0.809 + 0.587i)27-s + (0.809 + 0.587i)31-s + (−0.309 − 0.951i)37-s + (−1.61 + 1.17i)39-s + 2·43-s + (0.809 + 0.587i)57-s + (0.809 − 0.587i)61-s + (−0.309 + 0.951i)63-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)3-s + (−0.309 − 0.951i)7-s + (−0.809 − 0.587i)9-s + (−1.61 − 1.17i)13-s + (−0.309 + 0.951i)19-s − 0.999·21-s + (0.309 − 0.951i)25-s + (−0.809 + 0.587i)27-s + (0.809 + 0.587i)31-s + (−0.309 − 0.951i)37-s + (−1.61 + 1.17i)39-s + 2·43-s + (0.809 + 0.587i)57-s + (0.809 − 0.587i)61-s + (−0.309 + 0.951i)63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9284100275\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9284100275\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 7 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (1.61 + 1.17i)T + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 - 2T + T^{2} \) |
| 47 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.451369085110863188575882756914, −8.395077936672841858858736916609, −7.68548686572895365515475185009, −7.19170022028651717731064058856, −6.30716183709795566926610724160, −5.40072237263758534397085337937, −4.24481931812450309555751200454, −3.14207717079243753562847926677, −2.24444897088159940053616511441, −0.69952496655136278319894867673,
2.28336631182037581080680644671, 2.88948847286368683400304257951, 4.22582064560975869019590040608, 4.87766048960526334035773386020, 5.72239156696724876445176673654, 6.77091505978560696282802040059, 7.64964874028135589436799757753, 8.755659378192548779166291219695, 9.246835881461318603233335283477, 9.757520770243262478065007699644